On a Method for Obtaining Iterative Formulas of Higher Order

DRAGOMIR SIMEUNOVIĆ

ABSTRACT. In this paper a method for obtaining iterative formulas of higher order for finding roots of equations is obtained. These formulas include several already known results.

1. INTRODUCTION

Let

(1)
$$x_{n+1} = f(x_n), \quad n = 0, 1, 2, \dots$$

be an iterative method for finding the root $x = \alpha$ of the real or complex equation F(x) = 0.

For the iterative method (1) which converges to $x = \alpha$, we say it is of order k if

(2)
$$|x_{n+1} - \alpha| = O(|x_n - \alpha|^k), \quad n \to \infty.$$

If the function f(x) is k times differentiable in a neighborhood of the limit point $x = \alpha$, then the iterative method (1) is of order k if and only if

(3)
$$f(\alpha) = \alpha, \quad f'(\alpha) = f''(\alpha) = \dots = f^{(k-1)}(\alpha) = 0, \quad f^{(k)}(\alpha) \neq 0.$$

This paper deals with a general method for obtaining iterative formulas of higher order.

2. A Theorem for Iterative Formulas of Higher Order

Starting from an iterative method of order $k \ge 1$ for finding the root $x = \alpha$ of the real or complex equation F(x) = 0, we give, in this paper, a method for obtaining iterative formulas of order $\ge k + 1$. In this connection the following theorem is proved here.

Theorem 1. Let (1) be an iterative method of order $k \ge 1$. Let the function f(x) be k + 1 times differentiable in a neighborhood of the limit point $x = \alpha$ and let

¹⁹⁹¹ Mathematics Subject Classification. Primary: 65H05.

Key words and phrases. Iteration formulas, approximate solutions of equations.

 $f'(\alpha) \neq 1$. Then for the function h(x) k times differentiable in the neighborhood of the limit point $x = \alpha$ such that

$$(4) h(\alpha) = 0$$

and

(5)
$$h'(\alpha) = 1,$$

formula

(6)
$$x_{n+1} = f(x_n) - \frac{1}{k}f'(x_n)h(x_n), \quad n = 0, 1, 2, \cdots$$

is an iterative method of order $\geq k+1$.

Proof. In the method (1) the iteration function is f(x), and in the method (6) the iteration function is

(7)
$$g(x) = f(x) - \frac{1}{k}f'(x)h(x).$$

For the function g(x) we shall prove that

(8)
$$g(\alpha) = \alpha, \quad g'(\alpha) = g''(\alpha) = \dots = g^{(k)}(\alpha) = 0.$$

By hypothesis, (1) is an iterative method of order $k \ge 1$ and therefore the relations (3) hold.

From (7) we have

(9)
$$g^{(r)}(x) = f^{(r)}(x) - \frac{1}{k} \Big(f^{(r+1)}(x)h(x) + rf^{(r)}(x)h'(x) + \Big) \\ + \binom{r}{2} f^{(r-1)}(x)h''(x) + \dots + f'(x)h^{(r)}(x) \Big).$$

For $k \ge 1$, in view of (3) and (4), we obtain from (7)

(10)
$$g(\alpha) = \alpha$$

Because of (3) and (4), we obtain from (9)

$$g^{(r)}(\alpha) = 0,$$
 textfor $1 \le r \le k-1,$

that is

(11)
$$g'(\alpha) = 0, \ g''(\alpha) = 0, \cdots, g^{(k-1)}(\alpha) = 0.$$

On account of (3), (4) and (5), for r = k, we obtain from (9)

(12)
$$g^{(k)}(\alpha) = f^{(k)}(\alpha) - \frac{1}{k} \cdot k f^{(k)}(\alpha) = 0.$$

In view of (10), (11) and (12), we conclude that the relations (8) are satisfied for $k \ge 1$, which means that the iterative method (6) is of order $\ge k + 1$. \Box

3. Some Forms of the Function h(x)

Taking for the function h(x) different forms, we can obtain from (6) several particular results. Here we give some forms for the function h(x).

3.1. For

(13)
$$h(x) = \frac{u(x)}{u'(x)}v(x),$$

where the functions u(x) and v(x) are k+1 times differentiable in a neighborhood of the limit point $x = \alpha$ such that $u(\alpha) = 0$, $u'(\alpha) \neq 0$ and $v(\alpha) = 1$, we have $h(\alpha) = 0$ and $h'(\alpha) = 1$. In this case formula (6) reduces to

(14)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \frac{u(x_n)}{u'(x_n)} v(x_n), \quad n = 0, 1, 2, \cdots.$$

For different forms of the function u(x) and v(x), from (14) we can obtain the particular results.

3.1.1. For u(x) = x - f(x) and v(x) = 1, where $u(\alpha) = 0$, $u'(\alpha) \neq 0$, from (14) we obtain the iterative method

(15)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \frac{x_n - f(x_n)}{1 - f'(x_n)} = x_n - \left(1 + \frac{1}{k} \frac{f(x_n)}{1 - f'(x_n)}\right) \left(x_n - f(x_n)\right), \quad n = 0, 1, 2, \cdots,$$

which is the result obtained in [7].

3.1.2. For u(x) = x - f(x) and

$$v(x) = \frac{1 - f'(x)}{1 - \frac{1}{k}f'(x)},$$

where $u(\alpha) = 0$, $u'(\alpha) \neq 0$ and $v(\alpha) = 1$, from (14) we obtain the iterative method

(16)
$$x_{n+1} = f(x_n) - f'(x_n) \frac{x_n - f(x_n)}{k - f'(x_n)} =$$
$$= x_n - \frac{x_n - f(x_n)}{1 - \frac{1}{k} f'(x_n)}, \quad n = 0, 1, 2, \cdots,$$

which is the result obtained by B. Jovanović [4].

3.2. Let $x = \alpha$ is single root of the equation F(x) = 0 and let the function F(x) is k + 1 times differentiable in a neighbourhood of the limit point $x = \alpha$. Then we have $F(\alpha) = 0$ and $F'(\alpha) \neq 0$.

For u(x) = F(x), from (13) we obtain

(17)
$$h(x) = \frac{F(x)}{F'(x)}v(x),$$

where $h(\alpha) = 0$ and $h'(\alpha) = 1$. In this case formula (6) reduces to

(18)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \frac{F(x_n)}{F'(x_n)} v(x_n), \qquad n = 0, 1, 2, \cdots$$

3.2.1. For v(x) = 1, from (18) we obtain the iterative method

(19)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \frac{F(x_n)}{F'(x_n)}, \quad n = 0, 1, 2, \cdots$$

3.3. For h(x) = x - f(x) and for $k \ge 2$ we have $h(\alpha) = 0$ and $h'(\alpha) = 1$. In this case formula (6) reduces to

(20)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \big(x_n - f(x_n) \big) =$$
$$= x_n - \Big(1 + \frac{1}{k} f'(x_n) \Big) \big(x_n - f(x_n) \big), \qquad n = 0, 1, 2, \cdots$$

which is the result obtained by G. Milovanović [5].

4. Examples

1) Let (1) be regula falsi, which means

(21)
$$x_{n+1} = \frac{aF(x_n) - x_nF(a)}{F(x_n) - F(a)}, \qquad n = 0, 1, 2, \cdots$$

where

$$f(x) = \frac{aF(x) - xF(a)}{F(x) - F(a)}.$$

The method (21) is of order k = 1.

For $v(x) = \frac{F(x) - F(a)}{-F(a)}$, where $v(\alpha) = 1$, from (18) we obtain Newton's iterative method of order k = 2 for finding of the single root $x = \alpha$ of the equation F(x) = 0, namely

(22)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}, \qquad n = 0, 1, 2, \cdots$$

2) If (1) represents Newton's method (22) for finding a single root $x = \alpha$ of the equation F(x) = 0, which means that

$$f(x) = x - \frac{F(x)}{F'(x)}$$

and k = 2, then we obtain from (18) the iterative method

(23)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \left(1 + \frac{F(x_n)F''(x_n)}{2(F'(x_n))^2} v(x_n) \right), \quad n = 0, 1, 2, \cdots$$

According to Theorem 1, the iterative method (23) is of order $k \ge 3$, since as we know Newton's method (22) is of order 2.

For different forms of the function v(x), from (23) we can obtain particular results. a) For v(x) = 1, we obtain from (23)

(24)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \frac{2(F'(x_n))^2 + F(x_n)F''(x_n)}{2(F'(x_n))^2}, \qquad n = 0, 1, 2, \cdots$$

which is Chebyshev's method (see [1]).

b) For

$$v(x) = \frac{2(F'(x))^2}{2(F'(x))^2 - F(x)F''(x)},$$

we obtain from (23)

(25)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \frac{2(F'(x_n))^2}{2(F'(x_n))^2 - F(x_n)F''(x_n)}, \quad n = 0, 1, 2, \cdots$$

which represents Halley's method (see [2, 3]). c) For

$$v(x) = \frac{(F'(x))^2}{(F'(x))^2 - F(x)F''(x)},$$

we obtain from (23)

(26)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \frac{2(F'(x_n))^2 - F(x_n)F''(x_n)}{2(F'(x_n))^2 - 2F(x_n)F''(x_n)}, \quad n = 0, 1, 2, \cdots$$

which is the method obtained in [7].

d) For

$$v(x) = \frac{2}{\left(1 - \frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}} \left(1 + \left(1 - \frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}}\right)},$$

we obtain from (23)

(27)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \left(1 - \frac{F(x_n)F''(x_n)}{(F'(x_n))^2} \right)^{-\frac{1}{2}}, \qquad n = 0, 1, 2, \cdots,$$

which represents Ostrowski's square root method (see [6]). e) For

$$v(x) = \frac{2m}{\left(1 + (m-1)\left(1 - \frac{m}{m-1}\frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}}\right)\left(1 + \left(1 - \frac{m}{m-1}\frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}}\right)}$$

when F(x) is a polynomial of degree $m \ge 2$, we obtain from (23)

(28)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \frac{m}{1 + (m-1)\left(1 - \frac{m}{m-1}\frac{F(x_n)F''(x_n)}{(F'(x_n))^2}\right)^{\frac{1}{2}}}, \qquad n = 0, 1, \cdots$$

which is the Laguerre's method (see [3]).

f) For

$$v(x) = \frac{2(\pm 1)}{\left(\pm \left(1 - (\pm 1)\frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}}\right) \left(1 + \left(1 - (\pm 1)\frac{F(x)F''(x)}{(F'(x))^2}\right)^{\frac{1}{2}}\right)},$$

where β is fixed finite parameter, we obtain from (23)

(29)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \frac{\pm 1}{\pm \left(1 - (\pm 1)\frac{F(x_n)F''(x_n)}{(F'(x_n))^2}\right)^{\frac{1}{2}}}, \qquad n = 0, 1, 2, \cdots$$

which represents a one parameter family of iterative formulas obtained by E. Hansen and M. Patrick [3].

In all previous cases we have $v(\alpha) = 1$.

References

- [1] И. С. Березин, Н. П. Жидков, *Методю вючислений, том* II. Государственное издательство физико-математической литературы, Москва 1960.
- [2] M. Davies, B. Dawson, On the global convergence of Halley's iteration formula, Numer. Math. 24(1975), 133–135.
- [3] E. Hansen, M. Patrick, A family of root finding methods, Numer. Math. 27(1977), 257–269.
- [4] B. Jovanović, A method for obtainig iterative formulas of higher order, Mat. Vesnik 9(24)(1972), 365–369.
- G. V. Milovanović, A method to accelerate iterative processes in Banach space, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. N°461 – N°497(1974), 67–71.
- [6] A. M. Ostrowski, Solution of equations and systems of equations, Second edition, Academic Press, New York and London 1966.
- [7] D. M. Simeunović, On a process for obtaining iterative formulas of higher order for roots of equations, Anal. Num. Theor. Approx., 24(1995), 225–229.

Mike Alasa 8 11000 Belgrade Serbia and Montenegro