
Mathematica Moravica

Vol. 9 (2005), 25–41

On m-Quasi-Irresolute Functions

Takashi Noiri and Valeriu Popa

Abstract. In this paper we introduce a new notion of m-quasi irresolute
functions as functions from a set satisfying some minimal conditions into a
topological space. We obtain some characterizations and several properties
of such functions. This function lead us to the formulation of a unified the-
ory of (θ, s)-continuity [26], α-quasi irresolute [24], weakly θ-irresolute [19],
θ-irresolute [27], β-quasi irresolute [23].

1. Introduction

Semi-open sets, preopen sets, α-sets, and β-open-sets play an important role
in the research of generalization of continuity in topological spaces. By using
these sets several authors introduced and studied various types of modifications
of iiresolute functions due to Crossley and Hildebrand [12]. In 1998, Ganster et
al. [19] introduced weak θ-irresoluteness. On the other handm Joseph and Kwack
[26] introduced the concept of (θ, s)-continuous functions. Quite recently, Jafari
and Noiri [24] introduced and investigated the notion of α-quasi-irresoluteness
which is between (θ, s)-continuity and weak θ-irresoluteness. In [23], Jafari and
Noiri introduced and studied the notion of β-quasi-irresoluteness which is weaker
than one of weak θ-irresoluteness.

In this paper, in order to unify several properties of the modifications of weak θ-
irresoluteness stated above, we introduce a new function, called m-quasi-irresolute
functions, which is a function from a set satisfying some minimal conditions into
a topological space. We obtain several characterizations and properties of such
funtions. This functions leads us to the formulation of a unified theory of (θ, s)-
continuity, α-quasi-irresolute, weakly θ-irresolute, θ-irresolute, β-quasi-irresolute.

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) denote topological spaces. Let
A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and
Int(a), respectively. The θ-closure (resp. δ-closure) of A, Clθ(A) (resp. Clδ(A)), is
defined by the set of all x ∈ X such that A∩Cl(U) 6= ∅ (resp. A∩ Int(Cl(U)) 6= ∅)
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for any open set U containing x. A subset A is said to be θ-closed (resp. δ-closed)
[50] if A = Clθ(A) (resp. A = Clδ(A)). The complement of a θ-closed (resp.
δ-closed) set is said to be θ-open (resp. δ-open). A subset A is said to be regular
closed (resp. regular open if Cl(Int(A)) = A (resp. Int(Cl(A)) = A). The set
{x ∈ X : x ∈ U ⊂ A for some U ∈ RO(X, τ)} is said to be the δ-interior of A

and is denoted by Intδ(A), where RO(X, τ) is the family of regular open sets of
(X, τ).

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be

(1) semi-open [28] if A ⊂ Cl(Int(A)),
(2) preopen [32] if A ⊂ Int(Cl(A)),
(3) α-open [37] if A ⊂ Int(Cl(Int(A))),
(4) β-open [1] or semi-preopen [4] if A ⊂ Cl(Int(Cl(A))),
(5) b-open [5] if A ⊂ Cl(Int(A)) ∪ Int(Cl(A)),
(6) δ-semi-open [42] if A ⊂ Cl(Intδ(A)),
(7) δ-preopen [46] if A ⊂ IntClδ(A)).

The family of all semi-open (resp. preopen, α-open, semi-preopen, b-open,
δ-semi-open, δ-preopen, θ-open, δ-open) sets in X is denoted by SO(X) (resp.
PO(X), α(X), β(X), SPO(X), BO(X), δSO(X), δPO(X), τθ, τδ). The family of
all semi-open sets of X containing x is denoted by SO(X, x).

Definition 2.2. The complement of a semi-open (resp. preopen, α-open, β-open,
semi-preopen, b-open, δ-semi-open, δ-preopen) set is said to be semi-closed [11]
(resp. pre-closed [32], α-closed [35], β-closed [1], semi-preclosed [4], b-closed [5],
δ-semi-closed [42], δ-preclosed [46]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed α-closed,
β-closed, b-closed, δ-semi-closed, δ-preclosed) sets of X containing A is called
the semi-closure [11] (resp. preclosure [18], α-closure [35], β-closure [2] or semi-
preclosure [4], b-closure [5], δ-semi-closure [42], δ-preclosure [46]) of A and is de-
noted by sCl(A) (resp. pCl(A), αCl(A), βCl(A) or spCl(A), bCl(A), sClδ(A),
pClδ(A)).

Definition 2.4. The union of all semi-open(resp. preopen, α-open, β-open, b-
open, δ-semi-open, δ-preopen) sets of X contained in A is called the semi-interior
(resp. preinterior, α-interior, β-interior or semi-preinterior, b-interior, δ-semi-
interior, δ-preinterior) of A and is denoted by sInt(A) (resp. pInt(A), αInt(A),

βInt(A) or spInt(A), bInt(A), sIntδ(A), pIntδ(A)).

A point x ∈ X is said to be a θ-semi-cluster point of a subset S of X if
S ∩ Cl(U) 6= ∅ for every U ∈ SO(X, x). The set of all θ-semi-cluster points of S

is called the θ-semi-closure of S and is denoted by θ-sCl(S). A subset S is said
to be θ-semi-closed [26] if S = θ-sCl(S). The complement of a θ-semi-closed set
is said to be θ-semi-open. Tha family of all θ-semi-open sets of X is denoted by
θSO(X).
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Definition 2.5. A function f : (X, τ) → (Y, σ) is said to be s-continuous [9]
or strongly semi-continuous [3](resp. strongly α-continuous [7], irresolute [12],
semi-preirresolute [21], almost-irresolute [8]) if for each x ∈ X and each V ∈
SO(Y, f(x)), there exists an open (resp. α-open, semi-open, preopen, β-open) set
U of X containing x such that f(U) ⊂ V .

Definition 2.6. A function f : (X, τ) → (Y, σ) is said to be (θ, s)-continuous
[26] (resp. (p, s)-continuous [22], θ-irresolute [27], weakly-irresolute [19], α-quasi-
irresolute [24], β-quasi-irresolute [23]) if for each x ∈ X and each V ∈ SO(Y, f(x)),
there exists an open (resp. preopen, θ-semi-open, semi-open, α-open, β-open) set
U of X containing x such that f(U) ⊂ Cl(V ).

3. m-quasi-irresolute functions

Definition 3.1. A subfamily mX of the power set P(X) of a nonempty set X is
called a minimal structure (briefly m-structure) on X if m satisfies the following
properties: ∅ ∈ mX and X ∈ mX .

By (X, mX), we denote a nonempty subset X with normal structure mX on X.
We call the pair (X, mX) an m-space. Each member of mX is said to be mX -open
(briefly m-open) and the complement of an mX -open set is said to be mX -closed
(briefly m-closed).

Definition 3.2. A minimal strcture mX on a nonempty set X is said to have
property (B) [31] if the union of any family of subsets belonging to mX belongs to
mX .

Remark 3.1. An m-structure with the property (B) is called a generalized topol-
ogy by Luhojan [29]. Császár [13] called a family m a generalized topology if it
satisfies ∅ ∈ m and has the property (B). Mashhour et al. [34] called a family
m supra-topology if it satisfies X ∈ m and has the property (B). In the present
paper, we do not always assume the property (B) on m-strctures.

Remark 3.2. Let (X, τ)be a topological space. Then the families τ , SO(X),
PO(X), α(X), β(X), δPO(X), δSO(X), BO(X), τθ and τδ are all m-structures
on X with the property (B). It is well-known that τθ, τδ and α(X) are topologies
for X and the others are not topologies.

Definition 3.3. Let X be a nonempty set and mX an m-structure on X. For a
subset A of X, the mX -closure of A and the mX -interior of A are defined in [31]
as follows:

(1) mCl(A) = ∩{F : A ⊂ F, X − F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A, U ∈ mX}.

Remark 3.3. Let (X, τ) be a topological space and A a subset of X. If mX = τ

(resp. SO(X), PO(X), α(X), β(X), δPO(X), δSO(X), BO(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A), pClδ(A), sClδ(A),
bCl(A)),
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(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), βInt(A), pIntδ(A),
sIntδ(A), bInt(A)).

Lemma 3.1 (Maki [31]). Let X be a nonempty set and mX a minimal strcture
on X. For subsets A and B of X, the following properties hold:

(1) mCl(X − A) = X − mInt(A)) and mInt(X − A) = X − mCl(A)),
(2) If (X − A) ∈ mX , then mCl(A) = A and if A ∈ mX , then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2 (Popa and Noiri [43]). Let X be a nonempty set with a minimal
structure mX and A a subset of X. Then x ∈ mCl(A) if and only if U ∩ A 6= ∅
for every U ∈ mX containing x.

Lemma 3.3 (Popa and Noiri [43]). Let X be a nonempty set and mX a minimal
structure on X satisfying the property (B). For a subset A of X, the following
properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. A function f : (X, mX) → (Y, σ) is said to be m-irresolute (resp.
m-quasi-irresolute) at x ∈ X if for each semi-open set V of (Y, σ) containing f(x),
there exists U ∈ mX containing x such that f(U) ⊂ V (resp. f(U) ⊂ Cl(V )). A
function f : (X, mX) → (Y, σ) is said to be m-irresolute (resp. m-quasi-irresolute)
if it has the property at each point x ∈ X.

Remark 3.4. Let f : (X, τ) → (Y, σ) be a function.

(1) If mx = τ (resp. SO(X), PO(X), α(X), β(X)) and f : (X, mX) → (Y, σ)
is m-irresolute, then f is s-continuous or strongly semi-continuous (resp.
irresolute, semi-preirresolute, strongly α-continous, almost-irresolute).

(2) If mX = τ (resp. SO(X), θSO(X), PO(X), α(X), β(X)) and f : (X, mX) →
(Y, σ) is m–quasi-irresolute, then f is (θ, s)-continuous (resp. weakly θ-
irresolute, θ-irresolute, (p, s)-continuous, α-quasi-irresolute, β-quasi-irresolute).

Theorem 3.1 (Popa and Noiri [43]). For a function f : (X, mX) → (Y, σ), the
following properties are equivalent:

(1) f is m-irresolute;
(2) f−1(V ) = mInt(f−1(V )) for every V ∈ SO(Y );
(3) f(mCl(A)) ⊂ sCl(f(A)) for every subset A of X;
(4) mCl(f−1(B)) ⊂ f−1(sCl(B)) for every subset B of Y ;
(5) f−1(sInt(B)) ⊂ mInt(f−1(B)) for every subset B of Y ;
(6) mCl(f−1(K)) = f−1(K) for every semi-closed set K of Y .
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Corollary 3.1. For a function f : (X, mX) → (Y σ), where m satisfies the prop-
erty (B), the following properties are equivalent:

(1) f is m-irresolute;
(2) f−1(V ) is m-open for every semi-open set V of Y ;
(3) f−1(K) is m-closed for every semi-closed set K of Y .

Proof. This follows immediately from Theorem 3.1 and Lemma 3.3. �

Remark 3.5. Let f : (X, τ) → (Y, σ) be a function. We put m = τ (resp. SO(X),
PO(X), α(X), β(X)). Then by Theorem 3.1 we obtain the characterizations
established in [3] and [9] (resp. [12], [21], [8]).

Theorem 3.2. A fnction f : (X, mX) → (Y, σ) is m-quasi-irresolute at x ∈ X if
and only if for each semi-open set V containing f(x), x ∈
mInt(f−1(Cl(V ))).

Proof. Necessity. Let f be m-quasi-irresolute at x and V a semi-open set con-
taining f(x). Then m there exists U ∈ mX containing x such that f(U) ⊂ Cl(V ).
Then we have x ∈ U ⊂ f−1(Cl(V )) and hence x ∈ mInt(f−1(Cl(V ))).

Sufficiency. Let V be a semi-open set containing f(x). Then, by the hypothesis
we have x ∈ mInt(f−1(Cl(V ))). There exists U ∈ mX such that x ∈ U and
U ⊂ f−1(Cl(V )); hence f(U) ⊂ Cl(V ). This shows that f is m-quasi-irresolute
at x ∈ X. �

Theorem 3.3. For a function f : (X, mX) → (Y, σ), the following properties are
equivalent:

(1) f is m-quasi-irresolute;
(2) f−1(V ) ⊂ mInt(f−1(Cl(V ))) for every semi-open set V of Y ;
(3) mCl(f−1(Int(F ))) ⊂ f−1(F ) for every semi-closed set F of Y ;
(4) mCl(f−1(Int(sCl(B))) ⊂ f−1(sCl(B)) for every subset B of Y ;
(5) f−1(sInt(B)) ⊂ mInt(f−1(Cl(sInt(B)))) for every subset B of Y .

Proof.

(1)⇒(2): Let V be any semi-open set of Y and x ∈ f−1(V ). Then f(x) ∈ V . Since f

is m-quasi-irresolute at x, by Theorem 3.2 we have x ∈ mInt(f−1(Cl(V )))
and hence f−1(V ) ⊂ mInt(f−1(Cl(V ))).

(2)⇒(3): Let F be any semi-closed set of Y . Then Y −F is semi-open in Y and by
(2) and Lemma 3.1 we have

X − f−1(F ) = f−1(Y − F ) ⊂ mInt(f−1(Cl(Y − F )))

= mInt(f−1(Y − Int(F ))) = mInt(X − f−1(Int(F ))) = X − mCl(f−1(Int(F ))).

Therefore, we have mCl(f−1(Int(F ))) ⊂ f−1(F ).
(3)⇒(4): Let B be any subset of Y . Then sCl(B) is semi-closed in Y and by (3) we

obtain mCl(f−1(Int(sCl(B)))) ⊂ f−1(sCl(B)).
(4)⇒(5): Let B be any subset of Y . Then we have

f−1(sInt(B)) = X − f−1(sCl(Y − B))
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⊂ X − mCl(f−1(Int(sCl(Y − B)))) = mInt(f−1(Cl(sInt(B)))).

(5)⇒(1): Let x ∈ X and V be any semi-open set of Y containing f(x). Then, we
have x ∈ f−1(V ) = f−1(sInt(V )) ⊂ mInt(f−1(Cl(sInt(V )))) ⊂ mInt(f−1(Cl(V )))
⊂ mInt(f−1(Cl(V ))) and hence x ∈ mInt(f−1(Cl(V ))). By Theorem 3.2,
f is m-quasi-irresolute at x.

�

Theorem 3.4. For a function f : (X, mX) → (Y, σ), the following properties are
equaivalent:

(1) f is m-quasi-irresolute;
(2) f(mCl(A)) ⊂ θ − sCl(f(A)) for every subset A of X;
(3) mCl(f−1(B)) ⊂ f−1(θ − sCl(B)) for every subset B of Y .

Proof.

(1)⇒(2): Let A be any subset X. Suppose that x ∈ mCl(A) and G is any semi-open
set of Y containing f(x). Since f is m-quasi-irresolute, there exists an
mX -open set U containing x such that f(U) ⊂ Cl(G). Since x ∈ mCl(A),
by Lemma 3.2 we have U ∩ A 6= ∅. It follows that ∅ 6= f(U) ∩ f(A) ⊂
Cl(G) ∩ f(A). Hence Cl(G) ∩ f(A) 6= ∅ and f(x) ∈ θ − sCl(f(A)).

(2)⇒(3): Let B be any subset of Y . Then f(mCl(f−1(B))) ⊂ θ−
sCl(f(f−1(B))) ⊂ θ− sCl(B) and hence mCl(f−1(B)) ⊂ f−1(θ− sCl(B)).

(3)⇒(1): Let V be any semi-open set containing f(x). Since Cl(V )∩(Y −Cl(V )) =6=
∅, clearly f(x) 6∈ θ−sCl(Y −Cl(V )) and hence x 6∈ f−1(θ−Cl(Y −Cl(V ))).
By (3), x 6∈ mCl(f−1(Y − Cl(V ))). By Lemma 3.2, there exists an mX -
open set U containing x such that U ∩f−1(Y −Cl(V ))) = ∅; hence f(U)∩
(Y −Cl(V )) = ∅. This shows that f(U) ⊂ Cl(V ). Therefore, f is m-quasi-
irresolute.

�

Theorem 3.5. For a function f : (X, mX) → (Y, σ), where mX satisfyies the
property (B), the following properties are equivalent:

(1) f is m-quasi-irresolute;
(2) f−1(F ) is m-open for every regular closed set F of Y ;
(3) f−1(V ) is m-closed for every regular open set V of Y ;
(4) the inverse image of a θ-semi-open set of Y is m-open;
(5) the inverse image of a θ-semi-closed set of Y is m-closed.

Proof.

(1)⇒(2): Let F be any regular closed set of Y . Since F is semi-open, by Theorem 3.3
f−1(F ) ⊂ mInt(f−1(Cl(F ))) = mInt(f−1(F )). By Lemma 3.1, f−1(F ) =
mInt(f−1(F )) and by Lemma 3.3 f−1(F ) is m-open.

(2)⇒(3): This is obvious.
(3)⇒(4): This follows from the fact that (i) every θ-emi-open set is the union of

regular closed sets and (ii) m satisfies the property (B).
(4)⇒(5): This is obvious.
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(5)⇒(1): Let x ∈ X and V be any semi-open set of Y containing f(x). Since Cl(V )
is regular closed, it is θ-semi-open. Now, put U = f−1(Cl(V )), then by
(4) U is an m-open set containing x and f(U) ⊂ Cl(V ). This shows that
f is m-quasi-irresolute.

�

Remark 3.6. Let f : (X, τ) → (Y, σ) be a function. Let mX = τ (resp. SO(X),
θSO(X), α(X), β(X)) and f : (X, mX) → (Y, σ) be m-quasi-irresolute, then by
Theorems 3.4 and 3.5 we obtain the results established in Theorem 7 of [26] (resp.
Theorem 1.2 of [19]; Theorem 2.2 of [27], Theorem 2.1 of [24]; Theorem 3.1 of
[23]).

Definition 3.5. A function f : (X, mX) → (Y, σ) is said to be

(1) contra-m-continuous [41] if f−1(V ) = mCl(f−1(V )) for every V ∈ σ;
(2) almost contra-m-continuous if f−1(V ) = mCl(f−1(V )) for every reagular

open set of Y .

Lemma 3.4 (Noiri and Popa [41]). Let (X, mX) be an m-space, where mX has
the property (B). For a function f : (X, mX) → (Y, σ), the following property are
equaivalent:

(1) f is contra-m-continuous;
(2) f−1(F ) is m-open for every closed set F of Y ;
(3) f−1(V ) is m-closed for every open set V of Y .

Let (Y, σ) be a topological space. The family of regular open sets of Y forms a
base for a semi-regular topology on Y which is called the semi-regularization of σ

and is denoted by σs.

Theorem 3.6. For a function f : (X, mX) → (Y, σ), where mX has the property
(B), the assertion (1) implies both (2) and (3) which are equivalent:

(1) f : (X, mX) → (Y, σs) is contra-m-continuous,
(2) f : (X, mX) → (Y, σ) is m-quasi-irresolute,
(3) f : (X, mX) → (Y, σ) is almost contra-m-continuous.

Proof. The proof follows from Theorem 3.5 and Lemma 3.4. �

4. Comparasions of fuctions

Definition 4.1. A function f : (X, mX) → (Y, σ) is said to satisfy the s-
interiority condition if mInt(f−1(Cl(V ))) ⊂ f−1(V ) for each semi-open set V

of Y .

Theorem 4.1. If a function f : (X, mX) → (T, σ) is m-quasi-irresolute and
satisfies the s-interiority condition, then f is m-irresolute.

Proof. Let V be any semi-open set of Y . Since f is m-quasi-irresolute, by Theorem
3.3 f−1(V ) ⊂ mInt(f−1(Cl(V ))). By the s-interiority condition of f and Lemma
3.1,

f−1(V ) ⊂ mInt(f−1(Cl(V ))) = mInt(mInt(f−1(Cl(V )))
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⊂ mInt(f−1(V )) ⊂ f−1(V ).

Therefore, we obtain f−1(V ) = mInt(f−1(V )). By Theorem 3.1, f is m-irresolute.
�

Definition 4.2. A topological space (Y, σ) is said to be strongly semi-regular [25]
if for each semi-closed set K and each y ∈ Y − K, there exists a regular closed
sets F containing y such that F ∩ K = ∅.

Lemma 4.1 (Jafari and Noiri [25]). For a topological space (Y, σ), the following
properties are equivalent:

(1) (Y, σ) is strongly semi-regular;
(2) for each semi-open set W of (Y, σ) and each y ∈ W , there exists a semi-

open sets V such that y ∈ V ⊂ Cl(V ) ⊂ W ;
(3) for each semi-open set W and each y ∈ W , there exists a regular closed

sets F such that y ∈ F ⊂ W ;
(4) sCl(B) = θ − sCl(B) for every subset B of Y ,
(5) every semi-open set of (Y, σ) is θ-semi-open.

Theorem 4.2. Let (Y, σ) be strongly semi-regular. Then, for a function f :
(X, mX) → (Y, σ) the following properties are equivalent:

(1) f is m-irresolute;
(2) f−1(θ − sCl(B)) = mCl(f−1(θ − sCl(B))) for every subset B of Y ;
(3) f is m-quasi-irresolute;
(4) f−1(F ) = mCl(f−1(F )) for every θ-semi-closed set F of Y ;
(5) f−1(V ) = mInt(f−1(V )) for every θ-semi-open set V of Y .

Proof.

(1)⇒(2): Let B be any subset of Y . By Lemma 4.1, θ − sCl(B) is semi-closed and
by Theorem 3.1, f−1(θ − sCl(B)) = mCl(f−1(θ − sCl(B))).

(2)⇒(3): Let B be any subset of Y . Then, by (2) and Lemma 3.1, we have
mCl(f−1(B)) ⊂ mCl(f−1(θ − sCl(B))) = f−1(θ − sCl(B)). Therefore,
by Theorem 3.4 f is m-quasi-irresolute.

(3)⇒(4): Let F be any θ-semi-closed set of Y . By Theorem 3.4 and Lemma 3.1,
we have mCl(f−1(F )) ⊂ f−1(θ− sCl(F )) = f−1(F ). Therefore, we obtain
f−1(F ) = mCl(f−1(F )) for every θ-semi-closed set of Y .

(4)⇒(5): Let V be any θ-semi-open set of Y . Then Y − V is θ-semi-closed set of Y

and by (4) and Lemma 3.1, we have X − mInt(f−1(V )) = mCl(f−1(Y −
V )) = f−1(Y − V ) = X − f−1(V ). Therefore, we obtain f−1(V ) =
mInt(f−1(V )).

(5)⇒(1): Let V be any open semi-open set of Y . Since (Y, σ) is strongly semi-
regular, by Lemma 4.1 V is θ-semi-open. By (5) f−1(V ) = mInt(f−1(V ))
and hence by Theorem 3.1 f is m-irresolute.

�
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Remark 4.1. By Theorem 4.2, we obtain the further characterization of (θ, s)-
continuity, (p, s)-continuity, weak θ-irresoluteness, θ-irresoluteness, α-quasi-irre-
soluteness and β-quasi-irresoluteness.

We recall that a topological space (Y σ) is called extremally disconnected if the
closure of each open set of Y is open if Y .

Definition 4.3. A function f : (X, mX) → (Y, σ) is said to be weakly m-
continuous [44] (resp. almost m-continuous [45]) if for each x ∈ X and each open
set V containing f(x), there exists U ∈ mX containing x such that f(U) ⊂ Cl(V )
(resp. f(U) ⊂ Int(Cl(V ))).

Theorem 4.3. Let (X, mX) be an m-space, where mX has the property (B), and
(Y, σ) an extremally disconnected space. For a function f : (X, mX) → (Y, σ), the
following properties are equaivalent:

(1) f is m-quasi-irresolute;
(2) f is almost m-continuous;
(3) f is weakly m-continuous.

Proof.

(1)⇒(2): Let G be any open set of Y containing f(x). There exists an m-open
set U containing x such that f(U) ⊂ Cl(V ). Since (Y, σ) is extremally
disconnected, Cl(V ) is open in (Y, σ) and Cl(V ) = Int(Cl(V )). Hence f is
almost m-continuous.

(2)⇒(3): This is obvious.
(3)⇒(1): Let F be any regular closed set of (Y, σ). Since (Y, σ) is extremally discon-

nected, F is open and since f is weakly m-continous, by Theorem 3.1 of
[44] f−1(F ) ⊂ mInt(f−1(Cl(F ))) = mInt(f−1(F )). Therefore, we obtain
f−1(F ) = mInt(f−1(F )). Since mX has the property (B), by Lemma 3.3
f−1(F ) is m-open and hence by Theorem 3.5 f is m-quasi-ireesolute.

�

Remark 4.2. By Theorem 4.3, we obtain the further characterization of (θ, s)-
continuity, (p, s)-continuityy, weak θ-irresoluteness, θ-irresoluteness, α-quasi-irre-
soluteness and β-quasi-irresoluteness.

5. Some properties of m-quasi-irresolute functions

Definition 5.1. An m-space (X, mX) is said to be m-Hausdorff [43] if for each
pair of distinct points x, y ∈ X, there exists U, V ∈ mX containing x and y,
respectively, such that U ∩ V = ∅.

Definition 5.2. A topological space (Y, σ) is said to be

(1) weakly Hausdorff [47] if each element of Y is the intersection of regular
closed sets,
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(2) s-Urysohn [6] if for each pair of distinct points x and y in Y , there exists
semi-open sets U, V containing x and y, respectively, such that Cl(U) ∩
Cl(V ) = ∅.

Theorem 5.1. If f : (X, mX) → (Y, σ) is an m-quasi-irresolute injection and
(Y, σ) is s-Urysohn, then (X, mX) is m-Hausdorff.

Proof. Let x, y be any pair of distinct points of X. Then f(x) 6= f(y). Since
(Y, σ) is s-Urysohn, there exists U, V ∈ SO(Y, f(x)) containing f(x) and f(y),
respectively, such that Cl(U) ∩ Cl(V ) = ∅. Since f is m-quasi-irresolute, there
exist g, H ∈ mX containing x, y, respectively, such that f(G) ⊂ Cl(U) and f(H) ⊂
Cl(V ). This implies that G ∩ H = ∅. Hence (X, mX) is m-Hausdorff. �

Remark 5.1. Let f : (X, τ) → (Y, σ) be a function. If mX = τ (resp. SO(X),
θSO(X), α(X), β(X)) and f : (X, mX) → (Y, σ) is m-quasi-irresolute, then
by Theorem 5.1 we obtain the results established in Theorem 3.2 of [40] (resp.
Proposition 1.7 of [19], Theorem 2.5 of [27], Theorem 3.3 of [24], Theorem 3.2 of
[23]).

Definition 5.3. A function f : (X, mX) → (Y, σ) is said to have an m-quasi-closed
graph if for each (x, y) ∈ (X ×Y )−G(f), there exist an m-open set U containing
x and a semi-open set V of Y containing y such that [U × Cl(V )] ∩ G(f) = ∅.

Remark 5.2. Let f : (X, τ) → (Y, σ) be a function and mX = τ (resp. α(X),
β(X)). Then the m-quasi-closed graph of a function f : (X, mX) → (Y, σ) is said
to be (τ, s)-closed [40] (resp. α-quasi-closed [24], β-quasi closed [23]).

Lemma 5.1. A function f : (X, mX) → (Y, σ) has an m-quasi-closed graph if and
only if for each (x, y) ∈ (X × Y ) − G(f), there exist an m-open set U containing
x and a semi-open set V of Y containing y such that f(U) ∩ Cl(V ) = ∅.

Theorem 5.2. If f : (X, mX) → (Y, σ) is an m-quasi-irresolute function and
(Y, σ) is s-Urysohn, then G(f) is m-quasi-closed.

Proof. Suppose that (x, y) ∈ (X×Y )−G(f). Then y 6= f(x). Since Y is s-Urysohn
there exist semi-open sets V and W i Y containing y and f(x), respectively, such
that Cl(V ) ∩ Cl(W ) = ∅. Since f is m-quasi-irresolute, there exists an m-open
set U containing x such that f(U) ⊂ Cl(W ). This implies that f(U)∩Cl(V ) = ∅
and by Lemma 5.1 G(f) is m-quasi-closed. �

Remark 5.3. Let f : (X, τ) → (Y, σ) be a function and mX = τ (resp. α(X),
β(X), θSO(X)). If a function f(X, mX) → (Y, σ) is m-quasi-irresolute, then
by Theorem 5.2 we obtain the results established in Theorem 4.1 of [40] (resp.
Theorem 4.1 of [24], Theorem 3.1 of [23], Thorem 2.7 of [27]).

Theorem 5.3. If f : (X, mX) → (Y, σ) is an injective m-quasi-irresolute function
with an m-quasi-closed graph, then (X, mX) is m-Hausdorff.

Proof. Let x and y be any distinct point of X. Then, since f is injective, we
have f(x) 6= f(y). Then we have (x, f(y)) ∈ (X × Y ) − G(f). Since G(f) is
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m-quasi-closed, by Lemma 5.1 there exist an m-open set U of X containing x

and a semi-open set V containing f(y) such that f(U) ∩ Cl(V ) = ∅. Since f is
m-quasi-irresolute, there exists G ∈ mX containing y such that f(G) ⊂ Cl(V ).
Therefore, we have f(U) ∩ f(G) = ∅. Clearly, we obtain U ∩ G = ∅. This shows
that X is m-Hausdorff. �

Theorem 5.4. If f : (X, mX) → (Y, σ) is a surjection and G(f) is m-quasi-
closed, then (Y, σ) is weakly-Hausdorff.

Proof. Let y1 and y be any distinct points of Y . Then, since f is surjective, there
exists x ∈ X such that f(x) = y1. Then (x, y) 6∈ G(f) and by Lemma 5.1 there
exist U ∈ mX containing x and V ∈ SO(Y, y) such that f(U) ∩ Cl(V ) = ∅. Since
y1 ∈ f(U), y1 6∈ Cl(V ) and Cl(V ) is a regular closed set containing y. This shows
that (Y, σ) is weakly-Hausdorff. �

Remark 5.4. Let f : (X, τ) → (Y, σ) be a function and mX = τ (resp. α(X),
β(X)). If a function f : (X, mX) → (Y, σ) is m-quasi-irresolute, then by Theorem
5.4 we obtain the results established in Theorem 4.2 of [40] (resp. Theorem 4.2
of [24], Theorem 3.11 of [23]).

Definition 5.4. An m-space (X, mX) is said to be

(1) m-connected [43] if X cannot be written as the union of two nonempty
disjoint m-open sets,

(2) m-ultra-connected if F1 ∩ F2 6= ∅ for each nonempty m-closed sets F1 and
F2.

We shall recall a topological space (Y, σ) is said to be hyperconnected [48] if
every nonempty open set is dense.

Theorem 5.5. Let f : (X, mX) → (Y, σ) be an m-quasi-irresolute surjection. If
(X, mX) satisfies the property (B) and is m-connected, then (Y, σ) is connected.

Proof. Assume that (Y, σ) is not connected. Then there exist nonempty open sets
V1, V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = Y . Therefore, V1 and V2 are regular
closed. Since f is m-quasi-irresolute, by Theorem 3.5 f−1(V1) and f−1(V2) are
m-open. Moreover, X is the union of nonempty disjoint sets f−1(V1) and f−1(V2).
This implies that (X, mX) is not m-connected. This is contrary to the hypothesis
that (X, mX) is m-connected. Therefore, (Y, σ) is connected. �

Theorem 5.6. Let f : (X, mX) → (Y, σ) be an m-quasi-irresolute surjection. If
(X, mX) satisfies the property (B) and is m-ultra-connected, then (Y, σ) is hyper-
connected.

Proof. Assume that (Y, σ) is not hyperconnected. Then there exists an open set
V such that V is not dense in Y . Now, put V1 = Int(Cl(V )) and V2 = Y −Cl(V ).
Then V1 and V2 are nonempty disjoint regular open sets. By Theorem 3.5, f−1(V1)
and f−1(V2) are nonempty disjoint m-closed. This is contrary that (X, mX) is
m-ultra-connected. �
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Remark 5.5. Let f : (X, τ) → (Y, σ) be a function. If mX = τ and f :
(X, mX) → (Y, σ) is m-quasi-irresolute, then by Theorem 5.6 we obtain the result
established in Theorem 3.5 of [40].

Definition 5.5. A subset K of a nonempty set X with a minimal structure mX

is said to be m-compact relative to (X, mX) if any cover of K by m-open sets of
X has a finite subcover. If X is m-compact relative to (X, mX), then (X, mX) is
said to be m-compact [43].

Definition 5.6. A subset K of a topological space (Y, σ) is said to be S-closed
relative to (Y, σ) [38] if for any cover {Vα : α ∈ ∆} of K by semi-open sets of Y

there exists a finite subset ∆0 of ∆ such that K ⊂ ∪α∈∆0
Cl(Vα). If Y is S-closed

relative to (Y, σ), then (Y, σ) is said to be S-closed [49].

Remark 5.6. Let (X, τ) be a topological space and mX = τ (resp. α(X), SO(X),
PO(X)). The definition of “m-compact” gives one of compact (resp. α-compact
[30], s-compact [10], strongly compact [33]).

Theorem 5.7. If f : (X, mX) → (Y, σ) is an m-quasi-irresolute function and K

is m-compact relative to (X, mX), then f(K) is S-closed relative to (Y, σ).

Proof. Let K be m-compact relative to (X, mX). Let {Vα : α ∈ ∆} be any cover
of f(K) by semi-open sets of (Y, σ). For each x ∈ K, there exists α(x) ∈ ∆ such
that f(x) ∈ Vα(x). Since f is m-quasi-irresolute, there exists an m-open set U(x)
containing x such that f(U(x)) ⊂ Cl(Vα(x)). The family {U(x) : x ∈ K} is a cover
of K by m-open sets of X. Since K is m-compact relative to (X, mX), there exist
a finite number of points, say, x1, x2, . . . , xn in K such that K ⊂ ∪{U(xk) : xk ∈
K, 1 ≤ k ≤ n}. therefore, we obtain

f(K) ⊂ ∪{f(U(xk)) : xk ∈ K, 1 ≤ k ≤ n} ⊂ ∪{Cl(Vα(xk)) : xk ∈ K, 1 ≤ k ≤ n}.

This shows that f(K) is S-closed relative to (Y, σ). �

Corollary 5.1. If f : (X, mX) → (Y, σ) is an m-quasi-irresolute surjection and
(X, mX) is m-compact, then (Y, σ) is S-closed.

Remark 5.7. Let f : (X, mX) → (Y, σ) be a function. If mX = τ (resp. α(X),
SO(X), θSO(X)) and f : (X, mX) → (Y, σ) is m-quasi-irresolute, then by Theo-
rem 5.7 and Corollary 5.1 we obtain the results established in Theorem 5.1 of [40]
(resp. Theorem 5.2 of 24, Proposition 1.8 of [19], Theorem 2.2 and Corollary 2.3
of [39]).

Definition 5.7. A topological space (Y, σ) is said to be

(1) S-Lindelöf [14] if every cover of Y by regular closed sets has a countable
subcover,

(2) countably S-cover [17] if every countable cover of Y by regular closed sets
has a finite subcover.

Definition 5.8. An m-space (X, mX) is said to be
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(1) m-Lindelöf if every cover of X by m-open sets has a countable subcover,
(2) countably m-closed if every countable cover of Y by m-open sets has a

finite subcover.

Theorem 5.8. Let f : (X, mX) → (Y, σ) be an m-quasi-irresolute surjection,
where mX has the property (B). Then the following properties hold:

(1) If (X, mX) is m-Lindelöf, then (Y, σ) is S-Lindelöf,
(2) If (X, mX) is countably m-compact, then (Y, σ) is countably S-closed.

Proof. We prove only statement (1), the proof of (2) being entirely analogous.
Let {Vα : α ∈ ∆} be any cover of Y by regular closed sets of Y . Since f is
m-quasi-irresolute, by Theorem 3.5 {f−1(Vα) : α ∈ ∆} is an m-open cover X and
hence there exists countable subset ∆0 of ∆ such that X = ∪{f−1(Vα) : α ∈ ∆0}.
Therefore, we have Y = ∪{Vα ∈ ∆0}. Therefore, (Y, σ) is S-Lindelöf. �

Remark 5.8. Let f : (X, τ) → (Y, σ) be a function and mX = τ (resp. α(X)).
Then by Theorem 5.8 we obtain the result established in Theorem 5.1 of [40]
(resp. Theorem 5.2 of [24]).

Definition 5.9. Let (X, mX) be an m-space and A be a subset of X. The m-
frontier of A, denoted by mFr(A), is defined by mFr(A) = mCl(A)∩mCl(X−A) =
mCl(A) − mInt(A).

Theorem 5.9. The set of all points x ∈ X at which a function f : (X, mX)
→ (Y, σ) is not m-quasi-irresolute is not identical with the union of the m-frontiers
of the inverse images of the closure of semi-open sets containing f(x).

Proof. Suppose that f is not m-quasi-irresolute at x ∈ X. There exists a semi-
open set V of Y containing f(x) such that f(U) is not contained in Cl(V ) for every
m-open set U containing x. Then U ∩ (X −f−1(Cl(V ))) 6= ∅ for every m-open set
U containing x. By Lemma 3.2, x ∈ mCl(X − f−1(Cl(V ))). On the other hand,
we have x ∈ f−1(V ) ⊂ mCl(f−1(Cl(V ))) and hence x ∈ mFr(f−1(Cl(V ))).

Conversely, suppose that f is m-quasi-irresolute at x ∈ X and let V be any semi-
open set containing f(x). Then by Theorem 3.2 we have x ∈ mInt(f−1(Cl(V ))).
Therefore, x 6∈ mFr(f−1(Cl(V ))) for each semi-open set V of Y containing f(x).
This completes the proof. �

6. New forms of weakly irresolute functions

Let A be a subset of a topological space (X, τ). A point x in X is called a
semi-θ-cluster point of A if sCl(U) ∩ A 6= ∅ for every U ∈ SO(X) containing x.
The set of all semi-θ-cluster points of A is called the semi-θ-closure [15] of A and
is denoted by sClθ(A). A subset A is said to be semi-θ-closed if A = sClθ(A).
The complement of a semi-θ-closed set is said to be semi-θ-open. The family of
all semi-θ-open sets of (X, τ) is denoted by SθO(X).

Lemma 6.1 (Noiri and Popa [41]). For subsets of a topological space (X, τ), the
following properties hold:
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(1) Every θ-open set is θ-semi-open and every θ-semi-open set is semi-θ-open;
(2) Every semi-θ-set is δ-semi-open and a δ-semi-open set is semi-open.

Proof. (1) is obvious from the definitions and (2) is shown in Lemma 7.1 of [41].
�

By Diagram 1 of [41] and Lemma 6.1, we have the following diagram in which
the converses of implications need not be true as shown by the example stated
below.

DIAGRAM I

θ-open → δ-open → open → open → preopen → δ-preopen
↓ ↓ | ↓ ↓ |

θ-semi-open → semi-θ-open → δ-semi-open → semi-open → b-open → semi-preopen

Remark 6.1. In the Diagram above, we have the following properties:

(1) δ-openness and θ-semi-openness are independent of each other as shown
by Example 6.1 (below),

(2) It is shown in Example 2 of [42] that openness and δ-semi-openness are
independent of each other,

(3) δ-preopenness and semi-preopenness are independent of each other as
shown by Examples 6.1 and 6.2 (below).

Example 6.1. Let X = {a, b, c} and τ = {X, ∅, {a}, {b}, {a, b}}. Then {a, b} is
a δ-open set of (X, τ) which is not θ-semi-open. The subset {a, c} is a θ-semi-
open set which is not δ-preopen and hence not δ-open. Therefore, {a, c} is a
semi-preopen set which is not δ-preopen.

Example 6.2. Let X = {a, b, c, d} and τ = {X, ∅, {a, b}, {a, b, c}}. Then {d} is a
δ-preopen set of (X, τ) which is not semi-preopen.

All families τθ, τδ, SθO(X), BO(X), δSO(X), δPO(X) are m-structure with the
property (B). Especially, τθ and τδ are topologies for X. Therefore, we can define
m-quasi-irresolute function f : (X, mX) → (Y, σ), where mX = τθ, τδ, SθO(X),
BO(X), δSO(X), or δPO(X). Then, we can apply all results obtained in Section
3 – 5 to these new functions.

Definition 6.1. A function f : (X, τ) → (Y, σ) is said to be θ-quasi-irresolute
(resp. δ-quasi-irresolute, sθ-quasi-irresolute, δs-quasi-irresolute, b-quasi-irresolute,
δp-quasi-irresolute) if for each V ∈ SO(Y, f(x)), there exists a θ-open (resp. δ-
open, semi-θ-open, δ-semi-open, b-open, δ-preopen) set U such that f(U) ⊂ Cl(V ).

By DIAGRAM I, we obtain the following diagram:
DIAGRAM II

θ.q.irr.→ δ.q.irr. → (θ, s)-c →α-q.irr.→ (p, s)-c.→ δp.q.irr.

θ-irr. → sθ.q.irr.→ δs.q.irr.→ q.θ-irr. → b-q.irr. → β-q.irr.
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In the diagram above, we abbreviate as follows: c. =continuous, irr. =irres-
olute.

Lemma 6.2 (Noiri and Popa [41]). Let (X, τ) be a topological space and A be a
subset of X.

(1) A is δ-semi-open in (X, τ) if and only if A is semi-open in (X, τs),
(2) A is δ-preopen in (X, τ) if and only if A is preopen in (X, τs).

Theorem 6.1. A function f : (X, τ) → (Y, σ) is δ-quasi-irresolute (resp. δs-
quasi-irresolute, δp-quasi-irresolute) if and only if f : (X, τs) → (Y, σ) is (θ, s)-
continuous (resp. quasi-θ-irresolute, (p, s)-continuous).

Proof. This is an immediate consequence of Lemma 6.2. �
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