FIXED POINT THEOREMS ON F_{Λ} -ORBITALLY COMPLETE NORMED SPACES

BRANISLAV MIJAJLOVIĆ

ABSTRACT. Let X be a normed space and $x_0 \in X$. In this paper we proves the convergence of a convex sequence $x_n = \lambda x_{n-1} + (1-\lambda)f(x_{n-1}), \lambda \in (0, 1)$, to the fixed point of the f, where $f : X \to X$ is the nonexpansive completely continuous operator, which satisfies some nonexpansive conditions.

Let X be a Banach's space with uniformly convex sphere, E be a closed, bounded and convex subset of X and $f : E \to E$ nonexpansive completely continuous operator. M. A. Krasnoselskij [1] proved that the sequence $x_n = 2^{-1}(x_{n-1} + f(x_{n-1}))$ converges to a fixed point of mapping f, for each $x_0 \in E$. In [2] we considered a fixed point result's for certain mapping, by used convergence of a convex sequence's defined by

(1)
$$x_n = \lambda x_{n-1} + (1-\lambda)f(x_n), \lambda \in (0,1).$$

Let X be a vector space, $f: X \to X$ and $x \in X$. Let $\lambda \in (0, 1)$ and $O_{\lambda}(x, f) \subseteq X$ be a set defined by

$$O_{\lambda}(x,f) = \{g_0(x,f(x)), g_1(x,f(x)), g_2(x,f(x)), \ldots\},\$$

where $g_0(x, f(x)) = x$, $g_1(x, f(x)) = \lambda x + (1-\lambda)f(x)$, $g_n(x, f(x)) = g(g_{n-1}(x, f(x)))$, $f(g_{n-1}(x, f(x)))$. Then $O_{\lambda}(x, f)$ is called convex orbit or λ -**orbit** of the point x defined by f.

Let (X, d) be a metric linear space, $f : X \to X$ and $\lambda \in (0, 1)$. X is f_{λ} -orbitally complete if each Cauchy's sequence from $O_{\lambda}(x, f)$ is convergent.

Each complete space is λ -orbitally complete, but the inverse statement is not true [3].

Theorem 1. Let X be a normed space, E be a closed, bounded and convex subset of X, $\lambda \in (0, \frac{1}{2})$, and $f : E \to E$ nonexpansive completely continuous operator. If for each $\lambda \in (0, \frac{1}{2})$ such that X is f_{λ} -orbitally complete, there exists β , $\frac{2}{1-\lambda} \leq \beta \leq \frac{2+\lambda}{1-\lambda}$ such that $\beta(||f(x) - f(y)|| + ||x - y||)$

(2)
$$\leq \|x - f(x)\| + \|y - f(y)\| + \|x - f(y)\| + \|y - f(x)\|,$$

for all $x, y \in E$, then the mapping f has a unique fixed point, which is limit of all sequences defined by (1).

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10, Secondary: 54H25.

Key words and phrases. Convex sequence, fixed point, f_{λ} -orbitally complete space.

Proof. If in the equation (2) we put $x = x_{n-1}$ and $y = x_n$, from (1) follows

$$(\beta - 1) \| (x_{n-1} - x_n) - \lambda (x_{n-1} - x_n) \| + \beta (1 - \lambda) \| x_{n-1} - x_n \| \le \le (2 + \lambda) \| x_{n-1} - x_n \| + \| x_n - x_{n+1} \|,$$

which implies

$$(\beta - 1)|||x_{n+1} - x_n|| - \lambda ||x_{n-1} - x_n||| \le \le (2 + \lambda - \beta(1 - \lambda))||x_{n-1} - x_n|| + ||x_n - x_{n+1}||.$$

So we obtain

$$||x_{n+1} - x_n|| \le \frac{2 - \beta + 2\beta\lambda}{\beta - 2} ||x_{n-1} - x_n||$$

It follows that the sequence (1) is Cauchy's, and since space X for certain $\lambda \in (0, \frac{1}{2})$ is f_{λ} -orbitally complete and E is a closed and convex subset of X, the sequence (1) converges into E for arbitrary $x_0 \in E$.

Let $\lim_{n \to \infty} x_n = \xi$. If we apply the inequality (2) for $x = \xi$ and $y = x_n$, when $n \to \infty$, we simply get that $\xi = f(\xi)$.

Let ξ and y be two fixed points, and if in the inequality (2) x is replaced by ξ and y is replaced by η ,through arranging we get that $(\beta - 1) ||\xi - \eta|| \le 0$, from which it follows that there must be $\xi = \eta$. Theorem 1 is thus proved.

It can be easily checked that the sequence $x_n = f(x_{n-1}), n \in N$ does not converge to a fixed point in Banach's space, for the conditions given in Theorem 1.

Theorem 2. Let X be a normed f_{λ} -orbitally complete space for some $\lambda \in (0, 1)$, $E \subseteq X$ its a closed and convex subset and $f : E \to E$. If there exists real numbers α and β such that $\alpha > 2$, $\frac{-1-\lambda}{1-\lambda} \leq \beta < \frac{\alpha-3-(\alpha-1)\lambda}{1-\lambda}$, and for all $x, y \in E$ the following inequality is valid:

(3)
$$\alpha \|f(x) - f(y)\| \le \beta \|x - y\| + \min\{\|x - f(y)\|, \|x - f(x)\|\} + \min\{\|y - f(x)\|, \|y - f(y)\|\},$$

then the mapping f has a unique fixed point to which all sequences shaped (1) converge, for arbitrary $x_0 \in E$.

Proof. Let

$$\min\{\|x - f(y)\|, \|y - f(x)\|\} = \|x - f(y)\|$$

and

$$\min\{\|y - f(x)\|, \|y - f(y)\|\} = \|y - f(x)\|$$

For $x = x_{n-1}$, and $y = x_n$ from (3) and (1) we obtain the following inequality

$$|||x_n - x_{n+1}|| - \lambda ||x_{n-1} - x_n||| \le \frac{\beta(1-\lambda) + \lambda + 1}{\alpha - 1} ||x_n - x_{n-1}||,$$

which implies

(4)
$$||x_n - x_{n+1}|| \le \frac{\beta(1-\lambda) + \lambda(\alpha-1) + \lambda + 1}{\alpha-1} ||x_n - x_{n-1}||$$

We also have

(4')
$$0 \le \frac{\beta(1-\lambda) + \lambda(\alpha-1) + \lambda + 1}{\alpha - 1} < 1, \quad \lambda \in (0,1)$$

Let $\min\{||x-f(y)||, ||x-f(x)||\} = ||x-f(y)||$ and $\min\{||y-f(x)||, ||y-f(y)||\} = ||y-f(y)||$. For $x = x_{n-1}$, and $y = x_n$, we obtain the inequality

$$(\alpha - 1) |||x_n - x_{n+1}|| - \lambda ||x_{n-1} - x_n||| - ||x_n - x_{n+1}|| \le \le (\beta(1 - \lambda) + 1) ||x_{n-1} - x_n||.$$

It follows

(5)
$$||x_n - x_{n+1}|| \le \frac{(\alpha - 1)\lambda + \beta(1 - \lambda) + 1}{\alpha - 2} ||x_n - x_{n-1}||.$$

We also have:

(5')
$$0 \le \frac{(\alpha - 1)\lambda + \beta(1 - \lambda) + 1}{\alpha - 2} < 1, \lambda \in (0, 1)$$

Let $\min\{||x - f(y)||, ||x - f(x)||\} = ||x - f(x)||$ and $\min\{||y - f(x)||, ||y - f(y)||\} = ||y - f(x)||$. For $x = x_{n-1}$, and $y = x_n$, we get the inequality

$$|||x_n - x_{n+1}|| - \lambda ||x_{n-1} - x_n||| \le \frac{\beta(1-\lambda) + \lambda + 1}{\alpha} ||x_{n-1} - x_n||.$$

 So

(6)
$$||x_{n+1} - x_n|| \le \frac{\beta(1-\lambda) + \lambda\alpha + \lambda + 1}{\alpha} ||x_{n-1} - x_n||.$$

We also have

(6')
$$0 \le \frac{\beta(1-\lambda) + \lambda\alpha + \lambda + 1}{\alpha} < 1, \quad \lambda \in (0,1)$$

Let $\min\{||x - f(y)||, ||x - f(x)||\} = ||x - f(x)||$ and $\min\{||y - f(x)||, ||y - f(y)||\} = ||y - f(y)||$. For $x = x_{n-1}$, and $y = x_n$, from (1) and (3), we obtain the following inequality

$$\alpha |||x_n - x_{n+1}|| - \lambda ||x_{n-1} - x_n|| - ||x_n - x_{n+1}||| \le (\beta(1-\lambda)+1) ||x_{n-1} - x_n||.$$
It follows

It follows

(7)
$$||x_n - x_{n+1}|| \le \frac{\beta(1-\lambda) + \lambda\alpha + 1}{\alpha - 1} ||x_{n-1} - x_n||$$

We also have:

(7')
$$0 \le \frac{\beta(1-\lambda) + \lambda\alpha + 1}{\alpha - 1} < 1, \quad \lambda \in (0,1).$$

From the relations (4), (4'), (5), (5'), (6), (6'), (7) and (7') it follows that the sequence $\{x_n\}_{n \in \mathbb{N}}$ defined by (1) is Cauchy's sequences and since space X is f_{λ} -orbitally complete and E, it converges to a certain point $\xi \in E$, i.e. $\lim x_n = \xi$.

For $x = \xi$ and $y = x_n$, when $n \to \infty$ we get that $\alpha \|\xi - f(\xi)\| \le 0$. It follows that $\xi = f(\xi)$ because $\alpha > 2$.

Let ξ and y be two fixed points and if in relation (3) we replace x by ξ and y by η , we get $(\alpha - \beta) \|\xi - \eta\| < 0$. It follows that $\xi = \eta$ because $\alpha - \beta > 0$. This proves Theorem 2.

References

- M. A. Krasnoselskij, Two remarks on the method of successive approximations, Uspehi. Mat. Nauk, 10(1955), 123–127, (Russian).
- [2] B. S. Mijajlović, Two fixed point theorems in normed spaces, Mathematica Moravica, 1(1997), 65–68.
- B. S. Mijajlović, Fiksne tačke, mere nekompaktnosti i prošireno konveksne funkcije, Doktorska teza, Filozofski fakultet, Niš, (1999).
- [4] M. R. Tasković, Nonlinear Functional Analysis, part I: Fundamental elements of theory, Zavod za udžbenike i nastavna sredstva, Beograd (1993), 792 p.p. Serbian-English summary: Comments only new main results of this book. Vol. 1 (1993).

Faculty of Teacher Education Milana Mijalkovića 14 35000 Jagodina Serbia and Montenegro