On Congruences of Super-Associative Algebras With n-quasigroup Operations, $n \geq 3$

Janez Ušan and Mališa ŽIžović
Dedicated to professor M. Tasković on his $60^{\text {th }}$ birthday

Abstract

In this paper $\operatorname{Con}\left(Q, \sum\right)$, where $\left(Q, \sum\right)$ is a super-associative algebras with n-quasigroup operations, $n \geq 3$, is described.

1. Preliminaries

Definition 1.1 ([2]). Let $n \geq 2$ and let $(Q ; A)$ be an n-groupoid. Then:

1) we say that $(Q ; A)$ is an n-semigroup iff for every $i, j \in\{1, \ldots, n\}, i<j$, the following law holds:

$$
A\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right)=A\left(x_{1}^{j-1}, A\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-1}\right)
$$

(: $\langle i, j\rangle-$ associative law);
2) we say that $(Q ; A)$ is an n-quasigroup iff for every $i \in\{1, \ldots, n\}$ and for all $a_{1}^{n} \in Q$ there is exactly one $x_{i} \in Q$ such that the following equality holds

$$
A\left(a_{1}^{i-1}, x_{i}, a_{i}^{n-1}\right)=a_{n} ;
$$

3) we say that $(Q ; A)$ is a Dörnte n-group (briefly: n-group) iff $(Q ; A)$ is an n-semigroup and n-quasigroup as well.

Remark 1.1. A notion of an n-group was introduced by W. Dörnte (inspired by E. Noether) in [2] as a generalization of the notion of a group. See, also [12].

Proposition 1.1 ([9]). Let $n \geq 2$ and let $(Q ; A)$ be an n-groupoid. Then the following statements are equivalent: (i) $(Q ; A)$ is an n-group; (ii) there are mappings ${ }^{-1}$ and \mathbf{e}, respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $\left(Q ; A,^{-1}, \mathbf{e}\right)$ [of the type $\langle n, n-1, n-2\rangle$]
(a) $A\left(x_{1}^{n-2}, A\left(x_{n-1}^{2 n-2}\right), x_{2 n-1}\right)=A\left(x_{1}^{n-1}, A\left(x_{n}^{2 n-1}\right)\right)$,
(b) $A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$ and
(c) $A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$; and
(iii) there are mappings ${ }^{-1}$ and \mathbf{e}, respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $\left(Q ; A,{ }^{-1}, \mathbf{e}\right)$ lof the type $<n, n-1, n-2>]$
($\bar{a}) A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}, A\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right)$,
($\bar{b}) A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)=x\right.$ and
($\bar{c}) A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.
Remark 1.2. e is an $\{1, n\}$-neutral operation of n-groupoid $(Q ; A)$ iff algebra $(Q ; A, \mathbf{e})$ [of the type $<n, n-2>$] satisfies the laws (b) and (\bar{b}) from 1.2 [6]. Operation ${ }^{-1}$ from $1.2[(c),(\bar{c})]$ is a generalization of the inverse operation in a group [7]. Cf. Chapter II and Chapter III in [12].

2. Auxiliary part

Definition 2.1 ([8]). We say that an algebra $(Q ; \cdot, \varphi, b)$ [of the type $<2,1,0>$] is a Hosszú-Gluskin algebra of order $n(n \geq 3)$ [briefly: $n H G$-algebra] iff the following statements hold:
(1) $(Q ; \cdot)$ is a group;
(2) $\varphi \in \operatorname{Aut}(Q ; \cdot)$;
(3) $\varphi(b)=b$; and
(4) for all $x \in Q, \varphi^{n-1}(x) \cdot b=b \cdot x$.
(Cf. IV-2.1 in [12].)
Proposition 2.1. Let $(Q ; \cdot, \varphi, b)$ be an $b H G$-algebra. Also let $A\left(x_{1}^{n}\right) \stackrel{\text { def }}{=} x_{1}$. $\varphi\left(x_{2}\right) \cdots \varphi^{n-1}\left(x_{n}\right) \cdot b$ for all $x_{1}^{n} \in Q$. Then $(Q ; A)$ is an $n-$ group .

Definition 2.2 ([8]). We say that an $n H G$-algebra $(Q ; \cdot, \varphi, b)$ is associated (or corresponds) to the $n-\operatorname{group}(Q ; A)$ iff for all $x_{1}^{n} \in Q, A\left(x_{1}^{n}\right)=x_{1} \cdot \varphi\left(x_{2}\right) \cdots \varphi^{n-1}\left(x_{n}\right)$. b.

Theorem 2.1 (Hosszú-Gluskin Theorem [3, 4]). Let $(Q ; A)$ be an $n-g r o u p$, e its $\{1, n\}$-neutral operation and $n \geq 3$. Let also c_{1}^{n-2} be arbitrary sequence over Q, and let:
a) $x \cdot y \stackrel{\text { def }}{=} A\left(x, c_{1}^{n-2}, y\right)$,
b) $\varphi(x) \stackrel{\text { def }}{=} A\left(\mathbf{e}\left(c_{1}^{n-2}\right), x, c_{1}^{n-2}\right)$ and
c) $b \stackrel{\text { def }}{=} A\left(\frac{n}{\mathbf{e}\left(c_{1}^{n-2}\right)}\right)$ for all $x, y \in Q$. Then, the following statements hold:

1) $(Q ; \cdot, \varphi, b)$ is an $n H G$-algebra, and
2) $(Q ; \cdot, \varphi, b)$ is associated to the $n-$ group $(Q ; A)[c f .2 .3]$.

Remark 2.1. The formulation of the theorem is from [8]. Cf. IV-3.1 in [12].
Proposition $2.2([8])$. Let $(Q ; A)$ be an n-group, e its $\{1, n\}$-neutral operation, and $n \geq 3$. Further on, let c_{1}^{n-2} be an arbitrary sequence over Q, and let for every
$x, y \in Q$

$$
\begin{aligned}
B_{\left(c_{1}^{n-2}\right)}(x, y) & \stackrel{\text { def }}{=} A\left(x, c_{1}^{n-2}, y\right) \\
\varphi_{\left(c_{1}^{n-2}\right)}(x) & \stackrel{\text { def }}{=} A\left(\mathbf{e}\left(c_{1}^{n-2}\right), x, c_{1}^{n-2}\right) \quad \text { and } \\
b_{\left(c_{1}^{n-2}\right)} & \stackrel{\text { def }}{=} A\left(\frac{n}{\mathbf{e}\left(c_{1}^{n-2}\right)}\right)
\end{aligned}
$$

Also let

$$
\mathcal{L}_{A} \stackrel{\text { def }}{=}\left\{\left(Q ; B_{\left(c_{1}^{n-2}\right)}, \varphi_{\left(c_{1}^{n-2}\right)}, b_{\left(c_{1}^{n-2}\right)}\right) \mid c_{1}^{n-2} \in Q\right\} .
$$

Then for every $n H G$-algebra $(Q ; \cdot, \varphi, b)$ the following equivalence holds

$$
(Q ; \cdot, \varphi, b) \in \mathcal{L}_{A} \Leftrightarrow\left(\forall x_{i} \in Q\right)_{1}^{n} A\left(x_{1}^{n}\right)=x_{1} \cdot \varphi\left(x_{2}\right) \cdots \varphi^{n-1}\left(x_{n}\right) \cdot b
$$

Cf. $I V-4.1$ in [12].
Proposition 2.3 ([10]). Let $(Q ; A)$ be an n-group, $n \geq 3$ and let $(Q ; \cdot, \varphi, b)$ be an arbitrary $n H G$-algebra associated to the $n-$ group $(Q ; A)$. Then, the following equality holds: $\operatorname{Con}(Q ; A)=\operatorname{Con}(Q ; \cdot) \cap \operatorname{Con}(Q ; \varphi)$.

3. Main part

Let $x_{1}, \ldots, x_{2 n-1}$ be subject symbols, $n \in N \backslash\{1\}$, and let $X_{1}, X_{2}, X_{2 i-1}, X_{2 i}$, $i \in\{2, \ldots, n\}$, be n-ary operational symbols. Then, we say that

$$
\begin{equation*}
X_{1}\left(X_{2}\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=X_{2 n-1}\left(x_{1}^{i-1}, X_{2 i}\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right) \tag{1}
\end{equation*}
$$

is a general $<1, i>-$ associative law. Some of operational simbols in (1) can be equal.

Definition 3.1. Let $\left(Q ; \sum\right)$ be an algebra in which the following holds: $(Q ; Z)$ is an n-quasigroup for all $Z \in \sum$. Also let $n \geq 2$ and $\left|\sum\right| \geq 2$. Further on, let $x_{1}, \ldots, x_{2 n-1}$ be subject symbols, let $X_{1}, X_{2}, X_{2 i-1}, X_{2 i}, i \in\{2, \ldots, n\}$, be n-ary operational symbols, and let for all $i \in\{2, \ldots, n\}$ is $\left|\left\{X_{1}, X_{2}, X_{2 i-1}, X_{2 i}\right\}\right| \geq$ 2. Then, we say that $\left(Q ; \sum\right)$ is a super-associative algebra with n-quasigroup operations (briefly: $S A A n Q$) iff for every substitution of the subject symbols $x_{1}, \ldots, x_{2 n-1}$ in (1) by elements $\bar{x}_{1}, \ldots, \bar{x}_{2 n-1}$ of Q and for every substitution of the operational symbols $X_{1}, X_{2}, X_{2 i-1}, X_{2 i}, i \in\{2, \ldots, n\}$, in (1) by elements $X_{1}, X_{2}, X_{2 i-1}, X_{2 i}, i \in\{2, \ldots, n\}$, of \sum for all $i \in\{2, \ldots, n\}$ the following equality holds:

$$
\begin{equation*}
\bar{X}_{1}\left(\bar{X}_{2}\left(\bar{x}_{1}^{n}\right), \bar{x}_{n+1}^{2 n-1}\right)=\bar{X}_{2 i-1}\left(\bar{x}_{1}^{i-1}, \bar{X}_{2 i}\left(\bar{x}_{i}^{i+n-1}\right), \bar{x}_{i+n}^{2 n-1}\right) . \tag{1}
\end{equation*}
$$

A immediate consequence of Def. 3.1 and Def. 1.1, is the following proposition:
Proposition 3.1. If $\left(Q ; \sum\right)$ is a $S A A n Q, n \in N \backslash\{1\}$, then $(Q ; Z)$ is an n-group for all $Z \in \sum$.

Proposition 3.2. Let $\left(Q ; \sum\right)$ be an $S A A n Q$ and $n \in N \backslash\{1\}$. Then the following statements hold:
$1^{\circ} X_{1} \neq X_{2} \Rightarrow\left\{X_{2 i-1}, X_{2 i}\right\}=\left\{X_{1}, X_{2}\right\}$ and
$2^{\circ} X_{1}=X_{2} \Rightarrow X_{2 i-1}=X_{2 i}$ for all $i \in\{2, \ldots, n\}$, where $X_{1}, X_{2}, X_{2 i-1}, X_{2 i}$ from (1).
Cf. XI-2 in [12].
Remark 3.1. a) Case $n=2$ is described in [1].
b) Case $n=3 \mathrm{Yu}$. Movsisyan was described in 1984 (cf. [5]).
c) Case $n \geq 3$ was described in [11].

Proposition 3.3 ([11]). Let $\left(Q ; \sum\right)$ be an $S A A n Q$ and $n \geq 3$. Also, let A be an arbitrary operation from \sum and $(Q ; \cdot, \varphi, b)$ be an arbitrary $n H G$-algebra associated to the n-group $(Q ; A)$. Then, for every $B \in \sum$ there is exactly one $a \in Q$ such that for every $x, x_{1}^{n} \in Q$ the following equalities hold:
${ }^{\circ} 1 B\left(x_{1}^{n}\right)=x_{1} \cdot \varphi\left(x_{2}\right) \cdots \cdot \varphi^{n-2}\left(x_{n-1}\right) \cdot b \cdot a \cdot b \cdot x_{n}$,
${ }^{\circ} 2(a \cdot b) \cdot x=x \cdot(a \cdot b)$ and
${ }^{\circ} 3 \varphi(a)=a$.
Cf. XI-6.1 and XI-6.2 in [12].
Theorem 3.1. Let $\left(Q ; \sum\right)$ be an super-associative algebra with n-quasigroup operations, $n \geq 3$ and let A be an arbitrary element of \sum. Then, the following equality holds:

$$
\operatorname{Con}\left(Q ; \sum\right)=\operatorname{Con}(Q ; A)
$$

Proof. Let $\left(Q ; \sum\right)$ be an super-associative algebra with n-quasigroup operations, $n \geq 3$ and let A be an arbitrary element of \sum. By Prop. 3.2, $(Q ; A)$ is an n-group. Further on, let $(Q ; \cdot, \varphi, b)$ be an arbitrary $n H G$-algebra associated to the n-group $(Q ; A)$.

Then, the following statements hold:
${ }^{\circ} 4$ For all $B \in \sum,(Q ; B)$ is an n-group (by 3.2); and
${ }^{\circ} 5$ For all $B \in \sum$ there is exactly one $a \in Q$ such that the algebra ($Q ; \cdot, \varphi, b$. $a \cdot b)$ is an $n H G$-algebra associated to the $n-\operatorname{group}(Q ; B)$.

Sketch of the proof of ${ }^{\circ} 5$:
a) $(Q ; \cdot, \varphi, b)$ is an $n H G$-algebra [associated to the n-group $(Q ; A)]$.

${ }^{\circ} 3$ is from 3.5.
c) $\varphi^{n-1}(x)(b \cdot a \cdot b)=\left(\varphi^{n-1}(x) \cdot b\right)(a \cdot b)$

$$
\begin{aligned}
& \stackrel{a)}{=}(b \cdot x) \cdot(a \cdot b) \\
& =b \cdot(x \cdot(a \cdot b)) \\
& \stackrel{\circ_{2}}{=} b \cdot((a \cdot b) \cdot x) \\
& =(b \cdot a \cdot b) \cdot x ;
\end{aligned}
$$

${ }^{\circ} 2$ is from 3.5.
d) By $a)-c$), by ${ }^{\circ} 1$ (from 3.5) and by Def. 2.3, we conclude that the algebra $(Q ; \cdot, \varphi, b \cdot a \cdot b)$ is a $n H G$-algebra associated to the n-group $(Q ; B)$.
Finally, by a), by ${ }^{\circ} 5$ and by Prop. 2.6, we conclude that the proposition is satisfied.

References

[1] V. D. Belousov, Systems of quasigroups with generalized identities, (Russian), Usp. mat. nauk, 20(1965) No. 1, 75-146.
[2] W. Dörnte, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29(1928), 1-19.
[3] L. M. Gluskin, Proposition operatives, (Russian), Mat. Sb., t. 68(110), (1965) No.3, 444-472.
[4] M. Hosszú, On the explicit form of n-group operations, Publ. Math. (Debrecen) 10(1963), 88-92.
[5] Yu. Movsisyan, Introduction to the theory of algebras with hyperidentities, (Russian), Izdat. Erevan Univ., Erevan 1986.
[6] J. Ušan, Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18(1988) No. 2, 117-126.
[7] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24(1994) No.1, 281-288.
[8] J. Ušan, On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25(1995) No.1, 101-119.
[9] J. Ušan, n-groups as variety of type $<n, n-1, n-2>$, in: Algebra and Model Theory, (A.G. Pinus and K.N. Ponomaryov, eds.), Novosibirsk 1997, 182-208.
[10] J. Ušan, Congruences of n-group and of associated Hosszú-Gluskin algebras, Novi Sad J. Math. 28(1998) No.2, 91-108.
[11] J. Ušan, Description of super-associative algebras with n-quasigroup operations, Math. Moravica 5(2001), 129-157.
[12] J. Ušan, n-groups in the light of the neutral operations, Math. Moravica Special Vol. (2003), monograph.

Department of Mathematics
and Informatics
University of Novi Sad
Trg D. Obradovića 4
21000 Novi SAd
Serbia and Montenegro

Faculty of Technical Science
University of Kragujevac
Svetog Save 65
32000 ČAČAK
Serbia and Montenegro
E-mail address: zizo@tfc.kg.ac.yu

