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Dedicated to professor Julian Musielak on his 75th birthday.

Abstract. The main purpose of this paper is to give an exposition on funda-
mental facts and basic notions, and further on some key-results, on new classes
of d(ψ)-functions and new classes of d(Lψ)-spaces. This facts and results are
directly in connection with Orlicz spaces.

1. Introduction and history

Well known that one of the real attraction of Orlicz spaces is that the subject
is sufficiently concrete and yet the spaces have fine structure of importance for
applications.

The idea of Orlicz spaces lies in generalizing the space Lp(a, b) of functions,
integrable with power p ≥ 1 in interval (a, b), replacing the power |u|p by a more
general function ϕ(u).

Supposing ϕ to be an even, convex function equal to 0 only at u = 0, the set
of measurable functions x on (a, b) such that

∫ b

a
ϕ
(

|x(t)|
)

dt <∞ – the Orlicz class –

does not need to be a linear space. The theory of such spaces was introduced and
developed by W. Orlicz in early 1930th.

After the war years the study and applications have been vigorous in Poland,
Russia and Japan, the latter under the lead of H. Nakano, W. Orlicz and J.
Musielak with the name ”modulared spaces”.

Early results concerning Orlicz spaces may by found in the monograph by M.A.
Krasnoselskij and Ya. B. Rutickij in 1958. If further, the assumption of convexity
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was replaced by that of monotony and continuity of ϕ, thus embracing the case
of powers |u|p for 0 < p < 1.

In this sense, W. Matuszewska introduced in 1961 the following notion of a
ϕ-function, i.e., a nonnegative, even function ϕ, vanishing only at 0, increasing
for u ≥ 0, i.e., u ∈ R

0
+ := [0,+∞), and such that ϕ(u) → ∞ as u→ ∞.

A brief exposition of generalized Orlicz spaces generated by a ϕ-function may
be found in: Orlicz [20]. A more general setting to modular spaces was given in
1959 by W. Orlicz and J. Musielak.

The work of Zaanen, and especially his book on Linear Analysis in 1953 has
enabled the western countries to develop the theory and applications in many
directions.

In connection with the preceding facts, first, in Tasković [23] we introduced the
concept of transversal (upper and lower) normed spaces as a natural extension of
normed and Banach spaces.

In this section I give a brief account of the notion of transversal (upper and
lower) modular spaces in the following sense.

Let X be a linear space over K(:= R or C). The following mapping ρ : X →
[0,∞] := R

0
+ ∪ {+∞} is called an upper transversal semimodular (or upper

semimodular) iff: ρ(ax) = ρ(x) if |a| = 1 and x ∈ X, and if there is a function
g : [0,∞]2 → [0,∞] such that

ρ(ax+ by) ≤ max
{

ρ(x), ρ(y), g
(

ρ(x), ρ(y)
)

}

(Mu)

for all x, y ∈ X, where a, b ≥ 0 and a+ b ≤ 1.
Further, x 7→ ρ(x) is called an upper transversal modular (or upper modu-

lar) iff in addition ρ(x) = 0 if and only if x = 0.
An upper transversal modular space (X, ρ(x)) over K consists of a linear

space X over K together with an upper transversal modular x 7→ ρ(x).

Figure 1 Figure 2

The function g : [0,∞]2 → [0,∞] in (Mu) is called upper bisection function. We notice
that the upper transversal modular, de facto, is a general convex function. Otherwise, the general
convex functions are introduced in T a s k o v i ć: Math. Japonica, 37 (1992), 367-372.

It is easily seen that the upper transversal norm in an upper transversal normed space is a
general convex function and thus an upper transversal (general convex) modular.
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Let g(Xρ) be the set of all x ∈ X such that there exists a positive number k with property

ρ(kx) < +∞. If the upper bisection function g is an increasing function by variables satisfying

g(t, t) ≤ t for every t ∈ [0,∞], then the set g(Xρ) is linear.

On the other hand, the mapping ρ : X → [0,∞] is called a lower transversal
semimodular (or lower semimodular) iff: ρ(ax) = ρ(x) if |a| = 1 and x ∈ X,
and if there is a function d : [0,∞]2 → [0,∞] such that

ρ(ax+ by) ≥ min
{

ρ(x), ρ(y), d
(

ρ(x), ρ(y)
)

}

(Ml)

for all x, y ∈ X, where a, b ≥ 0 and a+ b ≤ 1.
In this sense, x 7→ ρ(x) is called a lower transversal modular (or lower mo-

dular) iff in addition: ρ(x) = 0 if and only if x = 0 (or iff in addition: ρ(x) = +∞
if and only if x = 0).

A lower transversal modular space (X, ρ(x)) over K consists of a linear
space X over K together with a lower transversal modular x 7→ ρ(x).

The function d : [0,∞]2 → [0,∞] in (Ml) is called lower bisection function.
Evidently, the lower transversal modular is a general concave function, from Ta-
sković [23].

It is easily seen that the lower transversal norm in a lower transversal normed
space is a general concave function and thus a lower transversal (general concave)
modular.

Let d(Xρ) be the set of all x ∈ X such that there exists a positive number
k with property ρ(kx) < +∞. If the lower bisection function d is an increasing
function by variables satisfying d(t, t) ≥ t for every t ∈ [0,∞], then the set d(Xρ)
is linear. For further facts on transversal upper and lower modular spaces see:
Tasković [23].

The purpose of this paper is to give some fundamental facts and an exposition of
basic notions, and some key-results on new classes of d(ψ)-functions and d(Lψ)-
spaces. This facts are directly in connection with modular spaces and Orlicz
spaces.

In the theory of Orlicz spaces fundamental notions are convex functions, but,
in this exposition of d(Lψ)-spaces an important role play difference of two convex
functions.

2. d(ψ)-functions and an inequality

In this paper, by a d(ψ)-function I shall understand a continuous nonincre-
asing function ψ : R

0
+ → R

0
+ := [0,+∞) for which ψ(u) → 0 as u → +∞ and

ψ(0) = b (for some 0 < b ≤ +∞).
In this sense, for the case b = +∞, I shall understand that ψ(u) → +∞ as

u → 0, where f |R+ := (0,+∞). On the Figs. 1, 2, 3 and 4 we have the essential
forms of d(ψ)-functions.

Class d(ψ)-functions appear often in various problems of nonlinear analysis and
have a certain analogy (although essential unlike) with the class of ϕ-functions
from Matuszewska [6].
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In our context, first time, the forms of d(ψ)-functions are appear in the con-
nection with the transversal lower (modular) spaces in 1998 from: Tasković [22]
and [24].

The following conditions appear often in various problems in which the d(ψ)-
functions are of importance:

lim
u→0

uψ(u) = 0 and lim
u→∞

uψ(u) = 0,

in contrast with appears of the ϕ-functions in various problems in the forms:

lim
u→0

ϕ(u)

u
= 0 and lim

u→∞

ϕ(u)

u
= +∞.

Let Ω be a nonempty set and let Σ be a σ-algebra of subsets of Ω. Also, let
µ be a nonnegative, nontrivial, complete, σ-finite measure on Σ. We take as X
the space of all extended real valued, Σ-measurable functions on Ω with equality
µ-almost everywhere. Let ψ be a d(ψ)-function, then

ρ(x) =

∫

Ω
ψ(x(t))dµ

is a lower transversal modular in X. Moreover, if ψ is concave, then ρ is concave.
The set of all x ∈ X for which ρ(x) < +∞ is called the d(ψ)-class, till the

lower transversal modular space d(Xρ) denoted by d(Lψ, (Ω,Σ, µ)) or d(Lψ), i.e.,

d(Lψ)-space. It is evident that d(Lψ) is the smallest linear space containing the
d(ψ)-class.

Figure 3 Figure 4

An inequality. If f : R
0
+ → R

0
+ is a continuous and strictly decreasing fun-

ction with property f(0) = b ∈ R+, then for a > 0 the following inequality holds
in the form

(

a− f−1(0)
)

b ≤

∫ a

0
f(x)dx−

∫ b

0
f−1(x)dx,(1)

where the equality holds in (1) if and only if f(a) = 0. (In (1) f−1 is the inverse
function of f).

It is easily seen that the function f : R
0
+ → R

0
+ from inequality (1) is a function

in the class of d(ψ)-functions i.e., f ∈ d(ψ).
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On the other hand, from inequality (1), we can defined two complementary
functions in the following sense. We set

ψ(u) =

∫ u

0
f(t)dt, and ψ∗(u) =

∫ u

0
f−1(t)dt,

for u ≥ 0. Then, the functions ψ(u) and ψ∗(u) are complementary in the sense
of inequality (1). It is easily proved that they satisfy the following inequality of
the form

uv − vf−1(0) ≤ ψ(u) − ψ∗(v)

for all u, v ≥ 0; and that

ψ∗(u) = inf
v≥0

(

ψ(v) − uv + vf−1(0)
)

,

and

ψ(u) = sup
v≥0

(

uv − vf−1(0) + ψ∗(v)
)

,

for every u ≥ 0, where the infimum being reached at v = f−1(u) in the first case,
and the supremum at v = f(u) in the second case. Now, it is easily proved that

||x||∗ψ = sup

{
∫

Ω
x(t)y(t)dµ : y ∈ X,

∫

Ω
ψ∗(y(t))dµ ≤ 1

}

,

is a lower transversal norm in d(Lψ), and, on the other hand, that is

||x||ψ = inf

{

u > 0 :

∫

Ω
ψ

(

x(t)

u

)

dµ ≤ 1

}

;

also, is a lower transversal norm in d(Lψ). Obviously is here similarity with the
Luxemburg and Orlicz norms.

3. Further on d(Lψ)-spaces

An extension of the d(Lψ)-space is the following. We take a function ψ :
R

0
+ ×Ω → R

0
+ such that: ψ(u, t) = b (for some 0 < b ≤ +∞) if and only if u = 0,

ψ(u, t) is a continuous and nonincreasing function of u ≥ 0 for a.e. t ∈ Ω, ψ(u, t)
is Σ-measurable in Ω for every u ≥ 0 and ψ(u, t) → ∞ as u → ∞ for a.e. t ∈ Ω.
Then

ρ(x) =

∫

Ω
ψ(x(t), t)dµ

is a lower transversal modular in X. On the other hand, one may consider also
d(Lψ)-spaces of vector valued functions with values in a lower transversal normed
space (E, || · ||) which is lower complete. The lower transversal modular ρ may be
written then in the form

ρ(x) =

∫

Ω
ψ(||x(t)||, t)dµ,
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with suitable measurability for the functions x. Also, this may be still extended
to the form

ρ(x) =

∫

Ω
ψ(x(t), t)dµ,

where ψ becomes a map of E×Ω in R
0
+. For further facts of this see: Tasković [24].

Figure 5 Figure 6

Proof of inequality (1). From the Figures 5 and 6 we have a geometric proof
of (1). Meanwhile, for an analytic proof of inequalityu (1), we set

g(a) = ab− bf−1(0) −

∫ a

0
f(x)dx,

and consider b > 0 as a parametar. Since g′(a) = b− f(a)+ f(0), and f is strictly
decreasing, we have

g′(a) > 0 for 0 < a < f−1(b− f(0)),

g′(a) = 0 for a = f−1(b− f(0)), g′(a) < 0 for a > f−1(b− f(0))

and thus, g(a) is a maximum of g for a = f−1(b − f(0)). Therefore, integrating
by parts, we obtain

g
(

f−1(b− f(0))
)

= f(0)f−1(b− f(0)) − bf−1(0) +

∫ b−f(0)

f(0)
f−1(y)dy,

i.e., for b = f(0) we have g(a) ≤ g(f−1(0)), and thus calculating we get (1). The
proof is complete.

Further annotations. We notice that Figs. 5 and 6 affirm that inequality
(1) is justified. On the other hand, if we consider the areas by Figs. 5 and 6,
then directly for a strictly decreasing function f ∈ d(ψ) we obtain the following
inequality of form

af(a) ≤

∫ a

0
f(x)dx−

∫ b

f(a)
f−1(x)dx,(2)

where f(0) ≥ b and a > 0. Equality holds in (2) if and only if f(0) = b and
f(a) = 0.

We notice that inequality (2) is ties with some inequalities in: B o a s-M a r c u s [2], M i t r i-

n o v i ć - P e č a r i ć - F i n k [9], and T a s k o v i ć [24].
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4. Class of d(ψ)-functions

We shall say that a continuous and nonincreasing1 function ψ : R
0
+ → R

0
+ in

the class d(ψ) or that is a d(ψ)-function if

ψ(∞) = lim
u→∞

ψ(u) = 0

and ψ(0) = b (0 < b ≤ +∞); where in the case b = +∞ we understand a function
of the form that f : R

0
+ → R

0
+ ∪ {+∞}.

Namely, in the case b = +∞, we can ψ, comprehend and as a restriction on
the set R+, i.e., ψ|R+ → R

0
+. The elements of the class d(ψ) we denoted by ψ, ξ,

ϕ, . . . and ξ ∈ d(ψ) is a measurable function. Also, ξ(u) = ξ ◦ u is a measurable
function for the arbitrary measurable function u : R+ → R

0
+

For the function ψ ∈ d(ψ) we defined on the right inverse function ψ∗ :
R

0
+ → R

0
+ in the folowing sense

ψ∗(t) = supψ−1(t, b) = inf ψ−1([0, t]),

where 0 < b ≤ +∞. It is easily proved that ψ∗ ∈ d(ψ) and ψ∗∗ = ψ, i.e., ψ∗ is an
idempotent mapping. Precisely, this means that ψ and ψ∗ are reciprocally on the
right inverse functions.

Proposition 4.1. Let ψ ∈ d(ψ). Then the following characteristic facts hold:
(a) ψ∗(ψ(s)) ≤ s for every s ≥ 0.
(b) t > ψ(s) implies that is ψ∗(t) < s.

(c) ϕ(s) = aψ(bs) implies ϕ∗(t) =
1

b
ψ∗

(

t

a

)

for a, b > 0.

(d) ψ∗(ψ(s) − ε) ≥ s for every s > 0 and 0 < ε < ψ(s).

A brief proof of this statement we can to make in the proper manner from book of M u s i e-
l a k [10]. Also see: M a t u s z e w s k a [7] and T a s k o v i ć [24].

Annotation. If ψ ∈ d(ψ) with the values t, then ψ∗(t) = inf ψ−1({t}). Otherwise, if ψ∗ (for

ψ ∈ d(ψ)) is a continuous function in the point ψ(s), then, from Proposition 1, the following

equality holds: ψ∗(ψ(s)) = s.

1Decreasing functions. For the decreasing function ψ : R
0
+ → R

0
+ holds the following pro-

perties: for every s ≥ 0 there exist the following expression (we set on convention ψ(−0) = ψ(0)):

ψ−(s) = ψ(s− 0) = lim
h→0+

ψ(s− h) = inf([0, s]) = inf ψ((t, s)) for 0 ≤ t < s and

ψ+(s) = ψ(s+ 0) = lim
h→0+

ψ(s+ h) = supψ((s,∞)) = supψ((s, t)) for s < t;

where holds the following inequalities in the forms: ψ+ ≤ ψ ≤ ψ− and ψ−(t) ≤ ψ+(s) for s < t.
On the other hand, a decreasing function ψ : R

0
+ → R

0
+ is from the right continuous if holds

the following equality

ψ(supS) = inf ψ(S)

for every nonempty bounded set S ⊂ R
0
+. In this sense, if holds and the following equality in the

form (continuity from the left)

ψ(inf S) = supψ(S),

then we say, that the mapping, ψ is continuous. For further facts on the decreasing mappings
see: T a s k o v i ć [24].
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The class of d(M)-functions. In the further, a function G : R → R
0
+ is

called an M-function if there is a function ψ ∈ d(ψ) such that

G(s) =

∫ |s|

0
ψ(t)dt.(3)

By d(M) we shall denote the set of all M -functions. If (3) holds, then we say
that the function G determined by the function ψ.

The value of the M -function, itself is the magnitude of the area of the cor-
responding curvilinear trapezoid. If follows from representation (3) that every
M -function is even, thus for s ∈ R

0
+ and G ∈ d(M) directly we have the following

inequalities

asψ
(s

a

)

< G(s) < sψ(0),(4)

i.e., in an equivalent form,

a2sψ(s) < G(as) < asψ(0)(5)

for s > 0 and for 0 < a ≤ 1. Hence, from the preceding inequalities (4) and (5),
directly calculating, we obtain the following inequalities in the form

ψ−(max{s, t}) ≤
G(s) −G(t)

s− t
≤ ψ+(min{s, t});(6)

and thus, from the preceding facts, we have

G(s) = max
t≥0

{

G(t) + (s− t)ψ−(s)
}

= min
t≥0

{

G(t) + (s− t)ψ+(s)
}

.

Proposition 4.2. The function f : R → R belongs to the class d(M) if and only
if the following facts hold: f(s) = 0 if and only if s = 0, f ∈ BC(R0

+)2, f is
continuous even, and

0 ≤
f(∞)

∞
≤ b =

f(0)

0
(0 < b ≤ +∞).

A brief proof of this statement may be found in: Tasković [24]. As an im-
mediate application of this result and the preceding facts we have the following
inequalities:

G(as) ≥ aG(s) for s ≥ 0 and 0 ≤ a ≤ 1.(7)

G(as) ≤ aG(s) for s ≥ 0 and a ≥ 1.(8)

G(t)

t
<
G(s)

s
for 0 ≤ s < t.(9)

G(s+ t) < G(s) +G(t) for s, t > 0.(10)

We notice that properties of the function G directly to bring about properties
hers the inverse function defined by G−1 = (G|R0

+)−1.

2BC(R0
+) denoted the set of all functions which are difference of two convex functions on R

0
+.
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The function G−1, defined in the preceding sense, is continuous, difference is
two convex functions, i.e., G−1 ∈ BC(R0

+), and strictly decreasing on R
0
+.

If to make corresponding replacements variables, from the inequalities (7)-(10),
for the function G−1 we obtain the following inequalities:

G−1(as) ≤ aG−1(s) for s ≥ 0 and 0 ≤ a ≤ 1.(11)

G−1(as) ≥ aG−1(s) for s ≥ 0 and a ≥ 1.(12)

t

G−1(t)
<

s

G−1(s)
for 0 ≤ s < t.(13)

G−1(s+ t) > G−1(s) +G−1(t) for s, t > 0.(14)

We notice that equalities hold in (7), (8), (11) and (12) if and only if the point
(s, a) is on edge region in which the preceding inequalities hold.

5. Complementary M-functions

For a M -function hers the complementary function (in the sense of inequal-
ities (4)) is the function G∗ in the following form:

G∗(t) =

∫ |t|

0
ψ∗(s)ds.

From the some former facts, complementary mapping is an idempotent map-
ping of the class d(M) into itself. From Proposition 1 we have that

A(s) = aG(bs) implies A∗(s) = aG∗

(

t

ab

)

,

where a, b > 0 are constants.
As an immediate consequence of the former inequality (1) is the following sta-

tement.

Theorem 5.1. Let the function G ∈ d(M). Then for mutually complementary
functions G and G∗ the following inequality holds in the form

(s− ψ−1(0))t ≤ G(s) −G∗(t)(15)

for s, t ≥ 0, where equality holds in this case if and only if ψ(s) = 0.

From the preceding Theorem 1 as an immediate consequence we have the qua-
silinear representation of an arbitrary complementary function in the form

G∗(t) = min
s≥0

(

G(s) − [s− ψ−1(0)]t
)

.(16)
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6. The comparison of M-functions

In the sequel, an essential role will be played by the rapidity of growth of the
values of an M -function as n → ∞. In connection with this, for the function
G ∈ d(M) we shall say that before the function R ∈ d(M), in note G ≺ R or
G(s) ≺ R(s), if there exists constant K > 0 such that

G−1(s) ≤ R−1(Ks) for enough large s.(17)

Otherwise, we shall say that the M -functions G and R are equivalent in write
G ∼ R or G(s) ∼ R(s) if G ≺ R and R ≺ G, i.e., if there exist constants K, k > 0
such that

R−1(ks) ≤ G−1(s) ≤ R−1(Ks) for enough large s.(18)

We notice that the binar relation ≺ defined a quasiorder in d(M), which me-
ans that ∼ is an equivalente relation in d(M) agreed with ∼; but the relation ≤
defined is on the quotient set d(M)/ ∼= {[G] : G ∈ d(M)} with

[G] ≤ [R] if and only if G ≺ R,

and she is a partial order relation on d(M)/ ∼. In connection with this, from (7)
and (8), directly calculating we obtain

G−1
(

smin{a, 1}
)

≤ aG−1(s) ≤ G−1
(

smax{a, 1}
)

for a > 1 and for s ≥ 0; hence, from the preceding facts, we have G ∼ aG. Since
G(s) ∼ G(bs) for b > 0, thus we obtain

G(s) ∼ aG(bs) for all a, b > 0.

Some annotations. We notice that in (17) we can suppose that there exists
constant K ≥ 1 instead K > 0. Indeed, if holds (17) for s ≥ z and if r < z, then
for r ≤ s ≤ z the following inequality holds

G−1(s) ≤ R−1(K0s), for K0 = max

{

1, sup
r≤s≤z

(

G−1(s)

R−1(s)

)}

;

and thus, for K1 = max{K,K0}, we obtain that is G−1(s) ≤ R−1(K1s) for s ≥ r.
From this, for an arbitrary constant r > 0, we have that fact G ≺ R is an

equivalent with the fact: that there exists constant K ≥ 1 such that

G−1(s) ≤ R−1(Ks) for every s ≥ r.

In connection with this, also we notice that the fact G ≺ R is equivalent with
the fact that there exist constants K0, K > 0 such that

G−1(s) ≤ K0 +R−1(Ks) for every s ≥ 0.(19)

Indeed, let G−1(s) ≤ R−1(Ks) for every s ≥ 0. Thus we have G−1(s) ≤
K0 + R−1(Ks) for some K0 > 0, i.e., holds (19). Reversed, if holds (19) and if
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K0 = R−1(K1) for K1 > 0, from (14) we have

G−1(s) ≤ R−1(K1) +R−1(Ks) ≤ R−1(K1s) +R−1(Ks) ≤

≤ R−1(K1s+Ks) = R−1((K1 +K)s)

for s ≥ 1. This means that G ≺ R is equivalent with inequality (19).
On the other hand, from properties of M -functions and the order relation ≺,

directly follow that G ≺ R is equivalent with the fact:

inf
b≥1

(

lim sup
s→∞

G−1(s)

R−1(bs)

)

= 0.

In connection with the preceding partial ordering, let G�≺ R for G,R ∈ d(M)
have the following means: that there exists constant K > 0 such that

G−1(s) ≤ KR−1(s) for enough large s;

and let G�∼ R for G,R ∈ d(M) have the following means G�≺ R and R�≺ G, i.e.,
this means that there exist two constants K, k > 0 such that

kR−1(s) ≤ G−1(s) ≤ KR−1(s) for enough large s.

It is easily seen that �≺ is a quasiorder, till �∼ is an equivalence relation in
the d(M)-class. The fact G�≺ R is equivalent with the fact: that there exist two
constants K0, K > 0 such that

G−1(s) ≤ K0 +KR−1(s) for every s ≥ 0.

The d(∆2)-condition. The following condition in order that an d(M)-class
be linear (i.e., identical with the d(Lψ)-space) is essential.

We say that the M -function G satisfies the d(∆2)-condition for large values
of s if there exists constant K > 0 such that

G−1(2s) ≤ KG−1(s) for enough large s.(20)

IfM -functionG satisfies (20) for every s ≥ 0, then we say thatG satisfies d(∆2)-
condition for every s ≥ 0. The class of all M -functions which satisfies d(∆2)-con-
dition denoted by d(M2). In this context, the mappings p∞, q∞ : d(M) → [0, 1]
we define by:

p∞(G) = lim inf
s→∞

sψ(s)

G(s)
and q∞(G) = lim sup

s→∞

sψ(s)

G(s)
;

for which we have p∞(bG(as)) = p∞(G) and q∞(bG(as)) = q∞(G) for arbitrary
parametars a, b > 0. Since s 7→ s−rG(s) for s ≥ t is a nonincreasing function if
and only if

sψ(s)

G(s)
≤ r for every s ≥ t,

and since s 7→ s−rG(s) for s ≥ t is a nondecreasing function if and only if

sψ(s)

G(s)
≥ r for every s ≥ t,
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thus, we obtain directly the following equalities for functions p∞(G) and q∞(G)
in the following forms:

p∞(G) = sup
{

r ∈ (0, 1) : s−rG(s) increasing for s ≥ t
}

and

q∞(G) = inf
{

r ∈ (0, 1) : s−rG(s) decreasing for s ≥ t
}

.

Otherwise, from the preceding facts and geometric reasons we can considered
the mappings L∞(G), Z∞(G) : d(M) → [1,∞) defined by

L∞(G) = lim inf
s→∞

sψ(0)

G(s)
, and Z∞(G) = lim sup

s→∞

sψ(0)

G(s)
;

for which, also, L∞(bG(as)) = L∞(G) and Z∞(bG(as)) = Z∞(G) for arbitrary
parameters a, b > 0. Also, the mappings p, q : d(M) → [0, 1] we define by:

p(G) = inf
s>0

sψ(s)

G(s)
, and q(G) = sup

s>0

sψ(s)

G(s)
;

for which the following inequalities hold: p(G) ≤ p∞(G) ≤ q∞(G) ≤ q(G) ≤ 1.
Also, the mappings L(G), Z(G) : d(M) → [1,∞) we define by

L(G) = inf
s>0

sψ(0)

G(s)
, and Z(G) = sup

s>0

sψ(0)

G(s)
;

and thus holds: 1 ≤ L(G) ≤ L∞(G) ≤ Z∞(G) ≤ Z(G). Also, for the preceding
mappings hold and many other properties, see: Tasković [24].

Annotations. From the preceding considers we see that for further work can
be essential the following condition: there exists a constant K > 0 such that

G
(s

2

)

≤ KG(s) for enough large s.

Also, from the preceding considers and the properties of the p and q functions,
for an arbitrary function G ∈ d(M) holds the following inequalities:

1

q
sψ(s) ≤ G(s) ≤

1

p
sψ(s),(21)

min
{

ap, aq
}

G(s) ≤ G(as) ≤ max
{

ap, aq
}

G(s),(22)

G
(

min
{

a1/p, a1/q
}

s
)

≤ aG(s) ≤ G
(

max
{

a1/p, a1/q
}

s
)

,(23)

p

q
min

{

ap−1, aq−1
}

≤
ψ(as)

ψ(s)
≤
q

p
max

{

ap−1, aq−1
}

.(24)

7. The functions ρG

Let S be a closed interval on real line and M = M(S, µ) is a set of all extension
real µ-measurable functions on S. For an M -function G we define on the quotient
set A = M/≡ the function ρG : A→ R

∗ := R ∪ {±∞} with

ρG(x) =

∫

S
G(x(s))ds,



Milan R. Tasković 23

at to what ρG∗ (or ρ∗G) suitable the complementary function. This definition is
correct because

x ≡ y implies ρG(x) = ρG(y);(25)

and, from the fact that G is an even function arise that ρG is even, i.e., ρG(|x|) =
ρ(x). Also, ρG(u) = 0 if and only if u ≡ 0, and

inf{u, v} ≡ 0 implies ρG(u+ v) = ρG(u) + ρG(v);(26)

and, u ≤ v implies ρG(u) ≤ ρG(v), and

ρG(au+ bv) ≤ aρG(u) + bρG(v) for a, b > 0 and a+ b = 1;

at to what for the function G ∈ d(M) holds the following inequality
∫

[

u(v − ψ−1(0))
]

ds ≤ ρG(u) − ρ∗G(u).

It follows from this inequality and from Levi’s theorem that holds quasilinear
representation in the following form:

ρG(u) = sup
ρ∗
G

(v)<∞

(
∫

[

u(v − ψ−1(0))
]

ds+ ρ∗G(v)

)

.

We set H = {s ∈ S : u(s) ≥ v(s)} and H1 = S\H. Then we have sup{u, v} =
uχH + vχH1

, and thus from (26) we obtain ρG(sup{u, v}) ≤ ρG(u) + ρG(v), i.e.,
by induction, for n ∈ N, the following inequality holds:

ρG
(

sup{u1, . . . , un}
)

≤ ρG(u1) + · · · + ρG(un).

We notice that some properties of the M -functions have influence and on the
some properties of ρG functions. In this sense hold the following facts:

(a) The fact G�≺ R is equivalent with the fact: that there exist constants K0,
K > 0, such that holds the following inequality

ρG−1(u) ≤ K0 +KρR−1(u) for every u ∈ A+,

where A+ is positive order cone with the ordering ≤ in A, i.e, where the equality
holds A+ = {[u] ∈ A : [u] ≥ [0]}.

(b) The fact G ≺ R is equivalent with the fact: that there exist constants K0,
K > 0 such that holds the following inequality

ρG−1(u) ≤ K0 + ρR−1(Ku) for every u ∈ A+.(27)

Proof. Let G ≺ R. If in inequality (19) put u(s) in the place s and afterwards
take the intergral over S, directly we obtain

ρG−1(u) ≤ K0µ(S) + ρR−1(Ku),

i.e., (27) holds. Reversed, to serve for the formula ρG−1(bχH) = G−1(b)µ(H) for
b ∈ H and H ⊂ S, from (27) for u = ut = tχS (t ≥ 0), we obtain

G−1(t) ≤
K0

µ(S)
+R−1(Kt),
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whence, again from inequality (19), arise the fact G ≺ R. The proof is complete.

8. Boundness of set on ρG

The set X ⊂ A is called the G-bounded iff sup ρG(X) < +∞. In this sense
holds the following statement.

Theorem 8.1. Let holds the preceding designate. Then the following are mutually
equivalent facts:

(a) G�≺ R.

(b) ρ−1
R (R0

+) ⊂ ρ−1
G (R0

+).

(c) sup ρG((ρ−1
G ([0, a])) < +∞ for some a > 0.

(d) Every R-bounded set is G-bounded.

For the proof of this statement we utilize Levi’s theorem and some properties
of G and ρG functions.

We set d(L∗
G(S)) = d(L∗

G) = {x ∈ A : ρG(x) < +∞}. If utilize only linearity
of the space L, we can further consider structure of d(L∗

G) as a subset of linear
space L. In this sense, we set

d(LG(S)) = d(LG) =
{

x ∈ A : ax ∈ d(L∗
G) for some a > 0

}

,

and d(L+
G) = {u ∈ d(LG) : u ≥ 0}. For the linear space d(LG) we say that de-

terminate with the M -function G. Then hold the following facts: d(L∗
G) ⊂ L =

L1(S), d(LG) ⊂ L, and:
(a) d(L∗

R) ⊂ d(L∗
G) if and only if G�≺ R.

(b) d(LR) ⊂ d(LG) if and only if G ≺ R.
From this facts arise that the inequalites hold d(L∗

G) ⊂ d(L∗
R) and

d(LG) ⊂ d(LR) if and only if G�∼ R and G ∼ R, respectively.
This facts exhibit that all functions of one ∼-class determined only one linear

space d(LG), where the mapping of [G] and d(LG) is bijective. If in the set

D =
{

d(LG) : G ∈ d(M)
}

defined the order relation with ”⊂”, then from the preceding facts the sets (D,⊂)
and (d(M)/∼,≤) are antimorphisms. In this sense, the mapping U : [G] → d(LG)
is antimorphism, and (D,⊂) is a lattice.

In connection with the former facts, for the function G ∈ d(M) we define, first,
an upper norm, in denoted || · ||(G) : d(LG) → R

0
+ by

||x||(G) = inf
{

a > 0 : ρG

(x

a

)

≤ 1
}

;

and, then we can broaden this norm to a limitid upper norm as a function, deno-
ted this extension by || · ||∗(G). In this sense, a hers quasilinear representation

is in the following form:

||x||∗(G) = sup
ρ∗
G

(v)<∞

(

∫

u(v − ψ−1(0))ds

1 − ρ∗(G)(v)

)

.
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Theorem 8.2. If the mapping T : A → A satisfy for every x ∈ A and for every
a ∈ R the following conditions: |T (ax)| = |a||Tx| and

ρG−1(Tx) ≤ K0 + ρR−1(Kx),

where K > 0 and K0 ≥ 0 are constants, then for every x ∈ A holds the following
inequality in the form

||Tx||∗(G−1) ≤ K(K0 + 1)||x||∗(R−1).(28)

Proof. Since T (0) = 0, we have that (28) holds for ||x||∗(R−1) = 0. This

inequality holds and for ||x||∗(R−1) = +∞. We set 0 < a = ||x||∗(R−1) < +∞. Then

we have

ρG−1

(

Tx

(K0 + 1)Ka

)

≤
1

K0 + 1
ρG−1

(

Tx

Ka

)

=

=
1

K0 + 1
ρG−1

(

T
( x

Ka

))

≤
1

K0 + 1

[

K0 + ρR−1

(x

a

)]

≤ 1,

whence, from definition of norm || · ||∗(G−1), we obtain the inequality in the form

(28). The proof is complete.

Theorem 8.3. The fact G ≺ R is equivalent with the fact: that there exists a
constant K > 0 such that holds the following inequality in the form

||x||∗(G−1) ≤ K||x||∗(R−1) for every x ∈ A.(29)

Proof. If G ≺ R, then from (27) and Theorem 3 for Tx = x we obtain
inequality (29). Reversed, let (29) holds. Since ||x||∗(G−1) < +∞ if and only if

x ∈ d(LG−1), from (29) arise d(LR−1) ⊂ d(LG−1); and thus G ≺ R from a former
fact. The proof is complete.

Applying Theorem 4, and from some former facts, directly we obtain the fol-
lowing statements:

(a) If G ≺ R, then d(LR−1) ⊂ d(LG−1) and there exists a constant K > 0 such
that holds the following inequality in the form:

||x||(G−1) ≤ K||x||(R−1) for every x ∈ d(LR−1).(30)

(b) If G ∼ R, then d(LG−1) = d(LR−1) and there exist constants K0, K > 0
such that for every x ∈ d(LR−1) hold the following inequalities in the form

K0||x||(R−1) ≤ ||x||(G−1) ≤ K||x||(R−1).(31)

Annotations. We notice that topology on d(L(R−1)) is redefined of they which
make topology in d(L(G−1)). This means that the order relation in the class of
M -functions have and algebric and topological consequences.

From inequality (30) arise that the operator T : d(LR−1) → d(LG−1) defined by
Tx = x is continuous.

On the other hand, inequality (31) demonstrate that the equivalent M -fun-
ctions determined linear homeomorphic spaces, where the identical mapping is a
linear homeomorphism.
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In connection with this, we define the following two norms. For an M -function
G we define the extension limitid upper norm || · ||∗G : A→ [0,+∞] by

||u||∗G = inf

{
∫

u
u(v − ψ−1(0))ds : ||v||(G) ≤ 1

}

for u ∈ A+ and ||x||∗G = ‖|x|‖∗G for x ∈ A. On the other hand, for an M -function
G we define and the extension limited upper norm || · ||∗d(G) : A→ [0,+∞] by

||u||∗d(G) = inf

{
∫

u(v − ψ−1(0))ds

1 + ρG(v)
: ρG(v) < +∞

}

for a ∈ A∗ and ||x||∗d(G) = |||x|||∗d(G) for x ∈ A. For the preceding two norms hold

the following inequalities

||u||∗d(G) ≤ ||u||∗G ≤ 2||u||∗d(G).(32)

From inequalities (32) arise ||x||∗G < +∞ if and only if x ∈ d(LG). In the
preceding context, for an M -function G we define the norm || · ||0G : A→ [0,+∞]
by

||u||0G = sup

{
∫

u(v − ψ−1(0))ds : ||v||(G∗) ≤
1

2

}

for u ∈ A+ and ||x||0G = ‖|x|‖0
G for x ∈ A. Also, a limited upper norm || · ||0d(G) :

A→ [0,+∞] we define by

||u||0d(G) = sup

{
∫

u(v − ψ−1(0))ds

1 − ρ∗G
: ρ∗G(v) <

1

2

}

for x ∈ A+ and ||x||0d(G) = ‖|x|‖0
d(G) for x ∈ A. For this two norms hold the

following inequalities in the form

1

2
||u||0d(G) ≤ ||u||0G ≤ ||u||0d(G).

Annotations. In connection with the preceding spaces we can to speak on
ordinary convergence in the sense that limn→∞ xn(s) = x(s) for xn, x ∈ A (n ∈ N);
and we can to speak on convergence in middle (of index G) in the sense that

xn →G x if and onli if ρG(xn − x) → 0;

or we can to speak on convergence in the space d(LG) as on convergence via norms
in a given spaces.

An inequality. Let G be a M -function and we set p = p(G) and q = q(G).
Then holds the following inequality

||u(λs)||(G) ≤ max
{

λ−1/p, λ−1/q
}

||u(s)||(G)
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for every u ∈ d(LG([0,+∞))) and for arbitrary fixed 0 ≤ λ < +∞. (For the proof
of this inequality, from (23), see: Tasković [24]).
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