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ABSTRACT. This paper is to present a common fixed point theorem for family
of commuting mappings defined on transversal upper intervally spaces. This
result extends results of M. Taskovié [5].

1. DEFINITIONS AND PREVIOUS RESULTS

Definition of transversal intervally spaces was given by M. Taskovié¢ (see [5]).

Definition 1.1. Let X be a nonempty set. The symmetric function p: X x X —
[a,b] C RY for a < b, is called an upper intervally transversal on X if there
is a function ¢ : [a, b] X [a,b] — [a, b] such that

p(r,y) < max {p(x7Z),p(z7y)7g(p(w7 Z%p(z,y))}

for all z,y,2z € X. A transversal upper intervally space is a set X together
with a given upper intervally transversal on X. The function g is called upper
bisection function.

Definition 1.2. A mapping M : R — [a,b] C RS)r for a < b is called an upper
distribution function if it is nonincreasing, left-continuous with in}f{ My (z) =
TE

a and sup M, ,(z) = b. We will denote by D the set of all upper distribution
zeR

functions.

Definition 1.3. A transversal upper intervally T-space is a pair (X, p),

where X is a transversal upper intervally space and where the upper intervally

transversal is defined with p[u, v] = M, ,(z) satisfying My, = My, Myn(c) =0

for some ¢ € R, and

My(x) =a for x>c ifandonlyif wu=nv.
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Examples can be found in [5].

Definition 1.4. (a) A sequence (pn)nen in (X, p) converges to a point p € X
if for some ¢ € R and for every p > ¢ and every o > 0, there exists a
natural M(u, o), such that M, , (@) < a+ o, whenever n > M(u, o).

(b) The sequence (pp)nen Wwill be called fundamental in (X, p) if for some
¢ € R and each > cand every o > 0, there exists a natural M(u, o), such
that My, ,.. (1) < a + o, whenever n,m > M(u, o). A transversal upper
intervally T-space will be called complete if each fundamental sequence in
X converges to an element in X.

Definition 1.5. A mapping T of a transversal upper intervally T-space (X, p)
into itself will be called a intervally upper contraction iff there exists a non-
decreasing function ¢ : [¢,400) — [¢, +00) for some ¢ € R such that

(As) lim ¢"(t) = +o0, forevery t>¢,
n—oo
satisfying the condition:

(Pc) Mru,rv(z) < max {Mu,v(w(ﬂi)), My zu((2)), My 1o(p(2)),

Myru((@)), Murol(2)) }
for all u,v € X and for every = > c.
M. Taskovi¢ has proven the next theorem (see [5]).

Theorem 1.1. Let (X, p) be a complete transversal upper intervally T-space,
where the upper transverse plu,v] = M, ,(x) and the upper bisection function
g : [a,b] X [a,b] — [a,b] is nondecreasing such that g(t,t) <t for all t € [a,b].
If T is any intervally upper contraction mapping of X into itself, then there is a
unique point p € X such that Tp = p. Moreover, T"q — p for each q € X.

2. MAIN RESULT

Theorem 2.1. Let (X, p) be a complete transversal upper intervally T-space where
the upper intervally transversal is defined with plu,v] = My,(x) and the upper
intervally bisection function g : |a,b] X [a,b] — [a,b] is nondecreasing such that
g(t,t) <t for every t € [a,b]. Let (T,), for n € N be a sequence of mappings
from X into itself and S : X — X be a continuous bijective function commuting
with each of T,, satisfying condition T, (X) C S(X), for alln € N. Let exists a
nondecreasing function ¢ : [c,+00) — [c,+00), for some ¢ € R such that condition
(As) holds. If for all points u,v € X and all mappings T; and T} the inequality

(ch) M%iu,ij(m) < max {Mg’u,Sv(SO(x))’ Mgu,Tzu((p(x))v Mg'v,ij(SO([B))’

Msu,1;0(p(2)) Msv,1u(p()), Msu,ij(w(x))MSu,Tiu(so(w))},

holds for every x > c, then there is a unique common fixed point p € X for S and
all of mappings T,.
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Proof. Let ug be an arbitrary point from X. Let us define sequence (uy,), for
n € N as follows:

(1) tp = S T (un—1)), for neN

We show that the sequence v, = S(uy) = Ty (un—1), for n € N is fundamental in
X.
From condition (Pcg) and for all a > ¢ the next inequalities follow:

(2) M,y sun (1) = ME, o T, (1) <
max { M, 7, yuno (P00 MBu_, 1 (900, M,y 0, (9(1)),
Mgy, Toun—1 (P() MSup 1 T o (9(11)),
VM7, i (9(1)) } =
max { M2, _, 50, (P(1) M, _, 50, (#(10).
Mg, s, 8u, (P(1)) MSu, 1 Sun_1 (1)),
M, s 50, (2 (11) )}

Since the space is a transversal upper intervally space then for every z > ¢ the
following inequalities hold:

(k)
MSun,g,Tnun71 (90(,“)

) )
)MSun&,Sunfl ( ('u)

(%) M, »(z) < max {Mu’w(x), My (), g(Myw(z), Mw,v(x)}
< max {Muyw(x), Mw,v(x)},

because g(u,v) < g(max{u,v}, max{u,v}) < max{u,v}. From previous follows
that

(3) MSunfz,Sun ((P(:U')) < maX{MSunfz,Sunf1 (‘P(:U’))? MSunfl,Sun ((P(M))}

Then, from inequality (3) and the fact that values of upper distribution functions
are in interval [a, b] next inequalities follow:

(4) Msun—2,5un (W(M))MSun_l,Sun_l(gp(M)) - MSun_Q,Sun ((P(IUJ)) <
max {MSun—z,Sun—1 (‘p(lu’))7 MSun—l,Sun (@(N))} <

max { M2y, _, s, (9(0), M3, su, (9(0)) }-

(5) MSunfz,Sun ((p(/‘))MSun72,Sun71 (W(M)) <
max { M3, _, su,_, (£0))s Mo 50, (9()) Mty 50,1 (2(12)) }.
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From the fact that max{u?,v? uv} = max{u?,v?}, for all u,v € [a, b], inequalities
(2), (4) and (5) imply:

(6) M50, () < max {MZ,, s, (200), M, 50, (9() }-
From last follows:

(7) Mosu, s, (1) < max { Mo,y 5,2 (9(1), M,y 50, (2(12) }-

Since ¢ is a nondecreasing function and ¢(u) > ¢, p(u) > p for every p > c it
follows by induction that for every k € N the following inequality holds:

(8)  Mouyy 50, (1) < max { M, o 80,1 (9(0)), Msu, 1 50, (9" (1)) .

and when k£ — +o0o we get that for every n € N:

(9) Msunflvsun (/’L) S Msunf%sunfl ((ID(IU))
By induction we can prove the inequality (10) for the sequence {vy}.
(10) Mo,y 00 (1) < Mug 0 (9" (12))-

From (%), and last inequality, for m > n and arbitrary u > ¢, follows:

Ma i, (1) S 106 { Moy 3 (12)s s My, (10)

et { Mug.on (9" (1)): - Maon (07 (10)) } = Mugn (2" ().

From (As) we conclude that exists a natural M(pu,0) such that
MvO,Ul(gpM(”"’)(u)) < a+ o. We can take that n,m > M(u,0) and we con-
clude that v, is a fundamental sequence in (X, p). Since the space is complete,
then there is a point p € X such that v, — p.

We shall prove that p is a common fixed point for S and 7;,. Since S commutates
with each of T},, then from (1) and the fact that T,,Su,—1 = ST up—1 = SSuy,
follows:

Mg’Sun,Tkp(:u) = MéTnun,l,Tkp(M) = M%nSUn,l,Tkp(H) <
max { Msu,_, s (0 (0)s Msu,_, 7,50, (9(0)s M,z (0 (1)),
Mg 1 (P (1) Mp, 1, Su, - (1)), Mssun_l,Tkp(w(M))Mssun_l,Tnsun_l} =
max { Mg,y 5p(0(1) MBsu, s, (901)), Mz, (2(12),

Ms5u,_1,Tp(0(10) Msp, 550, (0(14)), MsSu, 1 1.p(9 (1)) MSSup_1,SSun }
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From continuity of S and because Su,, — p when n — 400, we get that for every
k € N follows:

(1) M, (n) <max { ME, g, (9(1), M3, 5,(0(1)), M3, 13, (1),

Mz (9(1)) Msp,sp( (1)), My 1ip(0(1) Mspsp(9(12)) }

=M, 1,5 ((1))-
Because all of the functions in last inequality are nonincreasing we conclude that
for each m € N the inequality Mg, 1.p(1t) < Msp 1.p(¢™ (1)) holds. When m —
+o00, for every p > ¢, we obtain Mg, 1,,(1t) = a. From this, for every k € N we
obtain (xx) S(p) = Tk(p). In following text we shall show that p is a common
fixed point for all of mappings T;,.
From inequality:

(12) Mg'u,“Tkp(/“[/) = M%nunflaTkp(u) S
max { M, _, sp(0())s M, _, 50, (9(0))s M,z (9(10)),

M,y 1p(0(1) Msp su, (9(1)), Msu,,_, 1,p(0 (1)) Msu, _; Su, (w(u))},

when n — 400, because (xx) holds, we conclude that:

(18) Mg, () < max { M2, (9(1), M2, (9(1)), M, 1, (2(12),

My 1,0 (P (1)) Friop,p ((12)), My, 1,5 (0 (1)) M, p (0 (1)) }

From last, we obtain that for each > ¢ holds the following:

(14) My mp(1) < Mp1yp(e(p))-

Next, we obtain that for every m € N follows M), 7,,(1) < My 1(0™ (1)), and
when m — 400, we conclude that for every p > ¢ the fact M, 1, (1) = a holds,
and it implies that for each k € N we get p = Tixp = Sp.

Let us prove uniqueness of common fixed point p. Suppose that there is another
common fixed point ¢ # p. From

(15) M2, (1) = M1, (0) < max { ME, 5, (0(1)), M, (0(1)), M (9(1)),

My q(p(1) Msgp(e(1)), Msp,q(cp(u))Msp,p(sO(u))} =M (o(1))-

follows that for every p > ¢ holds that M, ,(p) < M, 4(p(p)), and so, for every
m € N, we obtain that M, ,(u) < M, ,(¢™ (1)), and when m — +o00, we conclude
that for every p > ¢ holds the fact M, ,(¢) = a. From conditions for distribution
functions we get that p = ¢q. This completes the proof. O

Comment. It is easy to prove that from condition (Pcg) for T'=T; = T} and
S =1, where I is an identical mapping, follows:
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M2, (@) < max { M2, (0(2)), M, (9(3)), M2, (16()),
My, 1o ((2)) My, ru(p(2)), My, 0o ((2)) My, 7u(@()) } <
max { M2, (6(2)), M2 (9(@)), M2 1, ((x)

M 7, (p(@)), M 7o (0(2)) |

and we can conclude that mappings satisfying condition (Pcg) are intervally upper
contractions.

From these conclusions follows that Theorem 2 is an extension of Theorem 1.

Acknowledgments

This paper is dedicated to Professor Milan Taskovi¢ for his 60th birthday. I
wish to express my sincere thanks to Professor Milan Taskovi¢ on his support and
cooperation in my investigations.

REFERENCES

[1] S. JESIC: A common fized point on transversal probabilistic spaces, Math. Moravica, 6(2002),
pp. 71-76.

[2] M. MILOVANOVIC-ARANDIELOVIC:  Stavovi o nepokretnim tackama u verovatnosnim
metrickim prostorima, Master Thesis, Beograd, 1998, pp 76.

[3] M. Taskovi¢: Transversal spaces, Math. Moravica, 2(1998), pp 133-142.

[4] M. TaskoviC: Fized points on transversal probabilistic spaces, Math. Moravica, 3(1999), pp
77-82.

[5] M. TaskoVIC: Transversal intervally spaces, Math. Moravica, 7(2003), pp 91-106.

UNIVERSITY OF BELGRADE

FACULTY OF ELECTRICAL ENGINEERING
P.O. Box 35-54

11120 BELGRADE

SERBIA AND MONTENEGRO

E-mail address: jesha@eunet.yu



