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Abstract. This paper is to present a common fixed point theorem for family
of commuting mappings defined on transversal upper intervally spaces. This
result extends results of M. Tasković [5].

1. Definitions and previous results

Definition of transversal intervally spaces was given by M. Tasković (see [5]).

Definition 1.1. Let X be a nonempty set. The symmetric function ρ : X ×X →
[a, b] ⊂ R0

+ for a < b, is called an upper intervally transversal on X if there
is a function g : [a, b] × [a, b] → [a, b] such that

ρ(x, y) ≤ max
{

ρ(x, z), ρ(z, y), g(ρ(x, z), ρ(z, y))
}

for all x, y, z ∈ X. A transversal upper intervally space is a set X together
with a given upper intervally transversal on X. The function g is called upper

bisection function.

Definition 1.2. A mapping M : R → [a, b] ⊂ R0
+ for a < b is called an upper

distribution function if it is nonincreasing, left-continuous with inf
x∈R

Mu,v(x) =

a and sup
x∈R

Mu,v(x) = b. We will denote by D the set of all upper distribution

functions.

Definition 1.3. A transversal upper intervally T-space is a pair (X, ρ),
where X is a transversal upper intervally space and where the upper intervally
transversal is defined with ρ[u, v] = Mu,v(x) satisfying Mu,v = Mv,u, Mu,v(c) = b

for some c ∈ R, and

Mu,v(x) = a for x > c if and only if u = v.
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Examples can be found in [5].

Definition 1.4. (a) A sequence (pn)n∈N in (X, ρ) converges to a point p ∈ X

if for some c ∈ R and for every µ > c and every σ > 0, there exists a
natural M(µ, σ), such that Mp,pn(µ) < a + σ, whenever n ≥ M(µ, σ).

(b) The sequence (pn)n∈N will be called fundamental in (X, ρ) if for some
c ∈ R and each µ > c and every σ > 0, there exists a natural M(µ, σ), such
that Mpn,pm(µ) < a + σ, whenever n, m ≥ M(µ, σ). A transversal upper
intervally T-space will be called complete if each fundamental sequence in
X converges to an element in X.

Definition 1.5. A mapping T of a transversal upper intervally T-space (X, ρ)
into itself will be called a intervally upper contraction iff there exists a non-
decreasing function ϕ : [c,+∞) → [c,+∞) for some c ∈ R such that

(As) lim
n→∞

ϕn(t) = +∞, for every t > c,

satisfying the condition:

MTu,Tv(x) ≤ max
{

Mu,v(ϕ(x)), Mu,Tu(ϕ(x)), Mv,Tv(ϕ(x)),(Pc)

Mv,Tu(ϕ(x)), Mu,Tv(ϕ(x))
}

for all u, v ∈ X and for every x > c.

M. Tasković has proven the next theorem (see [5]).

Theorem 1.1. Let (X, ρ) be a complete transversal upper intervally T-space,
where the upper transverse ρ[u, v] = Mu,v(x) and the upper bisection function
g : [a, b] × [a, b] → [a, b] is nondecreasing such that g(t, t) ≤ t for all t ∈ [a, b].
If T is any intervally upper contraction mapping of X into itself, then there is a
unique point p ∈ X such that Tp = p. Moreover, Tnq → p for each q ∈ X.

2. Main result

Theorem 2.1. Let (X, ρ) be a complete transversal upper intervally T-space where
the upper intervally transversal is defined with ρ[u, v] = Mu,v(x) and the upper
intervally bisection function g : [a, b] × [a, b] → [a, b] is nondecreasing such that
g(t, t) ≤ t for every t ∈ [a, b]. Let (Tn), for n ∈ N be a sequence of mappings
from X into itself and S : X → X be a continuous bijective function commuting
with each of Tn, satisfying condition Tn(X) ⊆ S(X), for all n ∈ N. Let exists a
nondecreasing function ϕ : [c,+∞) → [c,+∞), for some c ∈ R such that condition
(As) holds. If for all points u, v ∈ X and all mappings Ti and Tj the inequality

M2
Tiu,Tjv(x) ≤ max

{

M2
Su,Sv(ϕ(x)), M2

Su,Tiu
(ϕ(x)), M2

Sv,Tjv(ϕ(x)),(Pcg)

MSu,Tjv(ϕ(x))MSv,Tiu(ϕ(x)), MSu,Tjv(ϕ(x))MSu,Tiu(ϕ(x))
}

,

holds for every x > c, then there is a unique common fixed point p ∈ X for S and
all of mappings Tn.
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Proof. Let u0 be an arbitrary point from X. Let us define sequence (un), for
n ∈ N as follows:

(1) un = S−1(Tn(un−1)), for n ∈ N

We show that the sequence vn = S(un) = Tn(un−1), for n ∈ N is fundamental in
X.
From condition (Pcg) and for all a > c the next inequalities follow:

M2
Sun−1,Sun

(µ) = M2
Tn−1un−2,Tnun−1

(µ) ≤(2)

max
{

M2
Sun−2,Tn−1un−2

(ϕ(µ)), M2
Sun−1,Tnun−1

(ϕ(µ)), M2
Sun−2,Sun−1

(ϕ(µ)),

MSun−2,Tnun−1
(ϕ(µ))MSun−1,Tn−1un−2

(ϕ(µ)),

MSun−2,Tnun−1
(ϕ(µ))MSun−2,Tn−1un−2

(ϕ(µ))
}

=

max
{

M2
Sun−2,Sun−1

(ϕ(µ)), M2
Sun−1,Sun

(ϕ(µ)),

MSun−2,Sun
(ϕ(µ))MSun−1,Sun−1

(ϕ(µ)),

MSun−2,Sun
(ϕ(µ))MSun−2,Sun−1

(ϕ(µ))
}

.

Since the space is a transversal upper intervally space then for every x ≥ c the
following inequalities hold:

Mu,v(x) ≤ max
{

Mu,w(x), Mw,v(x), g(Mu,w(x), Mw,v(x)
}

(∗)

≤ max
{

Mu,w(x), Mw,v(x)
}

,

because g(u, v) ≤ g(max{u, v}, max{u, v}) ≤ max{u, v}. From previous follows
that

(3) MSun−2,Sun
(ϕ(µ)) ≤ max{MSun−2,Sun−1

(ϕ(µ)), MSun−1,Sun
(ϕ(µ))}.

Then, from inequality (3) and the fact that values of upper distribution functions
are in interval [a, b] next inequalities follow:

(4) MSun−2,Sun
(ϕ(µ))MSun−1,Sun−1

(ϕ(µ)) = MSun−2,Sun
(ϕ(µ)) ≤

max
{

MSun−2,Sun−1
(ϕ(µ)), MSun−1,Sun

(ϕ(µ))
}

≤

max
{

M2
Sun−2,Sun−1

(ϕ(µ)), M2
Sun−1,Sun

(ϕ(µ))
}

.

(5) MSun−2,Sun
(ϕ(µ))MSun−2,Sun−1

(ϕ(µ)) ≤

max
{

M2
Sun−2,Sun−1

(ϕ(µ)), MSun−1,Sun
(ϕ(µ))MSun−2,Sun−1

(ϕ(µ))
}

.
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From the fact that max{u2, v2, uv} = max{u2, v2}, for all u, v ∈ [a, b], inequalities
(2), (4) and (5) imply:

(6) M2
Sun−1,Sun

(µ) ≤ max
{

M2
Sun−2,Sun−1

(ϕ(µ)), M2
Sun−1,Sun

(ϕ(µ))
}

.

From last follows:

(7) MSun−1,Sun
(µ) ≤ max

{

MSun−2,Sun−1
(ϕ(µ)), MSun−1,Sun

(ϕ(µ))
}

.

Since ϕ is a nondecreasing function and ϕ(µ) > c, ϕ(µ) > µ for every µ > c it
follows by induction that for every k ∈ N the following inequality holds:

(8) MSun−1,Sun
(µ) ≤ max

{

MSun−2,Sun−1
(ϕ(µ)), MSun−1,Sun

(ϕk(µ))
}

,

and when k → +∞ we get that for every n ∈ N:

(9) MSun−1,Sun
(µ) ≤ MSun−2,Sun−1

(ϕ(µ)).

By induction we can prove the inequality (10) for the sequence {vn}.

(10) Mvn−1,vn(µ) ≤ Mv0,v1
(ϕn−1(µ)).

From (∗), and last inequality, for m > n and arbitrary µ > c, follows:

Mvn,vm(µ) ≤max
{

Mvn,vn+1
(µ), . . . , Mvm−1,vm(µ)

}

≤

max
{

Mv0,v1
(ϕn(µ)), . . . , Mv0,v1

(ϕm−1(µ))
}

= Mv0,v1
(ϕn(µ)).

From (As) we conclude that exists a natural M(µ, σ) such that

Mv0,v1
(ϕM(µ,σ)(µ)) < a + σ. We can take that n, m ≥ M(µ, σ) and we con-

clude that vn is a fundamental sequence in (X, ρ). Since the space is complete,
then there is a point p ∈ X such that vn → p.
We shall prove that p is a common fixed point for S and Tn. Since S commutates
with each of Tn, then from (1) and the fact that TnSun−1 = STnun−1 = SSun

follows:

M2
SSun,Tkp(µ) = M2

STnun−1,Tkp(µ) = M2
TnSun−1,Tkp(µ) ≤

max
{

M2
SSun−1,Sp(ϕ(µ)), M2

SSun−1,TnSun−1
(ϕ(µ)), M2

Sp,Tkp(ϕ(µ)),

MSSun−1,Tkp(ϕ(µ))MSp,TnSun−1
(ϕ(µ)), MSSun−1,Tkp(ϕ(µ))MSSun−1,TnSun−1

}

=

max
{

M2
SSun−1,Sp(ϕ(µ)), M2

SSun−1,SSun
(ϕ(µ)), M2

Sp,Tkp(ϕ(µ)),

MSSun−1,Tkp(ϕ(µ))MSp,SSun
(ϕ(µ)), MSSun−1,Tkp(ϕ(µ))MSSun−1,SSun

}

.



Sinǐsa Ješić 9

From continuity of S and because Sun → p when n → +∞, we get that for every
k ∈ N follows:

M2
Sp,Tkp(µ) ≤max

{

M2
Sp,Sp(ϕ(µ)), M2

Sp,Sp(ϕ(µ)), M2
Sp,Tkp(ϕ(µ)),(11)

MSp,Tkp(ϕ(µ))MSp,Sp(ϕ(µ)), MSp,Tkp(ϕ(µ))MSp,Sp(ϕ(µ))
}

=M2
Sp,Tkp(ϕ(µ)).

Because all of the functions in last inequality are nonincreasing we conclude that
for each m ∈ N the inequality MSp,Tkp(µ) ≤ MSp,Tkp(ϕ

m(µ)) holds. When m →
+∞, for every µ > c, we obtain MSp,Tkp(µ) = a. From this, for every k ∈ N we
obtain (∗∗) S(p) = Tk(p). In following text we shall show that p is a common
fixed point for all of mappings Tn.
From inequality:

(12) M2
Sun,Tkp(µ) = M2

Tnun−1,Tkp(µ) ≤

max
{

M2
Sun−1,Sp(ϕ(µ)), M2

Sun−1,Sun
(ϕ(µ)), M2

Sp,Tkp(ϕ(µ)),

MSun−1,Tkp(ϕ(µ))MSp,Sun
(ϕ(µ)), MSun−1,Tkp(ϕ(µ))MSun−1,Sun

(ϕ(µ))
}

,

when n → +∞, because (∗∗) holds, we conclude that:

M2
p,Tkp(µ) ≤ max

{

M2
p,Tkp(ϕ(µ)), M2

p,p(ϕ(µ)), M2
Tkp,Tkp(ϕ(µ)),(13)

Mp,Tkp(ϕ(µ))FTkp,p(ϕ(µ)), Mp,Tkp(ϕ(µ))Mp,p(ϕ(µ))
}

,

From last, we obtain that for each µ > c holds the following:

(14) Mp,Tkp(µ) ≤ Mp,Tkp(ϕ(µ)).

Next, we obtain that for every m ∈ N follows Mp,Tkp(µ) ≤ Mp,Tkp(ϕ
m(µ)), and

when m → +∞, we conclude that for every µ > c the fact Mp,Tkp(µ) = a holds,
and it implies that for each k ∈ N we get p = Tkp = Sp.
Let us prove uniqueness of common fixed point p. Suppose that there is another
common fixed point q 6= p. From

(15) M2
p,q(µ) = M2

Tip,Tjq(µ) ≤ max
{

M2
Sp,Sq(ϕ(µ)), M2

Sp,p(ϕ(µ)), M2
Sq,q(ϕ(µ)),

MSp,q(ϕ(µ))MSq,p(ϕ(µ)), MSp,q(ϕ(µ))MSp,p(ϕ(µ))
}

= M2
p,q(ϕ(µ)).

follows that for every µ > c holds that Mp,q(µ) ≤ Mp,q(ϕ(µ)), and so, for every
m ∈ N, we obtain that Mp,q(µ) ≤ Mp,q(ϕ

m(µ)), and when m → +∞, we conclude
that for every µ > c holds the fact Mp,q(µ) = a. From conditions for distribution
functions we get that p = q. This completes the proof. �

Comment. It is easy to prove that from condition (Pcg) for T = Ti = Tj and
S = I, where I is an identical mapping, follows:
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M2
Tu,Tv(x) ≤ max

{

M2
u,v(ϕ(x)), M2

u,Tu(ϕ(x)), M2
v,Tv(ϕ(x)),

Mu,Tv(ϕ(x))Mv,Tu(ϕ(x)), Mu,Tv(ϕ(x))Mu,Tu(ϕ(x))
}

≤

max
{

M2
u,v(ϕ(x)), M2

u,Tu(ϕ(x)), M2
v,Tv(ϕ(x))

M2
u,Tv(ϕ(x)), M2

v,Tu(ϕ(x))
}

,

and we can conclude that mappings satisfying condition (Pcg) are intervally upper
contractions.

From these conclusions follows that Theorem 2 is an extension of Theorem 1.
Acknowledgments

This paper is dedicated to Professor Milan Tasković for his 60th birthday. I
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[3] M. Tasković: Transversal spaces, Math. Moravica, 2(1998), pp 133-142.
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