
Mathematica Moravica

Vol. 8–2 (2004), 1–3

Note on Rapidly Varying Sequences

Dragan Djurčić and Malǐsa Žižović
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Abstract. In this paper relation between rapidly varying sequence (cn) and
its generated function f(x) = c[c], x ≥ 1 is considered. That relation is ex-
pressed by the concept of the Bojanić–Seneta proposition type for rapidly vari-
ability.

1. Introduction

The function f : [a,+∞) → (0, +∞), a > 0 is slowly varying in the sense of
Karamata [1], if it is measurable and satisfies the asymptotic relation

(1) lim
x→+∞

f(λx)

f(x)
= 1, λ > 0.

The class of slowly varying functions is denoted by SVf . The sequence (cn) of
positive numbers is slowly varying in the sense of Karamata [2], if it satisfies the
asymptotic relation

(2) lim
n→+∞

c[λn]

cn

= 1, λ > 0.

The class of slowly varying sequences is denoted by SVs.
Slow variability in the sense of Karamata is an important asymptotic behavior

in the analysis of divergent processes [1].
Ranko Bojanić and Eugen Seneta [2] (see also [6]) introduced a quality relation

between sequential property (2) and functional property (1), and founded a unique
concept of theory of slow variability in the sense of Karamata.

Theorem 1 (BS). Let (cn) be a sequence of positive numbers. Then the following

statements are equivalent:

(a) (cn) belongs to the class SVs;

(b) f(x) = c[x], x ≥ 1 belongs to the class SVf .
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Analog results based on the concept of theorem BS, which treat O-regular
variability, expanded regular variability and SO-regular variability, can be found
in [3, 4, 5].

Milan Tasković [8] proved significant generalization of theorem BS for transla-
tional slow variavility.

The function f : [a,+∞) → (0, +∞), a > 0 is rapidly varying in the sense of
de Haan [7], if it is measurable and satisfies the asymptotic property

(3) lim
x→+∞

f(λx)

f(x)
= 0, 0 < λ < 1.

The class of rapidly varying functions is denoted by R∞,f .
The sequence of positive numbers (cn) is rapidly varying if it satisfies the as-

ymptotic property

(4) lim
n→+∞

c[λn]

cn

= 0, 0 < λ < 1.

The class of rapidly varying sequences is denoted by R∞,s.
Rapid variability in the seqential (4) and functional form (3), is rapid variability

in the sense of de Haan with index +∞, and in the case of monotonous and
unbounded mappings it is related to the slow variability in the sense of Karamata
by using generalized inverse [1].

Rapid variability given in the forms (3) and (4), as a duality to asymptotic
property of slow variability given in the forms (1) and (2), is an important property
in the asymptotic analysis. (see [1]).

2. Results

The following theorem represents the proposition of Bojanić–Seneta type for
rapid variability given in the forms (3) and (4).

Theorem 2. Let (cn) be a sequence of positive numbers. Then the following

statments are equivalent:

(a) (cn) belongs to the class R∞,s;

(b) f(x) = c[x], x ≥ 1 belongs to the class R∞,f .

Sketch of the proof.

(a) ⇒ (b) Let λ ∈ (0, 1). If ε > 0, then there exists an interval [a, b] ≤ (λ, 1), such
that for n ≥ n0(ε) and every α ∈ [a, b]

c[αn]

cn

< ε

holds. Since
c[λx]

c[x]
=

c[t[p[x]]]

c[p[x]]
·
c[p[x]]

c[x]
,

where t = t(x) ∈ [a, b] and p = 2λ
a+b

, it follows

lim
x→+∞

c[λx]

c[x]
≤ ε2.
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Thus, f(x) = c[x], x ≥ 1 belongs to the class R∞,f .
(b) ⇒ (a) Trivial case.

�

This theorem provides a unique development of rapidly varying sequences the-
ory and theory of varying functions given in the forms (3) and (4), analogous as
theorem BS does in the theory of slow variability (see [2]).
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