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Two Characterizations of (n, m)–groups for n ≥ 3m

Janez Ušan and Anita Katić

Abstract. In this paper two characterization of (n, m)–groups for n ≥ 3m

are proved. (The case m = 1 is proved in [5].)

1. Preliminaries

Definition 1.1 ([1]). Let n ≥ 2 and let (Q; A) be an n–groupoid. We say
that (Q; A) is a Dörnte n–group [briefly: n–group] iff is an n–semigroup and
n–quasigroup as well (See, also [7]).

Definition 1.2 ([2]). Let n ≥ m+1 and (Q; A) be an (n, m)–groupoid (A : Qn →
Qm). We say that (Q; A) is an (n, m)–group iff the following statements hold:

(i) For every i, j ∈ {1, . . . , n − m + 1}, i < j, the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[ < i, j >–associative law] ; and
(ii) For every i ∈ {1, . . . , n−m + 1} and for every an

1 ∈ Q there is exactly one
xm

1 ∈ Qm such that the following equality holds

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

For m = 1 (Q; A) is an n–group. Cf. [7].

Definition 1.3 ([4]). Let n ≥ 2m and let (Q; A) be an (n, m)–groupoid. Let
also e be a mapping of the set Qn−2m into the set Qm. Then, we say that e is
an {1, n−m + 1}–neutral operation of the (n, m)–groupoid (Q; A) iff for every
sequence an−2m

1 over Q and for every xm
1 ∈ Qm the following equalities hold:

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1

and

A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 .

For m = 1 e is a {1, n}–neutral operation of the n–groupoid (Q; A). Cf. Chapter
II in [7].
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2. Auxiliary propositions

Proposition 2.1 ([6]). Let n ≥ 2m and let (Q, A) be an (n, m)–groupoid. Further
on, let the following statements hold:

(a) The < 1, n − m + 1 >–associative law1 holds in (Q; A);
(b) For every an

1 ∈ Q, there is at least one xm
1 ∈ Qm such that the equality

A(an−m
1 , xm

1 ) = an
n−m+1 holds;

(c) For every an
1 ∈ Q, there is at least one ym

1 ∈ Qm such that the equality
A(ym

1 , an−m
1 ) = an

n−m+1 holds. Then (Q; A) has a {1, n − m + 1}–neutral
operation.

For m = 1: Prop.2.5-II in [7].

In this paper, among others, the following < i, j >–associative laws have the
prominence:

(1L) A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 )

and

(1R) A(xn−m−1
1 , A(x2n−m−1

n−m ), x2n−m) = A(xn−m
1 , A(x2n−m

n−m+1)).

Proposition 2.2 ([6]). Let n > m+1 and let (Q; A) be an (n, m)–groupoid. Also,
let:

(α) the (1L) [(1R)] law holds in (Q; A); and
(β) for every xm

1 , ym
1 , an−m

1 ∈ Q the following implication holds

A(xm
1 , an−m

1 ) = A(ym
1 , an−m

1 ) ⇒ xm
1 = ym

1

[A(an−m
1 , xm

1 ) = A(an−m
1 , ym

1 ) ⇒ xm
1 = ym

1 ].

Then, (Q; A) is an (n, m)–semigroup [cf. (i) in Def. 1.2].

Proposition 2.3 ([3]). Let (Q; A) be an (n, m)–groupoid and n ≥ m + 2. Also,
let the following statements hold:

(1) (Q; A) is an (n, m)–semigroup (cf. (i) in Def. 1.2);
(2) For every an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following

equality holds

A(an−m
1 , xm

1 ) = an
n−m+1;

(3) For every an
1 ∈ Q there is exactly one ym

1 ∈ Qm such that the following
equality holds

A(ym
1 , an−m

1 ) = an
n−m+1.

Then, (Q; A) is an (n, m)–group.

Sketch of the proof. a) A(a, ai−1
1 , xm

1 , an−m−2
i , b) = A(a, ai−1

1 , ym
1 , an−m−2

i , b) ‡⇒

1A(A(xn

1 ), x2n−m

n+1 ) = A(xn−m

1 , A(x2n−m

n−m+1)).
‡i ∈ {1, . . . , n − m − 1}
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A(cn−m
i+1 , A(a, ai−1

1 , xm
1 , an−m−2

i , b), ci
1) =

= A(cn−m
i+1 , A(a, ai−1

1 , ym
1 , an−m−2

i , b), ci
1)

(1)
⇒

= A(A(cn−m
i+1 , a, ai−1

1 , xm
1 ), an−m−2

i , b, ci
1) =

= A(A(cn−m
i+1 , a, ai−1

1 , ym
1 ), an−m−2

i , b, ci
1)

(3)
⇒

= A(cn−m
i+1 , a, ai−1

1 , xm
1 ) = A(cn−m

i+1 , a, ai−1
1 , ym

1 )
(2)
⇒

= xm
1 = ym

1 .

b) A(a, an−m−2
i , xm

1 , ai−1
1 , b) = A(a, an−m−2

i , ym
1 , ai−1

1 , b) ⇒

A(ci
1, A(a, an−m−2

i , xm
1 , ai−1

1 , b), cn−m
i+1 ) =

= A(ci
1, A(a, an−m−2

i , ym
1 , ai−1

1 , b), cn−m
i+1 )

(1)
⇒

= A(ci
1, a, an−m−2

i , A(xm
1 , ai−1

1 , b, cn−m
i+1 )) =

= A(ci
1, a, an−m−2

i , A(ym
1 , ai−1

1 , b, cn−m
i+1 ))

(2)
⇒

= A(xm
1 , ai−1

1 , b, cn−m
i+1 ) = A(ym

1 , ai−1
1 , b, cn−m

i+1 )
(3)
⇒

= xm
1 = ym

1 .

c) A(a, ai−1
1 , xm

1 , an−m−2
i , b) = bm

1

b)
⇔

A(cn−m
i+1 , A(a, ai−1

1 , xm
1 , an−m−2

i , b), ci
1) = A(cn−m

i+1 , bm
1 , ci

1)
(1)
⇔

A(A(cn−m
i+1 , a, ai−1

1 , xm
1 ), an−m−2

i , b, ci
1) = A(cn−m

i+1 , bm
1 , ci

1).

�

3. Results

Theorem 3.1. Let n ≥ 3m and let (Q; A) be an (n, m)–groupoid. Then, (Q; A)
is an (n, m)–group iff there is a mapping e of the set Qn−2m into the set Qm such
that the laws

(1L) A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 )

(1Lm) A(A(am
1 , bn−m

1 ), cm
1 , dn−2m

1 ) = A(am
1 , A(bn−m

1 , cm
1 ), dn−2m

1 ),

(2L) A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1

and

(2R) A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1

hold in the algebra (Q; A, e).

Remark 3.1. For m = 1: (1L)=(1Lm).

Proof. a) ⇒ Let (Q; A) be an (n, m)–group. Then, by Proposition 2.1, there is
an algebra (Q; A, e) of the type < (n, m), (n−2m, m) > in which the laws
(1L), (1Lm), (2L) and (2R) hold.

b) ⇐ Let (Q; A, e) be an algebra of the type < (n, m), (n − 2m, m) > in witch
the laws (1L), (1Lm), (2L) and (2R) are satisfied. Firstly, we prove that
under the assumptions the following statements hold:
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1◦ For every xm
1 , ym

1 , bm
1 ∈ Qm and for every sequence an−2m

1 over Q the
following implication holds

A(xm
1 , bm

1 , an−2m
1 ) = A(ym

1 , bm
1 , an−2m

1 ) ⇒ xm
1 = ym

1 ;

2◦ (Q; A) is an (n, m)–semigroup;
3◦ For every xm

1 , ym
1 , bm

1 ∈ Qm and for every sequence an−2m
1 over Q the

following implication holds

A(an−2m
1 , bm

1 , xm
1 ) = A(an−2m

1 , bm
1 , ym

1 ) ⇒ xm
1 = ym

1 ;

4◦ For every an
1 ∈ Q there is exactly one sequence xm

1 over Q and exactly
one sequence ym

1 over Q such that the following equalities hold

A(an−m
1 , xm

1 ) = an
n−m+1 and

A(ym
1 , an−m

1 ) = an
n−m+1.

Sketch of the proof of 1◦.

A(xm
1 , bm

1 , an−2m
1 ) = A(ym

1 , bm
1 , an−2m

1 ) ⇒

A(A(xm
1 , bm

1 , an−2m
1 ), e(an−2m

1 ), cn−3m
1 , e(bm

1 , cn−3m
1 )) =

A(A(ym
1 , bm

1 , an−2m
1 ), e(an−2m

1 ), cn−3m
1 , e(bm

1 , cn−3m
1 ))

(1Lm)
=⇒

A(xm
1 , A(bm

1 , an−2m
1 , e(an−2m

1 )), cn−3m
1 , e(bm

1 , cn−3m
1 )) =

A(ym
1 , A(bm

1 , an−2m
1 , e(an−2m

1 )), cn−3m
1 , e(bm

1 , cn−3m
1 ))

(2R)
=⇒

A(xm
1 , bm

1 , cn−3m
1 , e(bm

1 , m, cn−3m
1 )) =

A(ym
1 , bm

1 , cn−3m
1 , e(bm

1 , cn−3m
1 ))

(2R)
=⇒ xm

1 = ym
1 .

The proof of the statement 2◦. By 1◦, (1L) and by Prop. 2.2.
Sketch of the proof of 3◦.

A(an−2m
1 , bm

1 , xm
1 ) = A(an−2m

1 , bm
1 , ym

1 ) ⇒

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , e(an−2m

1 ), A(an−2m
1 , bm

1 , xm
1 )) =

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , e(an−2m

1 ), A(an−2m
1 , bm

1 , ym
1 ))

2◦
=⇒

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , A(e(an−2m

1 ), an−2m
1 , bm

1 ), xm
1 ) =

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , A(e(an−2m

1 ), an−2m
1 , bm

1 ), ym
1 )

(2L)
=⇒

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , bm

1 , xm
1 ) =

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , bm

1 , ym
1 )

(2L)
=⇒ xm

1 = ym
1 .

Sketch of the proof of 4◦.

a) A(an−2m
1 , bm

1 , xm
1 ) = dm

1
3◦

⇐⇒

A(e(cn−3m
1 , bm

1 ), cn−3m
1 , e(an−2m

1 ), A(an−2m
1 , bm

1 , xm
1 )) =
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A(e(cn−3m
1 , bm

1 ), cn−3m
1 , e(an−2m

1 ), dm
1 )

2◦,(2L)
⇐⇒

xm
1 = A(e(cn−3m

1 , bm
1 ), cn−3m

1 , e(an−2m
1 ), dm

1 ).

b) A(ym
1 , bm

1 , an−2m
1 ) = dm

1
1◦
⇔

A(A(ym
1 , bm

1 , an−2m
1 ), e(an−2m

1 ), cn−3m
1 , e(bm

1 , cn−3m
1 )) =

A(dm
1 , e(an−2m

1 ), cn−3m
1 , e(bm

1 , cn−3m
1 ))

2◦,(2R)
⇐⇒

ym
1 = A(dm

1 , e(an−2m
1 ), cn−3m

1 , e(bm
1 , cn−3m

1 )).

Finally, by 2◦, 4◦ and by Prop. 2.3, we conclude that (Q; A) is an (n, m)–
group. �

Similarly, one could prove also the following proposition:

Theorem 3.2. Let n ≥ 3m and let (Q; A) be an (n, m)–groupoid. Then, (Q; A)
is an (n, m)–group iff there is a mapping e of the set Qn−2m into the set Qm such
that the laws

(1R) A(xn−m−1
1 , A(x2n−m−1

n−m ), x2n−m) = A(xn−m
1 , A(x2n−m

n−m+1)),

(1Rm) A(an−2m
1 , A(bm

1 , cn−m
1 ), dm

1 ) = A(an−2m
1 , bm

1 , A(cn−m
1 , dm

1 )),

(2L) A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1

(2R) A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1

hold in the algebra (Q; A, e).

Remark 3.2. For m = 1: (1R)=(1Rm).

Remark 3.3. m = 1 theorem 3.1 and theorem 3.2 are proved in [5]. Cf. theorem
2.2-IX and theorem 2.3-IX in [7].
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[2] Ǵ. Čupona, Vector valued semigroups, Semigroup Forum 26(1983), 65–74.
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[6] J. Ušan, Note on (n, m)–groups, Math. Mor. 3(1999), 127–139.
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