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On Hyperquasigroups

Janez Ušan and Radoslav Galić

Abstract. In the paper we define and study hyperquasigroups of the rang
m(∈ N).

1. Preliminaries

Definition 1.1. Let Q be a non-empty set and P (Q) its power set. Let A be a
mapping of the set Q2 into the set P (Q). Then:

a) we say that the mapping A is a hyperoperation in Q; and
b) we say that the ordered pair (Q; A) is a hypergroupoid.

Definition 1.2. Let (Q; A) be a hypergroupoid. Also, let:

A(X, Y )
def
=







⋃

(x,y)∈X×Y

A(x, y); X 6= ∅, Y 6= ∅

∅; X = ∅ or Y = ∅

for all X, Y ∈ P (Q). Then, we say that the groupoid (P (Q);A) is a associated

(or coresponds) to the hypergroupoid (Q; A). (For example: Table 1 and Table
2.)

A 1 2
1 {1} {2}
2 {2} {1, 2}

Table 1

A {1} {2} {1, 2} ∅
{1} {1} {2} {1, 2} ∅
{2} {2} {1, 2} {1, 2} ∅
{1, 2} {1, 2} {1, 2} {1, 2} ∅
∅ ∅ ∅ ∅ ∅

Table 2

Remark 1.1. a) If for all x, y ∈ Q A(x, y) ∈ Q, where Q
def
= {{x}|x ∈ Q},

then (Q,A) is a groupoid.

b) If (Q,A) is a groupoid and A(x, y)
def
= {A(x, y)}, then (Q; A) is a hyper-

groupoid.
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c) Let A : D → Q, D ⊆ Q2. [i.e. (Q;A) is a partial groupoid] and let

A(x, y)
def
=

{

{A(x, y); }; (x, y) ∈ D

∅; (x, y) ∈ Q2 \ D

for all x, y ∈ Q. 1 Then (Q; A) is a hypergroupoid.
d) Let ρ be a 3-ary relation in Q. Also, let

A(x, y) ∋ z
def
⇐⇒ (x, y, z) ∈ ρ[ (x, y, z) ∈ ρ

def
⇐⇒ A(x, y) ∋ z]

for all x, y, z ∈ Q. Then (Q; A) is a hypergroupoid [ then ρ is a 3-ary
realtion in Q].

Definition 1.3. Let (Q; A) be a hypergroupoid and let for all (x, y) ∈ Q2 A(x, y) 6=
∅. Then, we say that (Q, A) is a hypergroup iff the following statements hold:

(a) A(A({x}, {y}), {z}) = A({x},A({y}), {z})) for each x, y, z ∈ Q; and
(b) For every a, b ∈ Q there is at least one x ∈ Q and at least one y ∈ Q such

that the following formulas hold

A(a, x) ∋ b and A(y, a) ∋ b.

Remark 1.2. A notion of a hypergroup was introduced by F. Marty in [1] as
a generalization of the notion of a group. Cf. [2].

2. Parastrophic hyperoperations

Proposition 2.1. Let (Q; A) be a hypergroupoid and let α be a permutation of
the set {1, 2, 3}. Also, let

Aα(x1, x2) ∋ x3
def
⇔ A(xα(1), xα(2)) ∋ xα(3)

for all x1, x2, x3 ∈ Q. Then (Q, Aα) is a hypergroupoid.

Proof. By Def. 1.1. �

Definition 2.1. Let (Q; A) be a hypergroupoid and let α be a permutation of
the set {1, 2, 3}. Also, let

Aα(x1, x2) ∋ x3
def
⇔ A(xα(1), xα(2)) ∋ xα(3)

1If D = ∅, then A(x, y) = ∅ for all (x, y) ∈ Q2.
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for all x1, x2, x3 ∈ Q. Then, we shall say that the hyperoperation Aα is a
α−parastrophic hyperoperation to the hyperoperation A. Let:

I

A
def
= A[I = {(x, x)|x ∈ {1, 2, 3}}],

−1A(x1, x2) ∋ x3
def
⇔ A(x3, x2) ∋ x1,

A−1(x1, x2) ∋ x3
def
⇔ A(x1, x3) ∋ x2,

A∗(x1, x2) ∋ x3
def
⇔ A(x2, x1) ∋ x3 [A∗(x1, x2) = A(x2, x1)],

−1(A∗)(x1, x2) ∋ x3
def
⇔ A(x3, x1) ∋ x2 and

(A∗)−1(x1, x2) ∋ x3
def
⇔ A(x2, x3) ∋ x1

(a)

for all x1, x2, x3 ∈ Q. (See, also [4] or [6])

Proposition 2.2. Let (Q; A) be a hypergroupoid and let α be a permutation of
the set {1, 2, 3}. Then

{Aα,−1(Aα), (Aα)−1, (Aα)∗,−1((Aα)∗), ((Aα)∗)−1} =

{A,−1A, A−1, A∗,−1(A∗), (A∗)−1}.

Proof. By (a) and since ({1, 2, 3}!, ◦) is a group. �

3. Hypergroupoids with divisions

Definition 3.1. We shall say that a hypergroupoid (Q; A) is a hypergroupoid

with divisions iff the following statemets hold:

(1) For all a, b ∈ Q A(a, b) 6= ∅,
(2) For all a, b ∈ Q −1A(a, b) 6= ∅,2

(3) For all a, b ∈ Q A−1(a, b) 6= ∅.3

Cf.1.4 and 1.5.

Proposition 3.1. Let (Q; A) be a hypergroupoid with division. Then, for all
α ∈ {1, 2, 3}! the hypergroupoid (Q, Aα) is a hypergroupoid with divisions.

Proof. a) By Def. 2.2, (a) from 2, we obtain

A∗(x1, x2) = A(x2, x1),

−1(A∗)(x1, x2) = A−1(x2, x1) and

(A∗)−1(x1, x2) = −1A(x2, x1)

for all x1, x2 ∈ Q. Whence, by (1)-(3) from Def. 3.1, we conclude the
statements
(4) For all a, b ∈ Q A∗(a, b) 6= ∅,

2For all a, b ∈ Q there is at least one x ∈ Q such that the following formula holds A(x, a) ∋ b.
3For every a, b ∈ Q there is at least one y ∈ Q such that the following formula holds A(a, y) ∋ b.
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(5) For all a, b ∈ Q −1(A∗)(a, b) 6= ∅ and
(6) For all a, b ∈ Q (A∗)−1(a, b) 6= ∅

hold.
b) By a) and by Prop. 2.3, we conclude that the proposition is satisfied.

�

4. Hypercancelation hypergroupoids

Definition 4.1. We shall say that a hypergroupoid (Q; A) is a hypercancel-

lation hypergroupoid iff there are p, q, r ∈ N ∪ {0} such that the following
statements hold:

(i) (∃(a1, a2) ∈ Q2)|A(a2
1)| = p and (∀(x, y) ∈ Q2)|A(x, y)| ≤ p;

(ii) (∃(b1, b2) ∈ Q2)|−1A(b2
1)| = q and (∀(x, y) ∈ Q2)|−1A(x, y)| ≤ q; and

(iii) (∃(c1, c2) ∈ Q2)|A−1(c2
1)| = r and (∀(x, y) ∈ Q2)|A−1(x, y)| ≤ r.

Moreover, we shall say that a hypercancellation hypergroupoid (Q; A) is a hyper-
cancelation hypergroupoid of the type < p, q, r >.

Example 4.1. Let (Q;A) be a cancellation groupoid. Then (Q; A), where

A(x, y)
def
= {A(x, y)}

for all (x, y) ∈ Q2, is a hypercancellation hypergroupoid of the type < 1, 1, 1 >.

Example 4.2. Let Q be a non-empty set and let A(x, y) = ∅ for all (x, y) ∈ Q2.
Then:

a) −1A(x, y) = ∅ for all (x, y) ∈ Q2;
b) A−1(x, y) = ∅ for all (x, y) ∈ Q2; and
c) (Q, A) is a hypercancellation hypergroupoid of the type < 0, 0, 0 >.

Example 4.3. Let Z be the set of all integers and let

A(2k − 1, 2t − 1) = A(2k − 1, 2t) = A(2k, 2t − 1) = A(2k, 2t) = k + t

for all k, t ∈ Z Also, let

A(x, y)
def
= {A(x, y)}

for all x, y ∈ Z. Then (Q; A) is a hypercancellation hypergroupoid of the type
< 1, 2, 2 >.

Theorem 4.1. Let (Q; A) be a hypercancellation hypergroupoid of the type <
p, q, r >. Then −1A, A−1, A∗,−1(A∗) and (A∗)−1 are hypercancellation hyperoper-
ations, respectively, of the type < q, p, r >, < r, q, p >, < p, r, q >, < r, p, q > and
< q, r, p >

Sketch of a part of the proof.
−1(−1A) = A,
(−1A)−1(x, y) ∋ z ⇔−1A(x, z) ∋ y

⇔ A(y, z) ∋ x
⇔ A−1(y, x) ∋ z.
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So, (Q;−1A) is a hypercancellation hypergroupoid of the type < q, p, r >. �

Theorem 4.2. Let (Q; A) be a finite hypergroupoid with divisions. Then (Q; A)
is a hypercancellation hypergroupoid.

Proof. By Def. 1.1., Def. 3.1, Def. 4.1 and by |Q| ∈ N . �

Theorem 4.3. There is a hypergroupoid (Q; A) such that the following statements
hold:

a) (Q, A) is a hypergroup; and
b) (Q; A) is not a hypercancellation hypergroupoid.

Proof. Let (Q; ·) be an infinite group. Also, let

A(x, y)
def
= {x · k · y|k ∈ Q ∧ Q ⊆ Q ∧ |Q| ≥ |N |}

for all x, y ∈ Q. Then (Q; A) is a hypergroup. Moreover, (Q; A) is not a hyper-
cancellation hypergroupoid. �

5. Hyperquasigroups

Definition 5.1. We shall say that a hypergroupoid (Q; A) is a hyperquasigroup

iff (Q; A) is a hypergroupoid with divisions and hypercancelation hypergroupoid
as well4.

Remark 5.1. Since each hyperquasigroup (Q; A) is a hypercancellation hyper-
groupoid of the type < p, q, r >, we shall say that it is a hyperquasigroup of the
type < p, q, r >. Moreover, we called m is a rang hyperquasigroup (Q; A) of the
type < p, q, r > iff m = max{p, q, r}. Together, by Th. 4.4, for all α ∈ {1, 2, 3}!
rang (Q; Aα) = m.

Remark 5.2. Groupoid (Z;A) from Example 4.3 is a groupoid with divisions.
However, (Z,A) is not a cancelation groupoid, i.e. (Z;A) is not a quasigroup.

By Th. 4.5 and by Def. 5.1, we obtain:

Theorem 5.1. Every finite hypergroupoid with divisions is a hyperquasigroup.

By Th. 4.6, Def. 1.4 and by Def. 5.1, we have:

Theorem 5.2. There are hypergroups with are not hyperquasigroups.

By Def. 1.4, Def. 3.1 and by Th. 5.4, we obtain:

Theorem 5.3. Every finite hypergroup is a hyperquasigroup.

4See, also [3]
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6. 3− < m > −net

Definition 6.1. Let ℑ be a non–empty set and let L be a non-empty subset of
the set ℑ. We shall say that the elements of ℑ are points and the elements of L

are lines. Also, let {L1, L2, L3}
def
= L/ ∼, where ∼ is a equivalence relation on

the set L. Then, we shall say that the object (ℑ; L1, L2, L3) is a 3-< m >-net,
m ∈ N , iff the following conditions hold:

M1. Each point belongs to exactly one line of each equaivalence (paralel) class
[L1, L2 and L3].

M21. If La and Lb are different classes of {L1, L2, L3}, then for all l1 ∈ La and
l2 ∈ Lb the following formula holds |l1 ∩ l2| ≤ m.

M22. If La and Lb are different classes of {L1, L2, L3}, then for all l1 ∈ La and
l2 ∈ Lb the following formula holds |l1 ∩ l2| ≥ 1.

M23. There is at least one (l1, l2) ∈ La × Lb, where a, b ∈ {1, 2, 3} and a 6= b,
such that the following equality holds |l1 ∩ l2| = m.

M3. |L1| = |L2| = |L3|.
M4. Let La, Lb and Lc be arbitrary mutually different classes of {L1, L2, L3}.

Then, for all A, B ∈ ℑ and for every l1 ∈ La, l2 ∈ Lb and l, l ∈ Lc the
following condition holds

A 6= B ∧ A ∈ l1 ∩ l2 ∧ B ∈ l1 ∩ l2 ∧ A ∈ l ∧ B ∈ l ⇒ l 6= l.5

Remark 6.1. 3− < 1 > −net is a 3-net. Cf. [4, 5, 6].

Remark 6.2. a) The conditions M1–M4 (for m = 2) hold in the object
represented to Diagram 1.

b) The conditions M1–M3 (for m = 2) hold in the object represented to
Diagram 2. However, condition M4 does not hold.

7. Hyperquasigroups and 3− < m > −nets

Theorem 7.1. Let (Q; A) be a hyperquasigroup, |Q| ≥ 2 and let Rang(Q; A) =
m[∈ N ] . Also, let

(t) ℑ
def
= {(x, y, z)|x ∈ Q ∧ y ∈ Q ∧ A(x, y) ∋ z},

(c1) L1
def
= {(x, y, z)|y ∈ Q ∧ z ∈ Q ∧ −1A(z, y) ∋ x|x ∈ Q}

(c2) L2
def
= {(x, y, z)|x ∈ Q ∧ z ∈ Q ∧ A−1(x, z) ∋ y|y ∈ Q} and

(c3) L3
def
= {(x, y, z)|x ∈ Q ∧ y ∈ Q ∧ A(x, y) ∋ z|z ∈ Q}.

Then (ℑ; L1, L2, L3) is a 3-< m >-net.

Proof. 1) By (c1) − (c3) and by Def. 5.1, we have: L1 ∩ L2 = L1 ∩ L3 =
L2 ∩ L3 = ∅ and |L1| = |L2| = |L3| = |Q| [M3].

2) By (t), (c1) − (c3) and by Def. 5.1, we obtain M1.
3) By Rang(Q; A) = m, Rem. 5.2 and by (c1) − (c3, ) we have M21 and

M23.
4) By (c1) − (c3) and by Def. 5.1 [Def. 3.1], we obtain M22.
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4) By (x, y, z1) 6= (x, y, z2) ⇐⇒ z1 6= z2,
(x, y1, z) 6= (x, y2, z) ⇐⇒ y1 6= y2 and
(x1, y, z) 6= (x2, y, z) ⇐⇒ x1 6= x2,

we have, also, M4.
Remark: For m = 1 see Rem. 6.2. �

Theorem 7.2. Let (ℑ; L1, L2, L3) be a 3− < m > −net. Also let

(l1) L1 = {< 1, x > |x ∈ Q},
(l2) L2 = {< 2, x > |x ∈ Q} and
(l3) L3 = {< 3, x > |x ∈ Q},

where Q is an arbitrary set such that |Q| = |L1|(= |L2| = |L3|). Finally, let

(h) A(x, y) ∋ z
def
⇔ (∃T ∈ ℑ)T ∈< 1, x > ∩ < 2, y > ∩ < 3, z >

for all x, y, z ∈ Q. Then, (Q; A) is a hyperquasigroup of the rang m.

Proof. 1) By M1 and by (h), we conclude that A is a hyperoperation in Q.
2) By M22, M3 and by 1), we have (Q; A) is a hypergroupoid with divisions.
3) By M21, M23, by Def.4.1 and by 1), we conclude that (Q; A) is a hyper-

cancelative hypergroupoid.
4) By M21, M23, 2), 3), Def. 5.1 and by Rem. 5.2, we conclude that (Q; A)

is a hyperquasigroup of the rang m.
Remark: By M4 and M1, F : ℑ → {(x, y, z)|(h)} is a bijection. See, also Rem.

6.3, Th.7.1 and Th.7.2. �

Theorem 7.3. Let (Q; A) be a hyperquasigroup. Then, there are permutations
α, β, γ of Q such that the following formula holds

(∃e ∈ Q)(∃x ∈ Q)(L(e, x) ∋ x ∧ L(x, e) ∋ x),

where

L(x, y)
def
= γA(α(x), β(y))

and

ϕ{a1, . . . , as}
def
= {ϕ(a1), . . . , ϕ(as)}, as

1 ∈ Q, ϕ ∈ Q!, 1 ≤ s ≤ m.6

Proof. By Def.6.1, Th. 7.1 and by Th. 7.2. See Diag. 3;

1 ≤ | < 1, e > ∩ < 2, x > | ≤ m, 1 ≤ | < 3, x > ∩ < 2, e > | ≤ m.

See, also [5], p.p. 13–16. �

8. Remarks

Remark 8.1. Hypergroupoid (Q; A) defined by Table 3 is a hyperquasigroup.
Hypergroupoid (Q; A), where A(x, y) = A(x, y) for all (x, y) ∈ Q2 \ {(3, 3)} and
A(3, 3) = {1}[A(3, 3) ⊆ A(3, 3) ∧ A(3, 3) 6= A(3, 3)], is too a hyperquasigroup.

Remark 8.2. Hipergroupoid defined by Table 4 is a hyperquasigroup. For all
(Q; B), where B(x, y) = B(x, y) for all (x, y) ∈ Q2 \ {(1, 3), (3, 2)}, B(1, 3) ⊆
B(1, 3), B(3, 2) ⊆ B(3, 2) and |B(1, 3)| = |B(3, 2)| = 1, is not a hyperquasigroup.
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L3

L2

L1

Diagram 1.

L3

L2

L1

Diagram 2.

〈3, e〉

〈3, x〉

〈1, x〉

〈1, e〉

〈2, x〉

〈2, e〉

Diagram 3.
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A 1 2 3
1 {1} {2} {3}
2 {3} {1} {2}
3 {2} {3} {1, 2}

Table 3

B 1 2 3
1 {1} {1} {2, 3}
2 {2} {1} {3}
3 {3} {2, 3} {1}

Table 4

Remark 8.3. In the searching for notion of hyperquasigroup there has been in
aspect, also, the following:

1) There is groupoid with divisions which is not a quasigroup; and
2) Every semigroup with divisions is a quasigroup (group). [We say that a

groupoid (Q; ·) is a groupoid with divisions iff for every a, b ∈ Q there
exist at least one x ∈ Q and at least one y ∈ Q such that the following
equalities hold a · x = b and y · a = b.]
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