On Hyperquasigroups

JANEZ UŠAN AND RADOSLAV GALIĆ

ABSTRACT. In the paper we define and study hyperquasigroups of the rang $m \in N$.

1. Preliminaries

Definition 1.1. Let Q be a non-empty set and P(Q) its power set. Let A be a mapping of the set Q^2 into the set P(Q). Then:

- a) we say that the mapping A is a hyperoperation in Q; and
- b) we say that the ordered pair (Q; A) is a **hypergroupoid**.

Definition 1.2. Let (Q; A) be a hypergroupoid. Also, let:

$$\mathbf{A}(X,Y) \stackrel{def}{=} \begin{cases} \bigcup_{(x,y)\in X\times Y} A(x,y); & X\neq \emptyset, Y\neq \emptyset\\ \emptyset; & X=\emptyset \text{ or } Y=\emptyset \end{cases}$$

for all $X, Y \in P(Q)$. Then, we say that the groupoid $(P(Q); \mathbf{A})$ is a **associated** (or corresponds) to the hypergroupoid (Q; A). (For example: Table 1 and Table 2.)

	\mathbf{A}	{1}	$\{2\}$	$\{1, 2\}$	Ø
	$\{1\}$	{1}	$\{2\}$	$\{1, 2\}$	Ø
$A \mid 1 \mid 2 \mid$	$\{2\}$	$\{2\}$	$\{1, 2\}$	$\{1, 2\}$	Ø
$1 \{1\} \{2\}$	$\{1,2\}$	$\{1,2\}$	$\{1, 2\}$	$\{1, 2\}$	Ø
$2 \{2\} \{1,2\}$	Ø	Ø	Ø	Ø	Ø

Table 1

Table 2

- **Remark 1.1.** a) If for all $x, y \in Q$ $A(x, y) \in \mathbf{Q}$, where $\mathbf{Q} \stackrel{def}{=} \{\{x\} | x \in Q\}$, then (\mathbf{Q}, \mathbf{A}) is a groupoid.
 - b) If (Q, \mathcal{A}) is a groupoid and $A(x, y) \stackrel{def}{=} \{\mathcal{A}(x, y)\}$, then $(Q; \mathcal{A})$ is a hypergroupoid.

²⁰⁰⁰ Mathematics Subject Classification. 20N99, 20N05.

Key words and phrases. Quasigroups, hypergroupoids, hyperquasigroups.

c) Let $\mathcal{A}: D \to Q, D \subseteq Q^2$. *[*i.e. $(Q; \mathcal{A})$ is a partial groupoid/ and let

$$A(x,y) \stackrel{def}{=} \begin{cases} \{\mathcal{A}(x,y);\}; & (x,y) \in D\\ \emptyset; & (x,y) \in Q^2 \setminus D \end{cases}$$

for all $x, y \in Q$.¹ Then (Q; A) is a hypergroupoid.

d) Let ρ be a 3-ary relation in Q. Also, let

 $A(x,y) \ni z \stackrel{def}{\Longleftrightarrow} (x,y,z) \in \rho[(x,y,z) \in \rho \stackrel{def}{\Longleftrightarrow} A(x,y) \ni z]$

for all $x, y, z \in Q$. Then (Q; A) is a hypergroupoid /then ρ is a 3-ary realtion in Q.

Definition 1.3. Let (Q; A) be a hypergroupoid and let for all $(x, y) \in Q^2$ $A(x, y) \neq \emptyset$. Then, we say that (Q, A) is a **hypergroup** iff the following statements hold:

- (a) $\mathbf{A}(\{x\}, \{y\}), \{z\}) = \mathbf{A}(\{x\}, \mathbf{A}(\{y\}), \{z\}))$ for each $x, y, z \in Q$; and
- (b) For every $a, b \in Q$ there is at least one $x \in Q$ and at least one $y \in Q$ such that the following formulas hold

 $A(a, x) \ni b$ and $A(y, a) \ni b$.

Remark 1.2. A notion of a hypergroup was introduced by F. Marty in [1] as a generalization of the notion of a group. Cf. [2].

2. PARASTROPHIC HYPEROPERATIONS

Proposition 2.1. Let (Q; A) be a hypergroupoid and let α be a permutation of the set $\{1, 2, 3\}$. Also, let

$$A^{\alpha}(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_{\alpha(1)}, x_{\alpha(2)}) \ni x_{\alpha(3)}$$

for all $x_1, x_2, x_3 \in Q$. Then (Q, A^{α}) is a hypergroupoid.

Proof. By Def. 1.1.

Definition 2.1. Let (Q; A) be a hypergroupoid and let α be a permutation of the set $\{1, 2, 3\}$. Also, let

$$A^{\alpha}(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_{\alpha(1)}, x_{\alpha(2)}) \ni x_{\alpha(3)}$$

¹If $D = \emptyset$, then $A(x, y) = \emptyset$ for all $(x, y) \in Q^2$.

for all $x_1, x_2, x_3 \in Q$. Then, we shall say that the hyperoperation A^{α} is a α -parastrophic hyperoperation to the hyperoperation A. Let:

$$A \stackrel{def}{=} A[I = \{(x, x) | x \in \{1, 2, 3\}\}],$$

$$(a) \qquad \begin{array}{c} {}^{-1}A(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_3, x_2) \ni x_1, \\ A^{-1}(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_1, x_3) \ni x_2, \\ A^*(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_2, x_1) \ni x_3 \quad [A^*(x_1, x_2) = A(x_2, x_1)] \\ {}^{-1}(A^*)(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_3, x_1) \ni x_2 \text{ and} \\ (A^*)^{-1}(x_1, x_2) \ni x_3 \stackrel{def}{\Leftrightarrow} A(x_2, x_3) \ni x_1 \end{array}$$

for all $x_1, x_2, x_3 \in Q$. (See, also [4] or [6])

Proposition 2.2. Let (Q; A) be a hypergroupoid and let α be a permutation of the set $\{1, 2, 3\}$. Then

$$\{A^{\alpha}, {}^{-1}(A^{\alpha}), (A^{\alpha})^{-1}, (A^{\alpha})^*, {}^{-1}((A^{\alpha})^*), ((A^{\alpha})^*)^{-1}\} = \{A, {}^{-1}A, A^{-1}, A^*, {}^{-1}(A^*), (A^*)^{-1}\}.$$

Proof. By (a) and since $(\{1, 2, 3\}!, \circ)$ is a group.

3. Hypergroupoids with divisions

Definition 3.1. We shall say that a hypergroupoid (Q; A) is a hypergroupoid with divisions iff the following statements hold:

(1) For all
$$a, b \in Q$$
 $A(a, b) \neq \emptyset$,
(2) For all $a, b \in Q$ $-1 A(a, b) \neq \emptyset$?

(2) For all
$$a, b \in Q$$
 $A(a, b) \neq \emptyset$,

(3) For all
$$a, b \in Q A^{-1}(a, b) \neq \emptyset$$
.

Cf.1.4 and 1.5.

Proposition 3.1. Let (Q; A) be a hypergroupoid with division. Then, for all $\alpha \in \{1, 2, 3\}$! the hypergroupoid (Q, A^{α}) is a hypergroupoid with divisions.

Proof. a) By Def. 2.2, (a) from 2, we obtain

$$A^{*}(x_{1}, x_{2}) = A(x_{2}, x_{1}),$$

$$^{-1}(A^{*})(x_{1}, x_{2}) = A^{-1}(x_{2}, x_{1}) \text{ and}$$

$$(A^{*})^{-1}(x_{1}, x_{2}) = {}^{-1}A(x_{2}, x_{1})$$

for all $x_1, x_2 \in Q$. Whence, by (1)-(3) from Def. 3.1, we conclude the statements

 $(4) \ \text{For all} \ a,b\in Q \quad A^*(a,b)\neq \emptyset,$

²For all $a, b \in Q$ there is at least one $x \in Q$ such that the following formula holds $A(x, a) \ni b$. ³For every $a, b \in Q$ there is at least one $y \in Q$ such that the following formula holds $A(a, y) \ni b$.

- (5) For all $a, b \in Q$ $^{-1}(A^*)(a, b) \neq \emptyset$ and (6) For all $a, b \in Q$ $(A^*)^{-1}(a, b) \neq \emptyset$ hold.
- b) By a) and by Prop. 2.3, we conclude that the proposition is satisfied.

4. Hypercancelation hypergroupoids

Definition 4.1. We shall say that a hypergroupoid (Q; A) is a hypercancellation hypergroupoid iff there are $p, q, r \in N \cup \{0\}$ such that the following statements hold:

- (i) $(\exists (a_1, a_2) \in Q^2) |A(a_1^2)| = p$ and $(\forall (x, y) \in Q^2) |A(x, y)| \le p$;
- (ii) $(\exists (b_1, b_2) \in Q^2)|^{-1}A(b_1^2)| = q$ and $(\forall (x, y) \in Q^2)|^{-1}A(x, y)| \le q$; and
- (iii) $(\exists (c_1, c_2) \in Q^2) |A^{-1}(c_1^2)| = r$ and $(\forall (x, y) \in Q^2) |A^{-1}(x, y)| \le r$.

Moreover, we shall say that a hypercancellation hypergroupoid (Q; A) is a hypercancelation hypergroupoid of the type $\langle p, q, r \rangle$.

Example 4.1. Let $(Q; \mathcal{A})$ be a cancellation groupoid. Then $(Q; \mathcal{A})$, where

$$A(x,y) \stackrel{def}{=} \{\mathcal{A}(x,y)\}$$

for all $(x, y) \in Q^2$, is a hypercancellation hypergroupoid of the type < 1, 1, 1 >.

Example 4.2. Let Q be a non-empty set and let $A(x, y) = \emptyset$ for all $(x, y) \in Q^2$. Then:

- a) $^{-1}A(x,y) = \emptyset$ for all $(x,y) \in Q^2$;
- b) $A^{-1}(x,y) = \emptyset$ for all $(x,y) \in Q^2$; and
- c) (Q, A) is a hypercancellation hypergroupoid of the type $\langle 0, 0, 0 \rangle$.

Example 4.3. Let Z be the set of all integers and let

$$\mathcal{A}(2k-1, 2t-1) = \mathcal{A}(2k-1, 2t) = \mathcal{A}(2k, 2t-1) = \mathcal{A}(2k, 2t) = k+t$$

for all $k, t \in Z$ Also, let

$$A(x,y) \stackrel{def}{=} \{\mathcal{A}(x,y)\}$$

for all $x, y \in Z$. Then (Q; A) is a hypercancellation hypergroupoid of the type $\langle 1, 2, 2 \rangle$.

Theorem 4.1. Let (Q; A) be a hypercancellation hypergroupoid of the type $\langle p, q, r \rangle$. Then ${}^{-1}A, A^{-1}, A^*, {}^{-1}(A^*)$ and $(A^*)^{-1}$ are hypercancellation hyperoperations, respectively, of the type $\langle q, p, r \rangle, \langle r, q, p \rangle, \langle p, r, q \rangle, \langle r, p, q \rangle$ and $\langle q, r, p \rangle$

Sketch of a part of the proof.

$$\begin{array}{l} ^{-1}(^{-1}A) = A, \\ (^{-1}A)^{-1}(x,y) \ni z & \Leftrightarrow^{-1}A(x,z) \ni y \\ & \Leftrightarrow A(y,z) \ni x \\ & \Leftrightarrow A^{-1}(y,x) \ni z. \end{array}$$

So, $(Q; {}^{-1}A)$ is a hypercancellation hypergroupoid of the type $\langle q, p, r \rangle$. \Box

Theorem 4.2. Let (Q; A) be a finite hypergroupoid with divisions. Then (Q; A) is a hypercancellation hypergroupoid.

Proof. By Def. 1.1., Def. 3.1, Def. 4.1 and by $|Q| \in N$.

Theorem 4.3. There is a hypergroupoid (Q; A) such that the following statements hold:

- a) (Q, A) is a hypergroup; and
- b) (Q; A) is not a hypercancellation hypergroupoid.

Proof. Let $(Q; \cdot)$ be an infinite group. Also, let

$$A(x,y) \stackrel{def}{=} \{ x \cdot k \cdot y | k \in \overline{Q} \land \overline{Q} \subseteq Q \land |\overline{Q}| \ge |N| \}$$

for all $x, y \in Q$. Then (Q; A) is a hypergroup. Moreover, (Q; A) is not a hypercancellation hypergroupoid.

5. Hyperquasigroups

Definition 5.1. We shall say that a hypergroupoid (Q; A) is a hyperquasigroup iff (Q; A) is a hypergroupoid with divisions and hypercancelation hypergroupoid as well⁴.

Remark 5.1. Since each hyperquasigroup (Q; A) is a hypercancellation hypergroupoid of the type $\langle p, q, r \rangle$, we shall say that it is a hyperquasigroup of the **type** $\langle p, q, r \rangle$. Moreover, we called *m* is a **rang** hyperquasigroup (Q; A) of the type $\langle p, q, r \rangle$ iff $m = \max\{p, q, r\}$. Together, by Th. 4.4, for all $\alpha \in \{1, 2, 3\}!$ rang $(Q; A^{\alpha}) = m$.

Remark 5.2. Groupoid $(Z; \mathcal{A})$ from Example 4.3 is a groupoid with divisions. However, (Z, \mathcal{A}) is not a cancelation groupoid, i.e. $(Z; \mathcal{A})$ is not a quasigroup.

By Th. 4.5 and by Def. 5.1, we obtain:

Theorem 5.1. Every finite hypergroupoid with divisions is a hyperquasigroup.

By Th. 4.6, Def. 1.4 and by Def. 5.1, we have:

Theorem 5.2. There are hypergroups with are not hyperquasigroups.

By Def. 1.4, Def. 3.1 and by Th. 5.4, we obtain:

Theorem 5.3. Every finite hypergroup is a hyperquasigroup.

 \square

⁴See, also [3]

6.
$$3 - < m > -$$
NET

Definition 6.1. Let \Im be a non-empty set and let \mathcal{L} be a non-empty subset of the set \Im . We shall say that the elements of \Im are **points** and the elements of \mathcal{L} are **lines**. Also, let $\{L_1, L_2, L_3\} \stackrel{def}{=} \mathcal{L}/\sim$, where \sim is a equivalence relation on the set \mathcal{L} . Then, we shall say that the object $(\Im; L_1, L_2, L_3)$ is a 3-< m >-net, $m \in N$, iff the following conditions hold:

- M1. Each point belongs to exactly one line of each equaivalence (paralel) class $|L_1, L_2 \text{ and } L_3|$.
- **M2**₁. If L_a and L_b are different classes of $\{L_1, L_2, L_3\}$, then for all $l_1 \in L_a$ and $l_2 \in L_b$ the following formula holds $|l_1 \cap l_2| \leq m$.
- **M22.** If L_a and L_b are different classes of $\{L_1, L_2, L_3\}$, then for all $l_1 \in L_a$ and $l_2 \in L_b$ the following formula holds $|l_1 \cap l_2| \ge 1$.
- **M23**. There is at least one $(l_1, l_2) \in L_a \times L_b$, where $a, b \in \{1, 2, 3\}$ and $a \neq b$, such that the following equality holds $|l_1 \cap l_2| = m$.
 - **M3**. $|L_1| = |L_2| = |L_3|$.
 - **M4.** Let L_a, L_b and L_c be arbitrary mutually different classes of $\{L_1, L_2, L_3\}$. Then, for all $A, B \in \mathfrak{F}$ and for every $l_1 \in L_a, l_2 \in L_b$ and $l, \overline{l} \in L_c$ the following condition holds

 $A \neq B \land A \in l_1 \cap l_2 \land B \in l_1 \cap l_2 \land A \in l \land B \in \overline{l} \Rightarrow l \neq \overline{l}.^5$

Remark 6.1. $3 - \langle 1 \rangle$ -net is a 3-net. Cf. [4, 5, 6].

- a) The conditions M1–M4 (for m = 2) hold in the object Remark 6.2. represented to Diagram 1.
 - b) The conditions M1–M3 (for m = 2) hold in the object represented to Diagram 2. However, condition M4 does not hold.

Hyperquasigroups and $3 - \langle m \rangle$ -nets 7.

Theorem 7.1. Let (Q; A) be a hyperquasigroup, $|Q| \ge 2$ and let Rang(Q; A) = $m \in N$. Also, let

(t) $\Im \stackrel{def}{=} \{(x, y, z) | x \in Q \land y \in Q \land A(x, y) \ni z\},\$ $(c_1) \ L_1 \stackrel{def}{=} \{(x, y, z) | y \in Q \land z \in Q \land {}^{-1}A(z, y) \ni x | x \in Q\}$ $(c_2) \ L_2 \stackrel{def}{=} \{(x, y, z) | x \in Q \land z \in Q \land A^{-1}(x, z) \ni y | y \in Q\} \ and$ $(c_3) \ L_3 \stackrel{def}{=} \{(x, y, z) | x \in Q \land y \in Q \land A(x, y) \ni z | z \in Q\}.$

Then $(\Im; L_1, L_2, L_3)$ is a 3-< m >-net.

- 1) By $(c_1) (c_3)$ and by Def. 5.1, we have: $L_1 \cap L_2 = L_1 \cap L_3 =$ Proof. $L_2 \cap L_3 = \emptyset$ and $|L_1| = |L_2| = |L_3| = |Q|$ [M3].
 - 2) By $(t), (c_1) (c_3)$ and by Def. 5.1, we obtain **M1**.
 - 3) By Rang(Q; A) = m, Rem. 5.2 and by $(c_1) (c_3)$, we have $M2_1$ and $M2_3$.
 - 4) By $(c_1) (c_3)$ and by Def. 5.1 /Def. 3.1/, we obtain M2₂.

4) By $(x, y, z_1) \neq (x, y, z_2) \iff z_1 \neq z_2,$ $(x, y_1, z) \neq (x, y_2, z) \iff y_1 \neq y_2$ and $(x_1, y, z) \neq (x_2, y, z) \iff x_1 \neq x_2,$ we have, also, **M4**.

Remark: For m = 1 see Rem. 6.2.

Theorem 7.2. Let
$$(\Im; L_1, L_2, L_3)$$
 be a $3 - \langle m \rangle$ -net. Also let

$$\begin{array}{ll} (l_1) \ L_1 = \{ < 1, x > | x \in Q \}, \\ (l_2) \ L_2 = \{ < 2, x > | x \in Q \} \ and \\ (l_3) \ L_3 = \{ < 3, x > | x \in Q \}. \end{array}$$

where Q is an arbitrary set such that $|Q| = |L_1| (= |L_2| = |L_3|)$. Finally, let

$$(h) \ A(x,y) \ni z \stackrel{def}{\Leftrightarrow} (\exists T \in \Im)T \in (1, x) \cap (2, y) \cap (3, z) = (h)$$

for all $x, y, z \in Q$. Then, (Q; A) is a hyperquasigroup of the rang m.

Proof. 1) By **M1** and by (h), we conclude that A is a hyperoperation in Q.

- 2) By $M2_2$, M3 and by 1), we have (Q; A) is a hypergroupoid with divisions.
- 3) By $M2_1$, $M2_3$, by Def.4.1 and by 1), we conclude that (Q; A) is a hypercancelative hypergroupoid.
- 4) By $M2_1$, $M2_3$, 2), 3), Def. 5.1 and by Rem. 5.2, we conclude that (Q; A) is a hyperquasigroup of the rang m.

Remark: By M4 and M1, $F : \Im \to \{(x, y, z) | (h)\}$ is a bijection. See, also Rem. 6.3, Th.7.1 and Th.7.2.

Theorem 7.3. Let (Q; A) be a hyperquasigroup. Then, there are permutations α, β, γ of Q such that the following formula holds

$$(\exists e \in Q) (\exists x \in Q) (L(e, x) \ni x \land L(x, e) \ni x),$$

where

$$L(x,y) \stackrel{def}{=} \gamma A(\alpha(x),\beta(y))$$

and

$$\varphi\{a_1,\ldots,a_s\} \stackrel{def}{=} \{\varphi(a_1),\ldots,\varphi(a_s)\}, \qquad a_1^s \in Q, \quad \varphi \in Q!, \quad 1 \le s \le m.^6$$

Proof. By Def.6.1, Th. 7.1 and by Th. 7.2. See Diag. 3;

 $1 \leq |<1, e> \cap <2, x>| \leq m, \qquad 1 \leq |<3, x> \cap <2, e>| \leq m.$ See, also [5], p.p. 13–16.

8. Remarks

Remark 8.1. Hypergroupoid (Q; A) defined by Table 3 is a hyperquasigroup. Hypergroupoid $(Q; \overline{A})$, where $\overline{A}(x, y) = A(x, y)$ for all $(x, y) \in Q^2 \setminus \{(3, 3)\}$ and $\overline{A}(3, 3) = \{1\}[\overline{A}(3, 3) \subseteq A(3, 3) \land \overline{A}(3, 3) \neq A(3, 3)]$, is too a hyperquasigroup.

Remark 8.2. Hipergroupoid defined by Table 4 is a hyperquasigroup. For all $(Q; \overline{B})$, where $\overline{B}(x, y) = B(x, y)$ for all $(x, y) \in Q^2 \setminus \{(1, 3), (3, 2)\}, \overline{B}(1, 3) \subseteq B(1, 3), \overline{B}(3, 2) \subseteq B(3, 2)$ and $|\overline{B}(1, 3)| = |\overline{B}(3, 2)| = 1$, is not a hyperquasigroup.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	1	2	3		B	1	2	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	{1}	$\{2\}$	{3}	-	1	{1}	{1}	$\{2,3\}$
$3 \{2\} \{3\} \{1,2\}$ $3 \{3\} \{2,3\} \{1\}$	2	{3}	{1}	$\{2\}$		2	$\{2\}$	{1}	{3}
	3	$\{2\}$	$\{3\}$	$\{1, 2\}$		3	{3}	$\{2,3\}$	{1}

Table 3

Table 4

Remark 8.3. In the searching for notion of hyperquasigroup there has been in aspect, also, the following:

- 1) There is groupoid with divisions which is not a quasigroup; and
- 2) Every semigroup with divisions is a quasigroup (group). [We say that a groupoid $(Q; \cdot)$ is a groupoid with divisions iff for every $a, b \in Q$ there exist at least one $x \in Q$ and at least one $y \in Q$ such that the following equalities hold $a \cdot x = b$ and $y \cdot a = b$.]

References

- F. Marty, Sur une généralization de la notion de groupe, Huitiéme congres de mathématiciens Scandinaves, Stockholm, (1934), 45–49.
- [2] J. Mittas, Hypergroupes canoniques valués et hypervalués, Math. Balkanica 1(1971), 181-185.
- [3] G. Tallini, Geometric Hyperquasigroups and Line Spaces, Acta Universitatis Carolinae Mathematica et Physica, Vol. 25, No. 1(1984), 69–73.
- [4] V. D. Belousov, Foundation of the theory of quasigroups and loops, (Russian), "Nauka", Moscow 1967.
- [5] V. D. Belousov, Algebraic nets and quasigroups, (Russian), Stiinta, Kishinev 1971.
- [6] J. Dénes and A. D. Keedwell, Latin Squares New Developments in the Theory and Applications, North–Holland 1991.
- [7] J. Ušan, k-< 2 >-nets, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 16, 2(1986), 173–196.

INSTITUTE OF MATHEMATICS UNIVERSITY OF NOVI SAD TRG D. OBRADOVIĆA 4 21000 NOVI SAD, SERBIA AND MONTENEGRO

Faculty of Electrical Engineering University of Osijek Kneza Trpimira 2B HR - 31000 Osijek Croatia