Stationary Points for Multifunctions on Two Complete Metric Spaces

VALERIU POPA

ABSTRACT. In this paper we prove a general fixed point theorem for multifunctions on two complete metric spaces which generalizes the main results from [2] and [5].

1. INTRODUCTION

Let (X, d) be a complete metric space and let B(X) be the set of all nonempty subsets of X. As in [1] we define the function $\delta(A, B)$ with A and B in B(X) by $\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}.$

If A is consists of a single point we write $\delta(A, B) = \delta(a, B)$. If B also consists of single point b then $\delta(a, b) = d(a, b)$. It follows immediately that: $\delta(A, B) = \delta(B, A) \ge 0$ and $\delta(A, B) \le \delta(A, C) + \delta(C, B)$ for A, B, C in B(X). If $\delta(A, B) = 0$ then $A = B = \{a\}$.

Now if $\{A_n : n = 1, 2, ...\}$ is a sequence in B(X), we say that it converges to the set A in B(X) if:

- (i) each point $a \in A$ is limit of some convergent sequence $\{a_n \in A_n : n = 1, 2, \ldots\}$;
- (ii) for arbitrary $\epsilon > 0$, there exists an integer N such that $A_n \subset A_{\epsilon}$ for n > N, where A_{ϵ} is the union of all open spheres with centers in A of radius ϵ .

The set A is said to be limit of the sequence $\{A_n\}$. The following Lemma was proved in [1].

Lemma 1.1. If $\{A_n\}$ and $\{B_n\}$ are sequences of bounded subsets of a complete metric space (X, d) which converges to the bounded subsets A and B, respectively, then the sequence $\{\delta(A_n, B_n)\}$ converges to $\delta(A, B)$.

Let T be a multifunction of X into B(X). z is a stationary point of T if $Tz = \{z\}$.

In 1981, Fisher [2] initiated the study of fixed points on two metric spaces. In 1991, the present author [5] proved other theorems on two metric spaces.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H25.

Key words and phrases. fixed point, multifunction, implicit relation, complete metric space.

The following fixed points theorems are proved in [2], resp. [5].

Theorem 1.1 ([2]). Let (X, d) and (Y, ρ) be complete metric spaces. If T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$\rho(Tx, TSy) \le c \max\{d(x, Sy), \rho(y, Tx), \rho(y, TSy)\},\$$

$$d(Sy, STx) \le c \max\{\rho(y, Tx), d(x, Sy), d(x, STx)\}$$

for all x in X and y in Y, where $0 \le c < 1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Theorem 1.2 ([5]). Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$e^{2}(Tx, TSy) \leq c_{1}max\{d(x, Sy)e(y, Tx), d(x, Sy)e(y, TSy), e(y, Tx)e(y, TSy)\}, d(x, Sy)e(y, TSy), e(y, Tx)e(y, TSy)\}$$

$$d^{2}(Sy, STx) \leq c_{2}max\{e(y, Tx)d(x, Sy), e(y, Tx)d(x, STx), d(x, Sy)d(x, STx)\}$$

for all x in X and y in Y, where $0 \le c_1, c_2 < 1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Furthermore, Tz = w and Sw = z.

Recently, some fixed points theorems for multifunctions on two complete metric spaces have been proved in [3], [4], [6].

In this paper we prove two generalizations of Theorems 1 and 2 for single valued and set valued mappings satisfying two implicit relations.

2. Implicit relations

Let \mathcal{F}_4 be the set of all continuous functions $F: \mathbb{R}^4_+ \to \mathbb{R}$ such that:

 (F_1) : F is nonincreasing in variables t_2, t_3 ;

 (F_2) : there exists $h \in [0, 1)$ such that for every $u \ge 0, v \ge 0$ with: a) $F(u, 0, u, v) \le 0$ or b) $F(u, u, 0, v) \le 0$ we have $u \le hv$.

Example 2.1. $F(t_1, \ldots, t_4) = t_1 - k \max\{t_2, t_3, t_4\}$ where $k \in [0, 1)$. (*F*₁): Obviously.

 (F_2) : Let u > 0 and $F(u, 0, u, v) = u - kmax\{u, v\} \le 0$.

If $u \ge v$ then $u(1-k) \le 0$, a contradiction.

Thus u < v and $u \le hv$. Similarly, $F(u, u, 0, v) \le 0$ implies $u \le hv$. If u = 0, then $u \le hv$.

Example 2.2. $F(t_1, \ldots, t_4) = t_1^2 - c \max\{t_2t_4, t_2t_3, t_3t_4\}$ where $c \in [0, 1)$. (*F*₁): Obviously.

(F₂): Let u > 0 and $F(u, 0, u, v) = u^2 - cuv \le 0$, which implies $u \le hv$, where $h = c \in [0, 1)$.

Similarly, $F(u, u, 0, v) \leq 0$ implies $u \leq hv$. If u = 0, then $u \leq hv$. **Example 2.3.** $F(t_1, \ldots, t_4) = t_1^3 - (at_1^2t_2 + bt_3^3 + ct_4^3)$ where a, b, c > 0 and a + b + c < 1.

 (F_1) : Obviously.

 (F_2) : $F(u, 0, u, v) = u^3 - [bu^3 + cv^3] \le 0$ implies $u \le h_1 v$, where $h_1 = (\frac{c}{1-b})^{\frac{1}{3}} < 1$.

Similarly, $F(u, u, 0, v) \leq 0$ implies $u \leq h_2 v$, where $h_2 = (\frac{c}{1-a})^{\frac{1}{3}} < 1$. Let $h = \max\{h_1, h_2\}$, then $u \leq hv$.

Example 2.4. $F(t_1, \ldots, t_4) = t_1 - c \frac{t_2 + t_3 + t_4}{1 + t_4}$ where $0 \le c < \frac{1}{2}$ (*F*₁): Obviously.

(F₂): $F(u, 0, u, v) = u - c\frac{u+v}{1+v}$ implies $u - c(u+v) \le 0$ and $u \le hv$, where $h = \frac{c}{1-c} < 1$. Similarly, $F(u, u, 0, v) \le 0$ implies $u \le hv$.

3. MAIN RESULTS

Theorem 3.1. Let (X, d_1) and (Y, d_2) be two complete metric spaces and let F be a mapping of X into B(Y) and let G be a mapping of Y into B(X) satisfying the inequalities:

(1) $\Phi_1(\delta_1(GFx, Gy), d_1(x, Gy), \delta_1(x, GFx), \delta_2(y, Fx)) \le 0$

(2)
$$\Phi_2(\delta_2(FGy, Fx), d_2(y, Fx), \delta_2(y, FGy), \delta_1(x, Gy)) \le 0$$

for all x in X and y in Y, where $\Phi_1, \Phi_2 \in \mathcal{F}_4$, then GF has a stationary point z in X and FG has a stationary point w in Y. Furthermore, $Fz = \{w\}$ and $Gw = \{z\}$.

Proof. Let x_1 be an arbitrary point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X and Y, respectively, as follows: choose a point y_1 in Fx_1 and a point x_2 in Gy_1 . In general, having chosen x_n in X and y_n in Y, we choose x_{n+1} in Gy_n and then y_{n+1} in Fx_{n+1} for $n = 1, 2, \ldots$

Then, by (1), we have successively

$$\Phi_1(\delta_1(GFx_{n+1}, Gy_n), d_1(x_{n+1}, Gy_n), \delta_1(x_{n+1}, GFx_{n+1}), \delta_2(y_n, Fx_{n+1})) \le 0$$

$$\Phi_1(\delta_1(GFx_{n+1}, Gy_n), 0, \delta_1(Gy_n, GFx_{n+1}), \delta_2(y_n, Fx_{n+1})) \le 0$$

which implies

(3)
$$\delta_1(GFx_{n+1}, Gy_n) \le h\delta_2(y_n, Fx_{n+1}).$$

By (2) we have successively

$$\Phi_2(\delta_2(FGy_n, Fx_n), d_2(y_n, Fx_n), \delta_2(y_n, FGy_n), \delta_1(x_n, Gy_n)) \le 0$$

$$\Phi_2(\delta_2(FGy_n, Fx_n), 0, \delta_2(Fx_n, FGy_n), \delta_1(x_n, Gy_n)) \le 0$$

which implies

(4)
$$\delta_2(FGy_n, Fx_n) \le h_2\delta_1(x_n, Gy_n).$$

Thus, it follows from (3) and (4) that

$$d_1(x_{n+1}, x_{n+2}) \le \delta_1(Gy_n, GFx_{n+1}) \le h_1\delta_2(y_n, Fx_{n+1}) \le h_1\delta_2(Fx_n, GFy_n) \le \\ \le h_1h_2\delta_1(x_n, Gy_n) \le \dots (h_1h_2)^n\delta_1(x_1, GFx_1).$$

Similarly, we can prove that

$$d_2(y_{n+1}, y_n) \le (h_1 h_2)^n \delta_2(y_1, FGy_1).$$

Now, it follows that for
$$n = 1, 2, ...$$
 and $r \in N^{n}$

$$d_{1}(x_{n+1}, x_{n+r+1}) \leq \delta_{1}(Gy_{n}, GFx_{n+r}) \leq \\ \leq \delta_{1}(Gy_{n}, Gy_{n+1}) + \delta_{1}(Gy_{n+1}, y_{n+2}) + \dots + \\ + \delta_{1}(Gy_{n+r-1}, GFx_{n+r}) \leq \\ \leq \delta_{1}(Gy_{n}, GFx_{n+1}) + \delta_{1}(Gy_{n+1}, GFx_{n+2}) + \dots + \\ + \delta_{1}(Gy_{n+r-1}, GFx_{n+r}) \leq \\ \leq \{(h_{1}h_{2})^{n} + (h_{1}h_{2})^{n+1} + \dots + (h_{1}h_{2})^{n+r-1}\}\delta_{1}(x_{1}, GFx_{1}) < \epsilon$$

for n greater than some N since $h_1h_2 < 1$.

Therefore, the sequence $\{x_n\}$ is a Cauchy sequence in the complete metric space X and so it has a limit z in X.

Similarly, the sequence $\{y_n\}$ is a Cauchy sequence in the complete metric space Y and so it has a limit w in Y.

Further

$$\delta_1(z, GFx_n) \le d_1(z, x_{m+1}) + \delta_1(x_{m+1}, GFx_n) \le d_1(z, x_{m+1}) + \delta_1(Gy_m, GFx_n)$$
$$\le d_1(z, x_{m+1}) + \epsilon \text{ for } m, n > N.$$

Letting m tend to infinity it follows that

 $\delta_1(z, GFx_n) < \epsilon$

for n > N and

$$\lim GFx_n = z = \lim Gy_n.$$

Similarly,

(5)

(6)
$$\lim FGy_n = w = \lim Fx_n.$$

Using inequality (2) and (F_1) we have

$$\Phi_2(\delta_2(FGy_n, Fz), \delta_2(y_n, Fz), \delta_2(y_n, FGy_n), \delta_1(z, Gy_n)) \le 0.$$

Letting n tend to infinity we obtain successively

$$\Phi_2(\delta_2(w, Fz), \delta_2(w, Fz), \delta_2(w, w), \delta_1(z, z)) \le 0$$

$$\Phi_2(\delta_2(w, Fz), \delta_2(w, Fz), 0, 0) \le 0$$

which implies $\delta_2(w, Fz) = 0$. Thus

$$(7) Fz = \{w\}.$$

Similarly, we can prove that

 $(8) Gw = \{z\}.$

From (7) and (8), it follows that

$$GFz = Gw = \{z\}$$
 and $FGw = Fz = \{w\}.$

Thus z is a stationary point of GF and w is a stationary point of FG. This completes the proof of Theorem 3.

Theorem 3.2. Let (X, d_1) and (Y, d_2) be two complete metric spaces and let f be a single valued mapping of X into Y and g a single valued mapping of Y into X satisfying the inequalities

(1')
$$\Phi_1(d_1(gfx, gy), d_1(x, gy), d_1(x, gfx), d_2(y, fx)) \le 0$$

(2') $\Phi_2(d_2(fgy, fx), d_2(y, fx), d_2(y, fgy), d_1(x, gy)) \le 0$

for all x in X and y in Y, where $\Phi_1, \Phi_2 \in \mathcal{F}_4$.

Then gf has an unique fixed point z in X and fg has an unique fixed point w in Y. Further, fz = w and gw = z.

Proof. The existence of z and w follows from Theorem 3. Now suppose that gf has a second fixed point z'.

Then by (1') we have successively

$$\Phi_1(d_1(gfz, gfz'), d_1(z, gfz'), d_1(z, gfz), d_2(fz', fz)) \le 0$$

$$\Phi_1(d_1(z, z'), d(z, z'), 0, d(fz, fz')) \le 0$$

which implies

(9) $d(z,z') \le h_1 d(fz,fz').$

Similarly, by (2') we have successively

which implies

(10) $d_2(fz, fz') \le h_2 d(z, z').$

By (9) and (10) we have

$$d_1(z, z_1) \le h_1 d_2(fz, fz') \le (h_1 h_2) d_1(z, z').$$

Since $h_1h_2 < 1$ it follows that z = z'.

Similarly fg has a unique fixed point.

Corollary 3.1. Theorem 1.1.

Proof. The proof follows from Theorem 3.2 and Example 1.

Corollary 3.2. Theorem 1.2.

Proof. The proof follows from Theorem 3.2 and Example 2.

 \square

References

- Fisher, B., Common fixed points of mappings and set valued mappings, Rostok Math.Kolloq. 8(1981), 68–77.
- [2] Fisher, B., Fixed points on two metric spaces, Glasnik Mat. 16(36),(1981), 333–337.
- Fisher, B. and Türköglu, D., Related fixed point for set valued mappings on two metric spaces, Internat. J.Math.Math.Sci. 23(2000), 205-210.
- [4] Liu Z., Liu Q., Stationary points for set-valued mappings on two metric spaces, Rostok Math. Kolloq. 55(2001), 23–29.
- [5] Popa V., Fixed points on two complete metric spaces, Zb.Rad.Prirod.Mat.Fiz. Ser.Mat.Univ. Novom Sadu, 21(1991),83–93.
- [6] Popa V., Two general fixed point theorem for mappings on two metric spaces, Anal.Univ.Galați, fasc.II. Mat.Fiz.Mec.Teor.Suppl. vol.18(23)(2001),19–24.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BACĂU 5500 BACĂU, ROMANIA *E-mail address*: vpopa@ub.ro