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Stationary Points for Multifunctions on

Two Complete Metric Spaces

Valeriu Popa

Abstract. In this paper we prove a general fixed point theorem for multi-
functions on two complete metric spaces which generalizes the main results
from [2] and [5].

1. Introduction

Let (X, d) be a complete metric space and let B(X) be the set of all nonempty
subsets of X. As in [1] we define the function δ(A, B) with A and B in B(X) by
δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B}.
If A is consists of a single point we write δ(A, B) = δ(a, B). If B also consists
of single point b then δ(a, b) = d(a, b). It follows immediately that: δ(A, B) =
δ(B, A) ≥ 0 and δ(A, B) ≤ δ(A, C)+δ(C, B) for A, B, C in B(X). If δ(A, B) = 0
then A = B = {a}.
Now if {An : n = 1, 2, . . .} is a sequence in B(X), we say that it converges to the
set A in B(X) if:

(i) each point a ∈ A is limit of some convergent sequence{an ∈ An : n =
1, 2, . . .};

(ii) for arbitrary ǫ > 0, there exists an integer N such that An ⊂ Aǫ for n > N ,
where Aǫ is the union of all open spheres with centers in A of radius ǫ.

The set A is said to be limit of the sequence {An}.
The following Lemma was proved in [1].

Lemma 1.1. If {An} and {Bn} are sequences of bounded subsets of a complete

metric space (X, d) which converges to the bounded subsets A and B, respectively,

then the sequence {δ(An, Bn)} converges to δ(A, B).

Let T be a multifunction of X into B(X). z is a stationary point of T if
Tz = {z}.

In 1981, Fisher [2] initiated the study of fixed points on two metric spaces. In
1991, the present author [5] proved other theorems on two metric spaces.
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The following fixed points theorems are proved in [2], resp. [5].

Theorem 1.1 ([2]). . Let (X, d) and (Y, ρ) be complete metric spaces. If T is a

mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

ρ(Tx, TSy) ≤ c max{d(x, Sy), ρ(y, Tx), ρ(y, TSy)},

d(Sy, STx) ≤ c max{ρ(y, Tx), d(x, Sy), d(x, STx)}

for all x in X and y in Y , where 0 ≤ c < 1, then ST has a unique fixed point z

in X and TS has a unique fixed point w in Y . Further, Tz = w and Sw = z.

Theorem 1.2 ([5]). Let (X, d) and (Y, e) be complete metric spaces. If T is a

mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

e2(Tx, TSy) ≤ c1max{d(x, Sy)e(y, Tx), d(x, Sy)e(y, TSy), e(y, Tx)e(y, TSy)},

d2(Sy, STx) ≤ c2max{e(y, Tx)d(x, Sy), e(y, Tx)d(x, STx), d(x, Sy)d(x, STx)}

for all x in X and y in Y , where 0 ≤ c1, c2 < 1, then ST has a unique fixed

point z in X and TS has a unique fixed point w in Y . Furthermore, Tz = w and

Sw = z.

Recently, some fixed points theorems for multifunctions on two complete metric
spaces have been proved in [3], [4], [6].

In this paper we prove two generalizations of Theorems 1 and 2 for single valued
and set valued mappings satisfying two implicit relations.

2. Implicit relations

Let F4 be the set of all continuous functions F : R4
+ → R such that:

(F1) : F is nonincreasing in variables t2, t3;
(F2) : there exists h ∈ [0, 1) such that for every u ≥ 0, v ≥ 0 with:

a) F (u, 0, u, v) ≤ 0 or b) F (u, u, 0, v) ≤ 0
we have u ≤ hv.

Example 2.1. F (t1, . . . , t4) = t1 − k max{t2, t3, t4} where k ∈ [0, 1).
(F1): Obviously.
(F2): Let u > 0 and F (u, 0, u, v) = u − kmax{u, v} ≤ 0.

If u ≥ v then u(1 − k) ≤ 0, a contradiction.
Thus u < v and u ≤ hv. Similarly, F (u, u, 0, v) ≤ 0 implies u ≤ hv.
If u = 0, then u ≤ hv.

Example 2.2. F (t1, . . . , t4) = t21 − c max{t2t4, t2t3, t3t4} where c ∈ [0, 1).
(F1): Obviously.
(F2): Let u > 0 and F (u, 0, u, v) = u2 − cuv ≤ 0, which implies u ≤ hv,

where h = c ∈ [0, 1).
Similarly, F (u, u, 0, v) ≤ 0 implies u ≤ hv.

If u = 0, then u ≤ hv.
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Example 2.3. F (t1, . . . , t4) = t31 − (at21t2 + bt33 + ct34) where a, b, c > 0 and
a + b + c < 1.

(F1): Obviously.
(F2): F (u, 0, u, v) = u3 − [bu3 + cv3] ≤ 0 implies u ≤ h1v, where h1 =

( c

1−b
)

1

3 < 1.

Similarly, F (u, u, 0, v) ≤ 0 implies u ≤ h2v, where h2 = ( c

1−a
)

1

3 < 1. Let

h = max{h1, h2}, then u ≤ hv.

Example 2.4. F (t1, . . . , t4) = t1 − c t2+t3+t4

1+t4
where 0 ≤ c < 1

2

(F1): Obviously.
(F2): F (u, 0, u, v) = u − cu+v

1+v
implies u − c(u + v) ≤ 0 and u ≤ hv, where

h = c

1−c
< 1. Similarly, F (u, u, 0, v) ≤ 0 implies u ≤ hv.

3. Main results

Theorem 3.1. Let (X, d1) and (Y, d2) be two complete metric spaces and let F

be a mapping of X into B(Y ) and let G be a mapping of Y into B(X) satisfying

the inequalities:

Φ1(δ1(GFx, Gy), d1(x, Gy), δ1(x, GFx), δ2(y, Fx)) ≤ 0(1)

Φ2(δ2(FGy, Fx), d2(y, Fx), δ2(y, FGy), δ1(x, Gy)) ≤ 0(2)

for all x in X and y in Y , where Φ1, Φ2 ∈ F4, then GF has a stationary point

z in X and FG has a stationary point w in Y . Furthermore, Fz = {w} and

Gw = {z}.

Proof. Let x1 be an arbitrary point in X. Define sequences {xn} and {yn} in X

and Y , respectively, as follows: choose a point y1 in Fx1 and a point x2 in Gy1.
In general, having chosen xn in X and yn in Y , we choose xn+1 in Gyn and then
yn+1 in Fxn+1 for n = 1, 2, . . ..
Then, by (1), we have successively

Φ1(δ1(GFxn+1, Gyn), d1(xn+1, Gyn), δ1(xn+1, GFxn+1), δ2(yn, Fxn+1)) ≤ 0

Φ1(δ1(GFxn+1, Gyn), 0, δ1(Gyn, GFxn+1), δ2(yn, Fxn+1)) ≤ 0

which implies

(3) δ1(GFxn+1, Gyn) ≤ hδ2(yn, Fxn+1).

By (2) we have successively

Φ2(δ2(FGyn, Fxn), d2(yn, Fxn), δ2(yn, FGyn), δ1(xn, Gyn)) ≤ 0

Φ2(δ2(FGyn, Fxn), 0, δ2(Fxn, FGyn), δ1(xn, Gyn)) ≤ 0

which implies

(4) δ2(FGyn, Fxn) ≤ h2δ1(xn, Gyn).
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Thus, it follows from (3) and (4) that

d1(xn+1, xn+2) ≤ δ1(Gyn, GFxn+1) ≤ h1δ2(yn, Fxn+1) ≤ h1δ2(Fxn, GFyn) ≤

≤ h1h2δ1(xn, Gyn) ≤ . . . (h1h2)
nδ1(x1, GFx1).

Similarly, we can prove that

d2(yn+1, yn) ≤ (h1h2)
nδ2(y1, FGy1).

Now, it follows that for n = 1, 2, . . . and r ∈ N∗

d1(xn+1, xn+r+1) ≤ δ1(Gyn, GFxn+r) ≤

≤ δ1(Gyn, Gyn+1) + δ1(Gyn+1, yn+2) + · · ·+

+ δ1(Gyn+r−1, GFxn+r) ≤

≤ δ1(Gyn, GFxn+1) + δ1(Gyn+1, GFxn+2) + · · ·+

+ δ1(Gyn+r−1, GFxn+r) ≤

≤ {(h1h2)
n + (h1h2)

n+1 + · · · + (h1h2)
n+r−1}δ1(x1, GFx1) < ǫ

for n greater than some N since h1h2 < 1.
Therefore, the sequence {xn} is a Cauchy sequence in the complete metric space

X and so it has a limit z in X.
Similarly, the sequence {yn} is a Cauchy sequence in the complete metric space

Y and so it has a limit w in Y .
Further

δ1(z, GFxn) ≤ d1(z, xm+1) + δ1(xm+1, GFxn) ≤

≤ d1(z, xm+1) + δ1(Gym, GFxn)

≤ d1(z, xm+1) + ǫ for m, n > N.

Letting m tend to infinity it follows that

δ1(z, GFxn) < ǫ

for n > N and

(5) limGFxn = z = limGyn.

Similarly,

(6) limFGyn = w = limFxn.

Using inequality (2) and (F1) we have

Φ2(δ2(FGyn, Fz), δ2(yn, Fz), δ2(yn, FGyn), δ1(z, Gyn)) ≤ 0.

Letting n tend to infinity we obtain successively

Φ2(δ2(w, Fz), δ2(w, Fz), δ2(w, w), δ1(z, z)) ≤ 0

Φ2(δ2(w, Fz), δ2(w, Fz), 0, 0) ≤ 0

which implies δ2(w, Fz) = 0. Thus

(7) Fz = {w}.
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Similarly, we can prove that

(8) Gw = {z}.

From (7) and (8), it follows that

GFz = Gw = {z} and FGw = Fz = {w}.

Thus z is a stationary point of GF and w is a stationary point of FG. This
completes the proof of Theorem 3. �

Theorem 3.2. Let (X, d1) and (Y, d2) be two complete metric spaces and let f

be a single valued mapping of X into Y and g a single valued mapping of Y into

X satisfying the inequalities

Φ1(d1(gfx, gy), d1(x, gy), d1(x, gfx), d2(y, fx)) ≤ 0(1′)

Φ2(d2(fgy, fx), d2(y, fx), d2(y, fgy), d1(x, gy)) ≤ 0(2′)

for all x in X and y in Y , where Φ1, Φ2 ∈ F4.

Then gf has an unique fixed point z in X and fg has an unique fixed point w

in Y . Further, fz = w and gw = z.

Proof. The existence of z and w follows from Theorem 3. Now suppose that gf

has a second fixed point z′.
Then by (1′) we have successively

Φ1(d1(gfz, gfz′), d1(z, gfz′), d1(z, gfz), d2(fz′, fz)) ≤ 0

Φ1(d1(z, z′), d(z, z′), 0, d(fz, fz′)) ≤ 0

which implies

(9) d(z, z′) ≤ h1d(fz, fz′).

Similarly, by (2′) we have successively

Φ2(d2(fgfz, fz′), d2(fz, fz′), d2(fz, fgfz), d1(z
′, gfz)) ≤ 0

Φ2(d2(fz, fz′), d(fz, fz′), 0, d(z, z′)) ≤ 0

which implies

(10) d2(fz, fz′) ≤ h2d(z, z′).

By (9) and (10) we have

d1(z, z1) ≤ h1d2(fz, fz′) ≤ (h1h2)d1(z, z′).

Since h1h2 < 1 it follows that z = z′.
Similarly fg has a unique fixed point. �

Corollary 3.1. Theorem 1.1.

Proof. The proof follows from Theorem 3.2 and Example 1. �

Corollary 3.2. Theorem 1.2.

Proof. The proof follows from Theorem 3.2 and Example 2. �



38 Stationary Points for Multifunctions on Two Complete Metric Spaces

References

[1] Fisher, B., Common fixed points of mappings and set valued mappings, Rostok Math.Kolloq.
8(1981), 68–77.

[2] Fisher, B., Fixed points on two metric spaces, Glasnik Mat. 16(36),(1981), 333–337.
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