Fixed Points of Some Classes of Nonexpansive Mappings

Branislav Mijajlović

ABSTRACT. In this paper we proves the convergence of a convex sequence $x_n = \lambda x_{n-1} + (1-\lambda)f(x_{n-1}), \lambda \in (0, 1)$, to a fixed point of the nonexpansive completely continuous operator in the normed f_{λ} -orbitally complete spaces with λ -uniformly convex sphere. Further we shall prove some fixed point theorems of the star-shaped sets.

1. INTRODUCTION

Let X be a normed space. The mapping $f : X \to X$ where is called **nonex-pansive** if it satisfies one of the following conditions:

(L)

1) $||f(x) - f(y)|| \le ||x - y||;$

2) $||f(x) - f(y)|| \le \frac{1}{2}(||x - f(x)|| + ||y - f(y)||);$ (K)

3) $||f(x) - f(y)|| + ||y - f(y)|| \le ||x - f(y)||.$ (B)

Let X be a vector space, $f: X \to X$ and $x \in X$. Let $\lambda \in (0, 1)$ and $O_{\lambda}(x, f) \subseteq X$ be a set defined by

$$O_{\lambda}(x,f) = \{g_0(x,f(x)), g_1(x,f(x)), g_2(x,f(x)), \ldots\},\$$

where

$$g_0(x, f(x)) = x, \ g_1(x, f(x)) = \lambda x + (1 - \lambda)f(x),$$

$$g_n(x, f(x)) = g(g_{n-1}(x, f(x)), f(g_{n-1}(x, f(x)))).$$

Then $O_{\lambda}(x, f)$ is called convex orbit or λ -orbit of the point x defined by f.

Let (X, d) be a metric linear space, $f : X \to X$ and $\lambda \in (0, 1)$. X is f_{λ} -orbitally complete if each Cauchy's sequence from $O_{\lambda}(x, f)$ is convergent.

Large number of papers presents fixed point results for nonexpansive mappings (for (L) type see: Browder [1], Karlowitz [4], Göhde [2], Kirk [5],...; for results on star-shaped sets see Reinermann's papers [8], [9]).

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Normed f_{λ} -orbitally complete spaces with λ -uniformly convex sphere, Nonexpansive operator, λ -orbit, Fixed point, Extremal point, Star-shaped sets.

2. The Convergence of the Convex Sequence $x_n = \lambda x_{n-1} + (1-\lambda)f(x_{n-1})$ to the Fixed Point of Nonexpansive (L) Type Mapping

Let $\lambda \in (0,1)$. The normed space X is the space with λ -uniformly convex sphere, if for each $\varepsilon > 0$ there exists $\delta > 0$, such that for all $x, y \in X$ from $||x - y|| > \varepsilon$ follows:

$$\|\lambda x + (1 - \lambda)y\| \le (1 - \delta) \max\{\|x\|, \|y\|\}.$$

For $f: E \to E$ we define $J(f, E) = \{x \mid f(x) = x\}.$

Lemma 2.1. Let $f : E \to E$ be a completely continuous linear operator, E bounded subset of normed space X, and J set of all solutions of the equation x = f(x). Let

$$R(J(f,E),\alpha) = \{x | x \in E, d(x, J(J(f,E)) \ge \alpha\}.$$

Then for each $x \in R(J(J(f, E), \alpha))$ and each $\alpha > 0$, there exists $\varepsilon = \varepsilon(\alpha) > 0$ such that

$$\|f(x) - x\| > \varepsilon$$

and the J(f, E) is a convex set.

The proof of the above Lemma can be found in [7].

Theorem 2.1. Let $\lambda \in (0,1)$ and $f: E \to E$ be a completely continuous operator, where E is closed, bounded, and convex subset of the normed vector space X, which has λ -uniformly convex sphere. If X is f_{λ} -orbitally complete space, and if f satisfies the condition (L), then the sequence $x_n = \lambda x_{n-1} + (1 - \lambda)f(x_{n-1})$, $n \in N$ is convergent for arbitrary $x_0 \in E$, and its limit is the solution of the equation x = f(x).

Proof. From definition of the sequence x_n and condition (L), follows:

$$d(x_{n+1}, J(f, E)) = \inf_{y \in J(f, E)} ||x_{n+1} - y|| =$$

=
$$\inf_{y \in J(f, E)} ||\lambda x_n + (1 - \lambda)f(x_n) - \lambda y - (1 - \lambda)y|| \le$$

$$\le \inf_{y \in J(f, E)} (\lambda ||x_n - y|| + (1 - \lambda)||x_n - y||) =$$

=
$$d(x_n, J(f, E)),$$

and so the sequence of numbers $d(x_n, J(f, E))$ is non-increasing.

Let $x_1, \ldots, x_k \in R(J(f, E), \alpha)$. Since the space X has λ -uniformly convex sphere, then for any $y \in J(f, E)$, we have:

$$||x_2 - y|| = ||\lambda(x_1 - y) + (1 - \lambda)(f(x_1) - y)|| \le \le (1 - \delta)max\{||x_1 - y||, ||f(x_1) - f(y)||\} \le \le 2M(1 - \delta),$$

where $M = \sup_{t \in E} ||t||$.

Similarly, we can prove that

(2.1) $||x_k - y|| \le 2M \cdot (1 - \delta)^{k-1}.$

So,

$$d(x_k, J(f, E)) \le 2M \cdot (1 - \delta)^{k-1}$$

From the triangle inequality of and the (L) condition, follows:

$$2||x_i - y|| \ge ||f(x_i) - f(y)|| + ||y + x_i|| \ge ||f(x_i) - x_i|| \ge \epsilon$$

for $i = 1, 2, \ldots, k$, and $y \in E$.

From inequality (2.1) follows

$$2M \cdot (1-\delta)^{k-1} \ge \frac{\varepsilon}{2}$$

and so

$$k \le 1 + \frac{\ln 4M - \ln \varepsilon}{-\ln (1 - \delta)}.$$

The sequence $\{d(x_n, J(f, E))\}_{n \in N}$ is non-increasing for

$$n > 1 + \frac{\ln(4M) - \ln(\varepsilon)}{-\ln(1-\delta)}$$
 and $d(x_n, J(f, E)) < \alpha$

 So

(2.2)
$$\lim_{n \to \infty} d(x_n, J(f, E)) = 0.$$

From (2.2) follows that for each $\beta > 0$ there exists $n_0 \in N$ and $y_0 \in J(f, E)$, such that $d(x_n, J(f, E)) < \frac{\beta}{2}$ and $d(x_{n_0}, y_0) < \frac{\beta}{2}$, for $n_1, n_2 > n_0$. It follows

$$||x_{n_1} - x_{n_2}|| \le ||x_{n_1} - y_0|| + ||y_0 - x_{n_2}|| \le \frac{\beta}{2} + \frac{\beta}{2} = \beta$$

So $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence. Since the space X is f_{λ} -orbitally complete, this sequence is convergent in E. Let $\lim_{n\to\infty} x_n = \xi$. From complete continuity of the operator f and the definition of the sequence x_n , we obtain that $\xi = \lambda\xi + (1-\lambda)f(\xi)$ and $\xi = f(\xi)$.

Theorem 2.2. Let $\lambda \in (0, 1)$ and $p \in \{2, 3, ...\}$. Let $f : E \to E$ be a completely continuous operator, where E is closed, bounded, and convex subset of the normed vector space X which has λ -uniformly convex sphere. If X is f_{λ}^{p} -orbitally complete space and for every $x, y \in E$:

$$||f^{p}(x) - f^{p}(y)|| \le ||x - y||,$$

then the sequence

(2.3)
$$x_n = \lambda x_{n-1} + (1-\lambda) f^p(x_{n-1}), \quad n \in N$$

is convergent for an arbitrary $x_0 \in E$. Its limit is common solution of the equations $x = f^p(x)$ and x = f(x).

Proof. The operator $f^p: E \to E$ is completely continuous and maps the closed, convex and bounded set E into E. The operator $f^p: E \to E$ is nonexpansive. So from Lemma 2.1 and Theorem 2.1, follows that the sequence defined by (2.3) is a Cauchy's sequence in f^p_{λ} -orbitally complete space and converges to a fixed point of operator f^p . The J(f, E) and $J(f^p, E)$ are convex sets and $J(f, E) \subseteq J^p(f, E)$, which implies that the sequence (2.3) converges to the common solution of the equations x = f(x) and $x = f^p(x)$.

3. FIXED POINTS AND STAR-SHAPED SETS

Fixed point result of nonexpansive mapping of type (L), defined on star-shaped subsets of Hilbert's spaces was given in [8].

Let X be a linear space. The $A \subseteq X$, is **star-shaped** if there exists $a \in A$, such that for each point $x \in A$ $\lambda a + (1 - \lambda)x \in A$, $\lambda \in (0, 1)$. The point a is called the **star** of the set A. The point $x \in A$, X is called **extremal point of A** if from $x = \lambda x_1 + (1 - \lambda)x_2, x_1, x_2 \in A$ follows that $x_1 = x_2 = x$.

Let X be a vector space, $f : X \to X$ and $x, a \in X$. Let $\lambda \in (0, 1)$ and $O_{\lambda}(x, f) \subseteq X$ be a set defined by

$$O_{\lambda}(a, x, f) = \{g_0(a, f(x)), g_1(a, f(x)), g_2(a, f(x)), l \dots \},\$$

where

$$g_0(a, f(x)) = x, \ g_1(x, f(x)) = \lambda a + (1 - \lambda)f(x),$$

$$g_n(a, f(x)) = g(g_{n-1}(a, f(x)), f(g_{n-1}(a, f(x)))).$$

Then $O_{\lambda}(a, x, f)$ is called convex λ , *a*-orbit of the point x defined by f.

Let $f : X \to X$, where (X, d) is metric linear space and $\lambda \in (0, 1)$. X is f_{λ}^{a} -orbitally complete if each Cauchy's sequence from $O_{\lambda}(a, x, f)$ is convergent.

Theorem 3.1. Let $\lambda \in (0,1)$ and $f: E \to E$ be completely continuous operator, where E is closed, bounded, and star-shaped subset of the normed space X, which is f_{λ}^{a} -orbitally complete. Then a is the star of the set E. If 0 is an external point of the set E, and if f satisfies the condition (L) or the condition (B), then operator f has a fixed point which is the limit of sequence

(3.1)
$$x_n = \lambda a + (1 - \lambda) f(x_{n-1}),$$

for any $x_0 \in E$.

Proof. The Theorem will be proved only for operator which satisfies the condition (B). The proof of the Theorem is similar operator f satisfies the condition (L).

From condition (B) we obtain

$$||f(x_{n-1}) - f(x_n)|| + ||x_n - f(x_n)|| \le ||x_{n-1} - f(x_n)||.$$

From the definition of the sequence x_n , follows:

$$\begin{aligned} \|(x_n - \lambda a)(1 - \lambda)^{-1} - (x_{n+1} - \lambda a)(1 - \lambda)^{-1}\| + \\ + \|x_n - (x_{n+1} - \lambda a)(1 - \lambda)^{-1}\| \le \|x_{n-1} - (x_{n+1} - \lambda a)(1 - \lambda)^{-1}\|, \end{aligned}$$

which implies

$$x_n - x_{n+1} \| \le (1 - \lambda) \| x_{n-1} - x_n \|.$$

It follows that the sequence defined by (2.3) is a Cauchy's sequence. Let $\lim_{n \to \infty} x_n = \xi$. From (3.1) follows $\xi = \lambda a + (1 - \lambda) f(\xi)$, which implies

(3.2)
$$\lambda(\xi - a) + (1 - \lambda)(\xi - f(\xi)) = 0.$$

From (3.2) follows that

 $\xi = a = f(\xi),$

because 0 is an extremal point of set E. So the sequence (3.1) tends to the fixed point $x = a = \xi$.

In [7] was proved that mapping $f : E \to E$, where E is a closed and convex subset of f_{λ} -orbitally complete space X, which satisfies the condition

(3.3)
$$||f(x) - f(y)|| \le q(||x - f(x)|| + ||y - f(y)||),$$

has a fixed point for $q \in \left[0, \frac{1-\lambda}{2-\lambda}\right)$, $\lambda \in (0, 1)$.

Theorem 3.2. Let $\lambda \in (0,1)$ and E be bounded and closed subset of normed f_{λ} orbitally complete space X. If 0 is a star of the set E and $f : E \to E$ is completely
continuous operator satisfying the condition

(3.4)
$$||f(x) - f(y)|| \le \frac{1-\lambda}{2-\lambda} (||x - f(x)|| + ||y - f(y)||), \lambda \in (0,1),$$

then operator f has at least one fixed point.

Proof. From the boundness of the set E follows that there exists the ball B(0, r) of the radius r > 0 and center 0, which contains it.

The mappings $q \cdot \frac{2-\lambda}{1-\lambda} f$ satisfy the condition (3.3), because from (3.4) follows

$$\begin{aligned} \|q \cdot \frac{2-\lambda}{1-\lambda} f(x) - q \cdot \frac{2-\lambda}{1-\lambda} f(y)\| &\leq q \cdot \frac{2-\lambda}{1-\lambda} \frac{1-\lambda}{2-\lambda} (\|x - f(x)\| + \|y - f(y)\|) \leq \\ &\leq q \cdot (\|x - f(x)\| + \|y - f(y)\|) \end{aligned}$$

for each $q \in \left[0, \frac{1-\lambda}{2-\lambda}\right)$. Then there exists a fixed point $z(\lambda, q)$ of the mapping $q \cdot \frac{2-\lambda}{1-\lambda} \cdot f$, that is $q \cdot \frac{2-\lambda}{1-\lambda} \cdot f(z(\lambda, q)) = z(\lambda, q)$. Now there is

$$(3.5) \quad \|f(z(\lambda,q)) - z(\lambda,q)\| = \left\| f(z(\lambda,q)) - q \cdot \frac{2-\lambda}{1-\lambda} \cdot f(z(\lambda,q)) \right\| = \\ = \left(1 - q \cdot \frac{2-\lambda}{1-\lambda}\right) \|f(z(\lambda,q))\| \le \left(1 - q \cdot \frac{2-\lambda}{1-\lambda}\right) r.$$

If $q \to \frac{1-\lambda}{2-\lambda}$, then $\left(1-q \cdot \frac{2-\lambda}{1-\lambda}\right) \cdot r \to 0$. Hence, for each $\varepsilon > 0$ there exists $z(\lambda, q)$ such that

(3.6)
$$||f(z(\lambda,q)) - z(\lambda,q)|| < \varepsilon$$
 if there is $q > (1 - \frac{\varepsilon}{r}) \cdot \frac{1 - \lambda}{2 - \lambda}$.

Let $\varepsilon \in \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$. According to (3.6), for every $\varepsilon > 0$ from

$$q_1 > (1 - \frac{\varepsilon}{r}) \cdot \frac{1 - \lambda}{2 - \lambda}, q_2 > (1 - \frac{\varepsilon}{2r}) \cdot \frac{1 - \lambda}{2 - \lambda}, \dots$$
 3.7

that there exists a sequence of fixed points y_1, y_2, \ldots , such that

$$||f(y_1) - y_1|| < 1$$

$$||f(y_2) - y_2|| < \frac{1}{2}$$

$$\vdots$$

$$||f(y_n) - y_n|| < \frac{1}{n}$$

$$\vdots$$

It follows

 $(3.8) ||f(y_n) - y_n|| \to 0$

when $n \to \infty$.

Since the operator f is completely continuous, the sequence $\{f(y_n)\}_{n\in N}$ has at least one convergent subsequence $\{f(y_{n_p})\}_{n_p\in N}$. Let $\lim_{n\to\infty} f(y_{n_p}) = \xi$. According to (3.8), we also have $\lim_{n\to\infty} y_{n_p} = \xi$, and it follows that $||f(\xi) - \xi|| = 0$. So, $\xi = f(\xi)$.

If the condition (3.4) of Theorem (3.2) is replaced by the condition (K) following from the result of paper [3] and from the condition of Theorem (3.2), it can similarly be shown that, if E is a subset of Banach's space X, the mapping $f: E \to E$ has at least one fixed point.

References

- F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci., 54(1965), 1041–1044.
- [2] D. Göhde, Zum, Princip der kontraktiven Abbildung, Math. Hachr., **30**(1965), 251–258.
- [3] R. Kannan, Some results on fixed points I, Bull. Calcutta Math, Soc., 60(1968), 71–76.
- [4] L. A. Karlovitz, Some fixed point results for nonexpansive mappings, Fixed Point Theory and Its Aplications, Academic Press, (1976), 91–103.

- [5] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Montly, 72(1965), 1004–1006.
- M. A. Krasnoselskij, Two remarks on the method of successive approximations, Uspehi. Mat. Nauk, 10(1955), 123–127, (Russian).
- [7] B. S. Mijajlović, Fiksne tačke, mere nekompaktnosti i prošireno konveksne funkcije, Doktorska teza, Filozofski fakultet, Niš, (1999).
- [8] J. Reinermann, Fixed point theorems for nonexpansive mappings on starshaped domains, Ber. Ges. Math. Daten, Bonn, (1974).
- J. Reinermann and R. Schöneberg, Some results in the fixed point theory of nonexpansive mappings and generalized contractions, Fixed Point Theory and Its Aplications, Academic Press, (1976), 175–186.
- [10] M. R. Tasković, Nonlinear Functional Analysis, part I: Fundamental elements of theory, Zavod za udžbenike i nastavna sredstva, Beograd (1993), 792 p.p. Serbian-English summary: Comments only new main results of this book. Vol. 1 (1993).

Faculty of Teacher Education Milana Mijalkovića 14 35000 Jagodina Serbia and Montenegro