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Fixed Points of Some Classes of
Nonexpansive Mappings

BRANISLAV MI1JAJLOVIC

ABSTRACT. In this paper we proves the convergence of a convex sequence
Tn = A&n—1+ (1 = A) f(zn-1),\ € (0,1), to a fixed point of the nonexpansive
completely continuous operator in the normed fy-orbitally complete spaces
with A-uniformly convex sphere. Further we shall prove some fixed point the-
orems of the star-shaped sets.

1. INTRODUCTION

Let X be a normed space. The mapping f : X — X where is called nonex-
pansive if it satisfies one of the following conditions:
1) |1f(@) = f)ll < llz —yll; (L)
2) ||f(x) = fWI < 5l = f@) +lly = FWID); (K)
) @) = fl+lly = fWI < llz—fl. (B
Let X be a vector space, f: X — X and z € X. Let A € (0,1) and Ox(z, f) C

X be a set defined by
O)x(x’f) = {QO(xa f(l’)), gl($a f($))7 92(x7f(m))7 e '}7

where

go(x, f(x)) =z, gi(, f(2)) = Ae + (1= A)f (),
gn (2, f(2)) = g(gn-1(z, [ (2)), f(gn-1(z, f(2))))-

Then Oy (z, f) is called convex orbit or A-orbit of the point = defined by f.

Let (X, d) be a metric linear space, f: X — X and A € (0,1). X is fy-orbitally
complete if each Cauchy’s sequence from Oy (z, f) is convergent.

Large number of papers presents fixed point results for nonexpansive mappings
(for (L) type see: Browder [1], Karlowitz [4], Gohde [2], Kirk [5],...; for results
on star-shaped sets see Reinermann’s papers [8], [9]).
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2. THE CONVERGENCE OF THE CONVEX SEQUENCE
Tp = Ap—1+ (1 = N)f(zp—1) TO THE
FIXED POINT OF NONEXPANSIVE (L) TYPE MAPPING

Let A € (0,1). The normed space X is the space with A-uniformly convex
sphere, if for each € > 0 there exists 6 > 0, such that for all z,y € X from
|z —y|| > € follows:

Az + (1= Nyll < (1 = &) max{]|z|, [y }-

For f: E — E we define J(f,E) = {z | f(z) =z}

Lemma 2.1. Let f : E — FE be a completely continuous linear operator, E
bounded subset of normed space X, and J set of all solutions of the equation
x = f(x). Let

R(J(f, E), o) = {z[z € E,d(z, J(J(f,E)) = a}.

Then for each x € R(J(J(f,E),a) and each a > 0, there exists € = e(a)) > 0
such that

1f(2) =zl > €
and the J(f,E) is a convez set.

The proof of the above Lemma can be found in [7].

Theorem 2.1. Let A € (0,1) and f : E — E be a completely continuous operator,
where E is closed, bounded, and convex subset of the normed vector space X,
which has A-uniformly convex sphere. If X is fy-orbitally complete space, and
if f satisfies the condition (L), then the sequence X, = Atp—1 + (1 — ) f(zp—1),
n € N is convergent for arbitrary xo € E, and its limit is the solution of the
equation x = f(x).

Proof. From definition of the sequence x,, and condition (L), follows:
d(xn+17J(f7 E)) = inf ||$n+1 _y” =

yeJ(f.E)
= inf A+ (L= AN) flay) — Ay — (1 — A <
it I+ (1= X)) = = (1= X
< inf Allzn =yl + (1 =Nz, — =
inf | =yl + (1= Ve ~ o)

= d(zn, J(f, E)),

and so the sequence of numbers d(z,, J(f, F)) is non-increasing.
Let x1,...,2, € R(J(f,E),«). Since the space X has A-uniformly convex
sphere, then for any y € J(f, E), we have:

22 —yll = [[A(z1 —y) + (L= A)(f(z1) —y)|| <
< (1 = 8)maz{|lzr — yll, If(z1) — W} <
<2M(1-6),

where M = sup;cp ||¢]].
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Similarly, we can prove that
(2.1) ok — yll < 20 - (1 = 61,
So,
d(zy, J(f,E)) < 2M - (1 — §)* L,
From the triangle inequality of and the (L) condition, follows:
2|z —yll = [1f (@) = FW + ly + zall = [ f (i) — 2l = €

fori=1,2,...,k,and y € E.
From inequality (2.1) follows

oM - (1 — §)k1 2%

and so
k<1+ln4M—ln5
- —In(1-90)"

The sequence {d(zy, J(f, F)) tnen is non-increasing for
In(4M) — In(e)

> A )

and d(zn, J(f, E)) < a.

So
(2.2) lim d(z,, J(f,E))=0.

n—oo

From (2.2) follows that for each § > 0 there exists ng € N and yy € J(f, F), such
that d(x,, J(f,E)) < g and d(zn,,y0) < g, for ny,ng > ng. It follows
B B
l2n, = @noll < |2y = woll + llyo —anall < 5 + 5 = 6.
So {zn}tnen is a Cauchy sequence. Since the space X is fy-orbitally complete,

this sequence is convergent in E. Let lim z, =¢&. From complete continuity
n—oo

of the operator f and the definition of the sequence z,, we obtain that £ =

A+ (1= A)f(§) and € = f(&). .

Theorem 2.2. Let A € (0,1) and p € {2,3,...}. Let f : E — E be a completely
continuous operator, where E is closed, bounded, and convex subset of the normed
vector space X which has A-uniformly convex sphere. If X is ff—orbitally complete
space and for every x,y € E:

1fP(x) = Pl < llz —yll,
then the sequence
(2.3) T = A1+ (1= N)fP(xp-1), nenN

s convergent for an arbitrary xo € E. Its limit is common solution of the equations
z = fP(z) and x = f(z).
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Proof. The operator fP : E — E is completely continuous and maps the closed,
convex and bounded set F into E. The operator fP: E — FE is nonexpansive. So
from Lemma 2.1 and Theorem 2.1, follows that the sequence defined by (2.3) is a
Cauchy’s sequence in ff\’—orbitally complete space and converges to a fixed point
of operator fP. The J(f, F) and J(fP, E) are convex sets and J(f, E) C JP(f, E),
which implies that the sequence (2.3) converges to the common solution of the
equations x = f(x) and = = fP(z). O

3. FIXED POINTS AND STAR-SHAPED SETS

Fixed point result of nonexpansive mapping of type (L), defined on star-shaped
subsets of Hilbert’s spaces was given in [8].

Let X be a linear space. The A C X, is star-shaped if there exists a € A,
such that for each point € A Aa+ (1 —N)x € A, X\ € (0,1). The point a is called
the star of the set A. The point x € A, X is is called extremal point of A if
from x = Ax1 + (1 — N)zo, 21,22 € A follows that 1 = 29 = z.

Let X be a vector space, f : X — X and z,a € X. Let A € (0,1) and
Ox(z, f) € X be a set defined by

O,\(a,:n, f) = {90((1’ f(l‘)), gl(a7 f(x))a 92(a7 f(x))v l... }7
where
gO(G’a f(x» =, 91(33, f(.%’)) = Aa + (1 - )\)f(x),
gn(a’7 f(x» = g(gn—l(aa f(x))7 f(gn—l(a7 f(.%'))))
Then Oy(a,x, f) is called convex A, a-orbit of the point x defined by f.

Let f : X — X, where (X,d) is metric linear space and A € (0,1). X is
fy-orbitally complete if each Cauchy’s sequence from Oy(a,z, f) is convergent.

Theorem 3.1. Let A € (0,1) and f : E — E be completely continuous operator,
where E is closed, bounded, and star-shaped subset of the normed space X, which
is fy-orbitally complete. Then a is the star of the set K. If 0 is an extermal
point of the set E, and if f satisfies the condition (L) or the condition (B), then
operator f has a fixed point which is the limit of sequence

(3.1) Tn=Ada+ (1 =X f(zp-1),

for any xg € E.

Proof. The Theorem will be proved only for operator which satisfies the condition
(B). The proof of the Theorem is similar operator f satisfies the condition (L).
From condition (B) we obtain

1f (@n1) = F@n)ll + [lon = fl@n)]l < [lon-1 = fl2n)

From the definition of the sequence x,,, follows:

(20 = Aa)(1 = X) ! = (@ns1 — Aa)(1 = N) 7+
+ |20 = (@ns1 — Aa) (1 = N7 < 21 — (Tpg1 — Aa)(1 = A) 7],



BRANISLAV MIJAJLOVIC 29

which implies
|2 — Znp1l] < (L= A)lzn-1 — 20

It follows that the sequence defined by (2.3) is a Cauchy’s sequence. Let lim z,, =

€. From (3.1) follows £ = Aa + (1 — \) f(§), which implies T
(32) AME—a)+ (A =X)(E—-f()=0.
From (3.2) follows that
E=a= f(&),
because 0 is an extremal point of set E. So the sequence (3.1) tends to the fixed
point x =a = €. O

In [7] was proved that mapping f : E — E, where E is a closed and convex
subset of fy-orbitally complete space X, which satisfies the condition

(3.3) 1f(z) = fI < alllz = f@)| +lly = fFW),
. 1—A
has a fixed point for ¢ € [0, 2—)\> , A e (0,1).

Theorem 3.2. Let A € (0,1) and E be bounded and closed subset of normed f-
orbitally complete space X. If 0 is a star of the set E and f : E — E is completely
continuous operator satisfying the condition

1-X
(3.4) 1£ (@) = fWll = 5— (lz = f@)l + [ly = FW)]), A € (0,1),
then operator f has at least one fized point.
Proof. From the boundness of the set E follows that there exists the ball B(0,r)
of the radius r > 0 and center 0, which contains it.

9 _
The mappings q - ﬁ f satisfy the condition (3.3), because from (3.4) follows

2\ 2 -\ 2-A1-X\
la- 1= 0@ —a T F @ < @ T 5=l = F@l + Dy = fw)l) <

<q-(lz = f@)l+ly -l

1—A
for each ¢ € [0, > Then there exists a fixed point z(\, ¢q) of the mapping

2—A
¢ 220 thatis g 222 f(0g) = 2(M ).
Now there is
35) IGO0 - 200l = |0 0127 f0v) | =
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1—A 2—A
If ¢ — IR then (1 —q- 1_)\) -r — 0. Hence, for each ¢ > 0 there exists
z(\, q) such that
. . e, 1—2X
(3.6) |f(z(X,q)) — z(A,q)|| <e if thereis ¢ > (1 — ;) ETuY
O
11 .
Let € € {1, 3730 } According to (3.6), for every € > 0 from
e, 1—X e, 1=\
Ql>(1_;)'m,Q2>(1_§)‘mw-- 3.7
that there exists a sequence of fixed points y1,y2, ..., such that
1f(y1) —wnll <1
1
Hf@ﬁ‘ﬂ&”<2
17 (m) — vl <
Yn Yn n
It follows

when n — oo.
Since the operator f is completely continuous, the sequence {f(yn)}nen has at
least one convergent subsequence {f(yn,)}n,en. Let lim f(yn,) =& According
n—oo

to (3.8), we also have nh_}nolo Yn, = &, and it follows that ||f(£) —&|| = 0. So,
§=f(9).

If the condition (3.4) of Theorem (3.2) is replaced by the condition (K) following
from the result of paper [3] and from the condition of Theorem (3.2), it can
similarly be shown that, if E is a subset of Banach’s space X, the mapping
f: E — F has at least one fixed point.
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