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ABSTRACT. Recently, Ratliff and Rush gave the explanation of a kind of deter-
minant whose entries are zero and either binomial coefficients of their negative.
Such work can be considered in some generalized Pascal matrices. The purpose
of this paper is to establish a g—analog of the result of Ratliff and Rush. Also,
a g—analogs about problem 269 in [5] are given.

1. INTRODUCTION

Properties of certain determinants and their evaluation play an important role
in enumerative combinatorics, and a thorough understanding of them has led
to some combinatorial information. For example, in [10, 12, 13], certain com-
putations in commutative algebra lead to matrices whose entries are binomial
coefficients and in [1, 14, 15], the determinants from Gaussian binomial coeffi-
cients have the important significance for studying plane partitions. Recently,
Ratliff and Rush [11] gave the computation of a kind of determinant from bi-
nomial coefficient matrices. Such works can be considered in some generalized
Pascal matrices of [2, 3, 16, 17, 18]. The purpose of this paper is to establish a
g—analog of the results of Ratliff and Rush [11].

In this paper, section 2 states our main results and their interesting corollaries.
In section 3, some preliminary results are obtained; and in section 4 the proof of
main results are given.
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2. THE MAIN RESULTS

To state our result, we introduce some standard notation (see [6]):

_1-4
] =12

K = Kk =11, (o] = 1),

e

Let s > 2, n > 2 be integers and let m = s+n. Let A = A(n, s;q) be the s xm
cyclic matrix with the first row being

s—1
n n n | Loin— —N—
‘H’[1]"[2]‘—”“'*”"’“[n]“( 0,0

By A; = Ai(n, s;q) we denote the i-th row of A, that is

i—1 5—1
— —
(2.1) A= 07'”70’_|:'gi|’[n:|7_|:n:|q’.”’(_1)n+1|:n:|qén(n1)’0’”"0
n

)

1 2
Write
i—1 s—1
——|n n n n| 1,01y —m=
(22) Af=Ar(n,s;9)=[0,...,0, | |, (o1 | alae-s | |2 D,0,...,0
0 11712 n
For the selected integers 1 <1 <1y < --- <1y < m, let My(n,s;r,...,7r0)
denote the s x s matrix obtained by deleting columns 71,79, ..., r, from A(n,s;q),
and M(;r (n,s;r1,re,...,ry) the matrix of absolute values of the entries of
My(n,s;1m1,72, ..., Th).

The following Theorem 2.1 is a g—analog of Theorem 1.1. in [1].

Theorem 2.1.

(1) det(Mq(n, 511,72, - .- 7rn)) = (_1)y+sq%n(n—1)(n+s+1) H %7
1<i<j<n
where y =ns+n(n+1)/24+ 30" ri;
(ii) det(M, (n,s;r1,72,...,10)) = (=1)YT5 det(My(n, s;71,72, ..., 7).

By taking some special values of r; in Theorem 2.1 we get the following inter-
esting corollaries.

Corollary 2.1.1. Let g be a positive integer such that r, + g < m. Then
det(Mq(n, s311 + 9,72 + g,.--yTn + g)) =
= (—1)"9q*%"(”*1)9 det(My(n, s;r1,72, ... ,77))
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and
det(M;(n, $;r1 49,712+ G, .., T+ 9g)) = q_%"(”_l)g det(M;'(n, SiT1,T2, -y Tn))-
2

Corollary 2.1.2. Leta>1,b>1,n >
that a+ (n — 1)b < n+s=m. Then

det(My(n,s;a,a+b,a+2b,...,a+ (n—1)b)) =
¢ — g

be integers and choose integer s such

—(—1)¥+sgan(n=D(A-bnts—a+1) 11

1<i<j<n ¢ —q "
where y = n(s+a) + 3n((1+bn —b+1);

det(M (n,s;a,a+b,a+2b,...,a+ (n—1)b)) =
:q%n(nfl)((lfb)nJrsfaJrl) H qu - qbi

1<icj<n 71

Corollary 2.1.3.
det(My(n, $;1,2,3,...,n)) = (—1)*(+D gan(n=1s

and
det(M;(n, $;1,2,3,...,n)) = q%"("_l)s.

The following Theorem 2.2 is a g—analog of Theorem 2.1 in [11].
Theorem 2.2.

) Tio_ T
det ( |: . Ti :| > = q%n(n_l) qjiqz
J=1/ =12, m 1<icjen U4

Let @ be the doubly infinite matrices whose k-th rows are

(o) B ] s)-)

k
where [] = 0 if j > k. Thus the nonzero entries yield the justified form of
J

Gauss—Pascal triangles. Let Q(r1,72,...,7,) be the n x n submatrix of @) formed
by the first n columns and the rows r1,7r9,...,7, of Q. The matrices in Theorems
2.2is Q(r1,72,...,7). When r — 1, it becomes the formula that is given without
proof in [5] as the problem 269.

Corollary 2.2.1.

det ( |:m — Tz:|> _ q%n(n—l)(m—‘rl) H q ; - qZ
n- '] ivj:1727"'7n ‘\ q o q
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3. LEMMAS

In this section we first give a simple result which allows us to replace the
matrix Mg(n,s;r1,ro,...,r,) with another one which has a simpler structure, at
the expense of increasing the size of the matrix.

Lemma 3.1. Let e; be the row vector with 1 in the i—th place and zeros else-
where. Let By(n,s;r1,r2,...,1ry,) be the m x m matriz obtained from A(n, s;q) by
adjoining the rows er,, €ry, ..., €r, to the bottom, namely

A(n, s;q)

Bq(nas;r17r2a"'7rn) = Ery ;

and

+ . _
By (n, 831,79, ,1m) = €ry

Write y = ns + sn(n+1) + 37 1. Then
det(My(n, s;r1,72,...,1)) = (=1)Y det(By(n, 371,72, ..., T0)),
det(M;(n,s;rl,rg, sy ) = (=1)Y det(B;(n,s;rl,rg, cey ).

The statement and proof of this lemma are similar to Lemma 2.1. of paper
[11]. Here we state no longer its proof.

Suppose e;; is the matrix which is zero except for the entry 1 in the ij place.
For k > 2, let

Ti(q) = diag(q¢~ 72, .., ") + ¢ Yern) Tx + ¢ teas) - (I + ¢ ter_14),

and
Si(q) = diag(q™ a2, ..., a ™) (Ix — ¢ ter2) (I — g teas) - (I — ¢ ter—14);
namely,
¢l g2 g3 g "
0 q¢?2 ¢3 gk
Tu@)=| 0 0 o ",
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and
ol =g g (—1)itRgk
o
Selg)=| 0 0 ¢ - (1)
0 0 0 L. (_1)k+kq—k

For 0 < u < m, let

Touta = (75 1),

St = (50 7).

Then, Ty 0(q) = Tk(q) and Sk0(q) = Sk(q).
Now we consider how Tp,,(¢) and Sp,.(q) operate on a row of

By(n,s;71,72,...,m0) or B (n,8;71,79,...,70):
Lemma 3.2. (i) Let Ai(n,s;q) be the i-th row of A, as denoted in (2.1).
Then for 0 < u < m — (i +n) we have
(3.3) Ai(n,830) T = 47" As(n = 1,5 + 1;q).
(ii) Let Af(n,s;q) be the row vector in (2.2). Then for 0 < u < m — (i +n)
we have
(34) A:_(na 53 Q)Sm,u = q_iA;—(n —1,s+1 Q)'

Proof. Both (3.3) and (3.4) follow from the identity

k
S (-1t [7;] gBIU-D = L)k [n ; 1] gBR (1)
=0

(see [9]). O

Corollary 3.2.1. Let A;(n,s;q) and A (n,s;q) be as in above lemma and let
O0<us<m—i—n. Then
Ai(na S Q)Tmm(Q)Tm,u—‘rl(Q)Tm,u—f—Q(Q) c 'Tm,u+n—1(Q) = _qmeia
A;r(na S5 Q)Sm,u(Q)Sm,qul (Q)Sm,U+2(Q) T Sm,lﬁnfl(Q) = _qmei
(i=1,2,...,m—n).
14k . A .
noor } and HY) = (=1)7T*GL. Then

Lemma 3.3. Let GY) = q—(”—j)(k+j+i)[ 1
n—1-j

for 1 <i < m we have
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P M'm—n—i’ " m—n—i4+1’

i—1
—
eiTm,O(q)Tm,l(Q) e Tm,nfl(Q) = (Oa sy 07 G(()O)a GgO)a s G(O) G(O)

1 2 n—1
agzn_m,agzn_m,...,afn_nzm)

m—n—i’ T m—n—i+1°

i—1
——
€iSm.0(0)Sm1(q) - Smn—1(q) = (0, 0, Y B 1Y HY

1 2 n—1
AR RS
Proof. Use > %, g+ [‘7] = [nj-_l] (see [7]) and induction. O
i i

Lemma 3.4.
det((r)j1)ijmt,2m = (~1)2"0 Vg G T (a7 - ¢%),

1<i<j<n
where (r;); = H{;:l(l — q”‘k+1).

Proof. Replacing ¢ by ¢~ !

H(l _ tqk:—l) _ Z(_l)kq%k(l@—l) [IJ £k,

k=1 k=0

in the identity

(see [8]), we have
n n
H(l _ tq—k+1) _ Z(_l)kq—%k(k—l)—k:(n—k) [Z] .
k=1 k=0
from which, taking t — ¢" it follows

[y

_ et rm [T =17
<T’i>j—1 = (1 — qu k+1) = (_1)kq ék(k )—k(j—1-k) |:'7 . :|q ik
k 0

<
I
_
<

Il
—
£
Il

I
M~

1ys—1 —3(s—1)(2j—s5—2) J—1 ri(s—1
(1) L_l g

©
Il
-

Hence
i—

det( (1)) = det ( (1)1~ HDD 1 ) derrtaoD)

Our result follows from that the former in the above product of two determinants
is upper triangular and the latter is Vandermonde determinant. U
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4. THE PROOFS OF THEOREMS

Proof of Theorem 2.2.

(")),
Jj—1 i,j=12,...n

- 1
H (k—1)p1 det((ri)j-1)i,j=1,2,..n. =

—_

1
¢ —q

ke
:(_1)%n(n71q%n(n71)(n+l) H

1<i<j<n

det((ri)j—1)ij=1,2,..n-

Applying Lemma 3.4 we can get Theorem 2.2. d

Proof of Corollary 2.5.1.

(m —r;
det ( Z]) = (Reversing the order of rows and columns)
L =J1/4j=12,.n

e
=det ( ) n ZH]) (Taking m — rp—iv1 =pi, 1 =1,2,...,n)
L J-1 i,j=1,2,..n

=det ( i ]) = (Applying theorem 2.2)
-1 i,j=1,2,...n

:q%”(nfl) H L; _ qfl = (Taking p; =m —rp—it1)
1<i<j<n U714
SO | A s
1<i<j<n ¢ —¢
—ginnDmi) ] q_r"‘”; —a
1<i<j<n A
—gEn -t T " —q"
1<i<j<n ¢ —q
O
Proof of Theorem 2.1. Let
"
o

From corollary 3.2.1 we have

A(na S3 Q)Tm,O(Q)Tm,l(Q) T Tm,n—l(Q) = (_J(Q)7 O),



22 (Q—ANALOG OF DETERMINANT OF A KIND OF BINOMIAL COEFFICIENT MATRICES

and
A+ (n, 53 Q)Sm,O(Q)Sm,l(Q) tee Sm,n—l(Q) = (J(Q)z 0)
Then
Bq(n7 ST, 72, ... 7rn)Tm,0(Q)Tm,1(Q) o 'Tm,n—l(Q) =
A(n7 S Q)Tm,O (Q)Tm,l (Q) Tt Tm,n—l(Q)
_ €r1 Tm,() (Q)Tm,l (Q) te Tm,n—l (Q) _ —J(q) 0
B : o * X )’
ernTm,O(Q)Tm,l(Q) e 'Tm,n—l(Q)

and

B;(Th 871,72, -+, Tn)Sm,0(q)Sm,1(q) - - Smn—1(q) =

At (n, S5 Q)Sm,O(Q)Sm,l(Q) T Sm,nfl(Q)
- erlsm,O(Q)Sm,l(Q) T Sm,nfl(Q) - ( J(q@) 0 )
- : B * Y |

ernSm,O(Q)Sm,l (q)--- Sm,nfl(Q)

It is easily seen that for each wu,
—1-2——(m—u L m—w) (m—u
Aet(Tonu(0)) = det(Ton (q)) = g~1=2=~ (=) = g~ m—w(m—ut1)

et (Symu(q)) = det(Sp—u(q)) = g~ 2w m—utD)
and

det< ) 9 ) — det(—J(q)) det(X),

and
der (M0 = denta@) ().
x Y
We thus have
det(By(n,s;r1,72,...,m)) =

:q% S (m—u) (m—ut1) (_1)sq—2—2n—~~-—sn det(X) _

(4.5)  =(—1)%¢2 Zizo(m—w)(m—ut)=gns(s+1) qot () =
=(—1)%g2 (MADm+Dn—gn(nt1)2m+3)+ n(n+1)2n+1)—gns(stl) qot(X) =
:(_1)sqén(n—1)(n+1)+§n(n+1)(s+1) det(X).

and

(4.6) det(B; (n, 571,79, .. ., 7)) = g™~ DD+ D+ geg(y),

We now proceed to compute det X and det Y.
By Lemma 3.3 the last n entries of e, T.0(¢)Tm,1(q) - - Tmn—1(q) are

(0) (1) (n—1)
(Gmfnfn+1’ Gmfnfrﬂrl? Tt Gmfnfrﬂrl) '
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Thus
det X — det(GU™) ) — det (q—(n—j+1)(m—n+1) [m - r]) -
i n—71/:;j=123,.n
4.7) =g Zim D ment) e ( {m - T] > =
n—=J1/ij=12,.n

::q_énoden+m—;n@H4)sdet([ﬂl—'ﬁ]> .
n—=71/ij=12,..n

Similar to above methods, by Lemma 3.3, the last n entries of
€r1 Sm,O(Q)Sm,l(Q) e Sm,n—l(Q) are

0 1 _1)
(HT(”)_’I_”‘H’ H7(n)—"—7“i+1’ T Hf:—n—ri—f—l) ’
Thus
detY = det(HY=) .\ )ijm123,.n =
(4.8) = det ((_1)m—n—&-j—n-q—(n—j+1)(m—n+j) [m - Tz:|> _

n=71/ij=12,..n

= (_1)y,q—%n(n+1)(n+2)—%n(n+1)s det ( |:m - rz:|> ‘
n=731/ij=12,..n

where v/ = 3n(n+1) +ns— Y1 7.
Comparing (4.7) and (4.8), we have det X = (—1)¥ det Y, and comparing (4.5)
and (4.6), we have
det(By(n, s;r1,r2,...,1)) = (—1)S+yl det(B;(n,s;n,rQ, cey ).
It follows from Lemma 3.1 that
det(M;'(n, SiT1, T2,y ey Ty)) = (fl)sﬂ’/ det(My(n, s;r1,72,...,70)).

Note that the number y defined in Theorem 2.1 has the same parity with y':

n n

nin+1) + Zri =0 (mod?2).
i=1

1
Y +y= —2n(n+1)+ns—z;ri+ns+ n 5
1=
It follows the second formula in the theorem. The first is obtained from (4.5) and
(4.7) and Lemma 3.1.

The proof is completed. O
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