A Note on λ_2 and λ_n of a Graph

Mirjana Lazić

ABSTRACT. Using the eigenvalues and eigenvectors of a graph G, it was established the upper bound for the second eigenvalue λ_2 and the least eigenvalue λ_n [1]. In this work using only the eigenvalues of G we obtain the upper bound for λ_2 and λ_n .

Let G be a graph of order n and let A be its ordinary adjacency matrix. The spectrum of G is the set of its eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. We say that λ_i is the *i*-th eigenvalue of G $(i = 1, 2, \ldots, n)$. In particular, λ_2 is called the second eigenvalue while λ_n is called the least eigenvalue. Using the eigenvalues and eigenvectors of G it was obtained the upper bound for λ_2 and λ_n (see [1], p. 222). In this paper we obtain the upper bound for λ_2 and λ_n using only the eigenvalues of G.

Theorem 1 ([3]). Let G be a graph of order n, and let $\{\lambda_i\}$ and $\{\lambda_i\}$ be the corresponding eigenvalues of G and its complement \overline{G} , respectively. Then:

(1) $\lambda_i + \overline{\lambda}_{n+1-i} + 1 \ge 0 \qquad (i = 1, 2, \dots, n),$

(2) $\lambda_{i+1} + \overline{\lambda}_{n+1-i} + 1 \le 0$ $(i = 1, 2, \dots, n-1).$

Theorem 2. If G is a graph with n vertices then $\lambda_2 \leq \frac{n-2}{2}$.

Proof. Assume, on the contrary, that there exists a graph G of order n with $\lambda_2 > \frac{n-2}{2}$. Let $S = \frac{1}{n-2} \sum_{i=3}^{n} |\lambda_i|$. Then we can see that

(3)
$$(n-2)S^2 \le \sum_{i=3}^n |\lambda_i|^2.$$

Since

$$\sum_{\lambda_i < 0} |\lambda_i| = \sum_{\lambda_i > 0} |\lambda_i|$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 51M16.

Key words and phrases. geometric inequalities, fundamental inequalities of triangle, Gerretsen's inequalities.

and

$$\lambda_1 \ge \lambda_2 > \frac{n-2}{2}$$

we have

(4)
$$S \ge \frac{1}{n-2} \sum_{\lambda_i < 0} |\lambda_i| = \frac{1}{n-2} \sum_{\lambda_i > 0} |\lambda_i| \ge \frac{1}{n-2} (\lambda_1 + \lambda_2) > 1.$$

From relations (3) and (4) we have

(5)
$$\sum_{i=3}^{n} |\lambda_i|^2 \ge (n-2) \cdot S^2 > n-2.$$

Let m and \overline{m} be the numbers of edges of the graphs G and \overline{G} , respectively. Then from (5) and using relations (1) and (2), we find that:

$$n^{2} - n = 2m + 2\overline{m} = \sum_{i=1}^{n} \lambda_{i}^{2} + \sum_{i=1}^{n} \overline{\lambda}_{i}^{2} \ge \lambda_{1}^{2} + \lambda_{2}^{2} + \sum_{i=3}^{n} \lambda_{i}^{2} + \overline{\lambda}_{1}^{2} + \overline{\lambda}_{n}^{2} >$$
$$> 2\left(\frac{n-2}{2}\right)^{2} + (n-2) + 2\left(\frac{n}{2}\right)^{2} = n^{2} - n,$$

which is a contradiction.

Corollary 1. If $\lambda_1 \in \left(\frac{n-2}{2}, n-1\right]$ then λ_1 is the simple eigenvalue.

Further, let G be non-regular graph of order n. We know that $\lambda_1(G) = d(G) + \Delta(G)$, where d(G) denotes the mean value of the vertex degrees of G and $\Delta(G) > 0$. In view of this,

$$\lambda_1(G) + \lambda_1(\overline{G}) = n - 1 + \Delta(G) + \Delta(\overline{G}).$$

The proof of the next result is based on a property of the so-called canonical graphs [2].

We say that two vertices $x, y \in V(G)$ are equivalent in G and write $x \sim y$ if x is non-adjacent to y, and x and y have exactly the same neighbors in G. Relation \sim is an equivalence relation on the vertex set V(G). The corresponding quotient graph is denoted by \tilde{G} , and is called the canonical graph of G.

We say that G is canonical if $|G| = |\tilde{G}|$, that is if G has no two equivalent vertices. Let \tilde{G} be the canonical graph of G, $|\tilde{G}| = k$, and N_1, N_2, \ldots, N_k be the corresponding sets of equivalent vertices in G. Then we denote $G = \tilde{G}(N_1, N_2, \ldots, N_k)$, or simply $G = \tilde{G}(n_1, n_2, \ldots, n_k)$, where $|N_i| = n_i(i = 1, 2, \ldots, k)$.

In the case that $|N_i| = m$ for i = 1, 2, ..., k, the corresponding graph $\widetilde{G}(m, m, ..., m)$ is denoted by G_{mk} . With this notation in [2] was proved the following result:

Proposition 1. Let \tilde{G} be a canonical graph of order k, and let $\{\lambda_i\}$ and $\{\overline{\lambda}_i\}$ be the corresponding eigenvalues of \tilde{G} and its complement $\overline{\tilde{G}}$, respectively. Then

(1°)
$$H_{G_{mk}}(t) = mH_{\tilde{G}}(mt);$$

(2°) $\sigma(G_{mk}) = \{m\lambda_i \mid i = 1, 2, ..., k\} \bigcup \{\underbrace{0, 0, ..., 0}_{n-k}\};$
(3°) $\sigma(\overline{G}_{mk}) = \{m\overline{\lambda}_i + m - 1 \mid i = 1, 2, ..., k\} \bigcup \{\underbrace{-1, -1, ..., -1}_{n-k}\},$

where $H_G(t)$ is the generating function of the numbers of walks in the graph G.

Lemma 1. Let G be non-regular graph of order n. Then for every M > 0 there exists a graph $G^* \supseteq G$ of order $n^* = m \cdot n$ such that

$$\lambda_1(G^*) = d(G^*) + \Delta(G^*) \ge d(G^*) + M,$$

and

$$\lambda_1(G^*) + \lambda_1(\overline{G}^*) \ge n^* - 1 + M.$$

Proof. Let $\{\lambda_i \mid i = 1, 2, ..., n\}$ be the eigenvalues of G. Then $\{m\lambda_i \mid i = 1, 2, ..., n\}$ $1, 2, \ldots, n$ $\bigcup \{\underbrace{0, 0, \cdots, 0}_{n^*-n}\}$ are the eigenvalues of G^* . We now obtain the proof using the fact that $\lambda_1(G^*) = m \cdot \lambda_1(G)$ and $d(G^*) = m \cdot d(G)$.

Theorem 3. If G is a non-regular graph with n vertices then $|\lambda_n| < \frac{n}{2}$.

Proof. We can suppose, on the contrary, that there exists a non-regular graph Gof order n whit $|\lambda_n| \ge \frac{n}{2}$. Let m be the least integer such that $\Delta(G^*) \ge 2$. Then, $|\lambda_n(G^*)| \ge \frac{n^*}{2}$, where n^* is the order of G^* . For $k \in N$ we consider $G_k^* = \bigcup_{i=1}^k G^*$. Then $|G_k^*| = k \cdot n^* = k \cdot m \cdot n$, and its eigenvalues are $m \cdot \lambda_1 \ge m \cdot \lambda_2 \ge \cdots \ge m \cdot \lambda_n$ of multiplicity k, while 0 is the eigenvalue of G^* of the multiplicity $k \cdot n^* - k \cdot n$.

Now, we have

(6)
$$n^{*2} \cdot k^2 - n^* \cdot k = \sum_{i=1}^{n^*k} \lambda_i^{*2} + \sum_{i=1}^{n^*k} \overline{\lambda}_i^{*2} = k\lambda_1^{*2} + \dots + k\lambda_n^{*2} + k\overline{\lambda}_1^{*2} + \dots + k\overline{\lambda}_n^{*2}.$$

Using relations (1), (2) and (6) we have

(7)
$$n^{*2} \cdot k^2 - n^* \cdot k \ge k\lambda_1^{*2} + k(\frac{n^*}{2})^2 + \overline{\lambda}_1^{*2} + (k-1)(\frac{n^*}{2} - 1)^2 + (k-1)(\lambda_1 + 1)^2.$$

Using (7) by an easy calculation we find that

$$n^{*2} \cdot k^2 - n^* \cdot k \ge k \cdot \frac{n^{*2}}{2} - \frac{n^{*2}}{4} + 2(k-1) + f(\lambda_1, \overline{\lambda}_1),$$

where $f(\lambda_1, \overline{\lambda}_1) \equiv (2k - 1)\lambda_1^{*2} + \overline{\lambda}_1^{*2}$. Next, we obtain that

$$\min f(\lambda_1, \overline{\lambda}_1) = n^{*2} \cdot k^2 - \frac{k \cdot n^{*2}}{2} + \frac{(2k-1)(\Delta_* - 1)^2}{2k} + n^*(2k-1)(\Delta_* - 1).$$

Since $\lambda_1^* + \overline{\lambda}_1^* = n^*k - 1 + \Delta_*$, where $\Delta_* = \Delta(G_k^*) + \Delta(\overline{G}_k^*) \ge \Delta(G_k^*) \ge 2$, we get

$$n^{*2} \cdot k^2 - n^* \cdot k \ge n^{*2}k^2 - \frac{n^{*2}}{4} + (2k - 1) + n^* \cdot (2k - 1)$$

a contradiction.

Corollary 2. For every regular graph G, $|\lambda_n| \leq \frac{n}{2}$.

Proof. We can assume, on the contrary case, that there exists a regular graph G of order n, with $|\lambda_n| > \frac{n}{2}$. Let $|\lambda_n| = \frac{n}{2} + \varepsilon$ ($\varepsilon > 0$). Then there exists a graph G^* of order $n^* = m \cdot n$ so that

(8)
$$|\lambda_n(G^*)| = m \cdot |\lambda_n(G)| > \frac{n^*}{2} + 1$$

Let $G_* = G^* \bigcup K_1$, where K_1 is the graph with one isolated vertex. Since G_* is non-regular and according to theorem 3,

$$|\lambda_n(G_*)| < \frac{n(G_*)}{2} = \frac{n^* + 1}{2}$$

we get a contradiction to relation (9).

References

- D.Cvetković, M.Doob and H.Sachs, Spectra of Graphs-Theory and Applications, revised and enlarged edition, J.A.Barth Verlag, Heidelberg-Leipzig, 1995.
- M.Lepović, On canonical graphs and eigenvectors of graphs, Collection of scientific papers of the Faculty of Science Kragujevac, 21(1999) 75-85.
- [3] M.Lepović, On eigenvalues and main eigenvalues of a graph, Math. Moravica, Vol. 4(2000), 51-58

Department of Mathematics and Informatics Faculty of Sciences P.O. Box 60 34000 Kragujevac Serbia and Montenegro *E-mail address*: mmmvl@kg.ac.yu