Some Results on Commutativity of Rings

M. S. S. Khan

Abstract

Some new results on commutativity theorems of torsion free unital rings have been obtained.

Throughout the paper, R will denote an associative ring, and $Z(R)$ the center of R. As usual, for any $x, y, \in R$, the commutator $[x, y]=x y-y x$ and the anticommutator $x o y=x y+y x$.

A ring R is said to be commutative or anticommutative according as $[x, y]=0$ or $x \circ y=0$, for all $x, y \in R$.

An element $x \in R$ is said to be m -torsion free if $m x=0$ implies $x=0$, where m is a positive integer. It is logically interesting to investigate how far a ring is commutative or anticommutative if $[x y, y x]=0$ or $x y o y x=0$. Motivated by these observations, Gupta [2] proved that a division ring R is commutative if and only if $[x y, y x]=0$. A number of authors $[2,3]$ have extended this result in several ways. Awtar [1] established that a semi prime ring R in which $[x y, y x] \in Z(R)$ is necessarily commutative. In the same paper the possibility of extending the result for arbitrary rings has been ruled out in view of the readily available noncommutative ring of 3×3 strictly, upper triangular matrices over the ring Z of integers which satisfies the above condition.

The following example shows that the above result is not valid for arbitrary rings even if it is unital.

Example 1. Let

$$
R=\left\{\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right): a, b, c, d, \in Z\right\}
$$

Then R is a non-commutative unital ring for which $[x y, y x] \in Z(R)$ for all x, y in R.

Therefore, if one replaces Z by $(G F(p))_{2}$ in the above example, then R satisfies both the properties $[[x y, y x], x]=0$ and $[x y o y x, x]=0$, but R is not commutative.

[^0]One can observe that the ring $(G F(p))_{2}$ in the above example is of characteristic 2 and some appropriate conditions on the characteristic of the ring implies commutativity.

In this note, we prove two new results on commutativity of unital rings.
Theorem 1. Let R be an unital ring with $[x y o y x, x]=0$ for all $x, y \in R$. If R is a 2-torsion free ring, then R is commutative.

Proof. By the hypothesis, we have

$$
x\left(x y^{2} x+y x^{2} y\right)=\left(x y^{2} x+y x^{2} y\right) x, \quad \text { for all } \quad x, y \in R
$$

So

$$
\begin{equation*}
x\left[y^{2}, x\right] x+\left[y x^{2} y, x\right]=0 \tag{1}
\end{equation*}
$$

Replacing x by $x+1$ in (1), we get

$$
\begin{equation*}
\left[y^{2}, x\right]+x\left[y^{2}, x\right]+\left[y^{2}, x\right] x+x\left[y^{2}, x\right] x+\left[y^{2}, x\right]+2[y x y, x]+\left[y^{2} x y, x\right]=0 \tag{2}
\end{equation*}
$$

Using (1), equation (2) becomes

$$
\begin{equation*}
x\left[y^{2}, x\right]+\left[y^{2}, x\right] x+2\left[y^{2}, x\right]+2[y x y, x]=0 . \tag{3}
\end{equation*}
$$

Now, replacing x by $x+1$ in (3) and using (3), one gets $4\left[y^{2}, x\right]=0$.
Since R is 2 -torsion free, this gives

$$
\begin{equation*}
\left[y^{2}, x\right]=0 . \tag{4}
\end{equation*}
$$

Finally, replacing y by $y+1$ in (4) and using (4), we obtain $2[y, x]=0$.
This implies $[y, x]=0$ and yields the required result. This completes the proof.

Now, we shall prove the following result in a more general setting.
Theorem 2. Let R be an unital ring for which $\left[x y^{m} x-y x^{m} y, x\right]=0$ for all x, y in R. If R is m !-torsion-free ring, then R is commutative.

Proof. By our assumptions, we have

$$
x\left(x y^{m} x-y x^{m} y\right)=\left(x y^{m} x-y x^{m} y\right) x \quad \forall x, y \in R .
$$

This implies that

$$
\begin{equation*}
x\left[y^{m}, x\right] x=\left[y x^{m} y, x\right] \tag{5}
\end{equation*}
$$

Replacing x by $x+1$ in (4), we get

$$
\begin{align*}
& {\left[y^{m}, x\right]+x\left[y^{m}, x\right]+\left[y^{m}, x\right] x+x\left[y^{m}, x\right] x=} \\
& {\left[y\left(1+{ }^{m} C_{1} x+{ }^{m} C_{2} x^{2}+\cdots+{ }^{m} C_{m} x^{m}\right) y, x\right]} \tag{6}
\end{align*}
$$

Using (4) in (6), we obtain
(7) $\left[y^{m}, x\right]+x\left[y^{m}, x\right]+\left[y^{m}, x\right] x=\left[y\left(1+{ }^{m} C_{1} x+{ }^{m} C_{2} x^{2}+\cdots+{ }^{m} C_{m-1} x^{m-1}\right) y, x\right]$

Replacing x by $1+x$ in (7) and combining with the result thus obtained, we get

$$
\begin{gather*}
2\left[y^{m}, x\right]=\left[y \left\{m+{ }^{m} C_{2}\left(1+{ }^{2} C_{1} x\right)+{ }^{m} C_{3}\left(1+{ }^{3} C_{1} x+{ }^{3} C_{2} x^{2}\right)\right.\right. \\
\\
+{ }^{m} C_{4}\left(1+{ }^{4} C_{1} x+{ }^{4} C_{2} x^{2}+4 C_{3} x^{3}\right) \cdots \tag{8}\\
\cdots+{ }^{m} C_{m-1}\left(1+{ }^{m-1} C_{1} x+{ }^{m-1} C_{2} x^{2}+\cdots\right. \\
\left.\left.\left.\cdots+{ }^{m-1} C_{m-2} x x^{m-2}\right)\right\} y, x\right]
\end{gather*}
$$

Repeating the same arguments 3rd and 4th times, one gets

$$
\begin{align*}
& 0=\left[y \left\{{ }^{m} C_{2}{ }^{2} C_{1}+{ }^{m} C_{3}\left({ }^{3} C_{1}+{ }^{3} C_{2}\left(1+{ }^{2} C_{1} x\right)\right)+\right.\right. \\
& +{ }^{m} C_{4}\left({ }^{4} C_{1}+{ }^{4} C_{2}\left(1+{ }^{2} C_{1} x\right)+{ }^{4} C_{3}\left(1+{ }^{3} C_{1} x+{ }^{3} C_{2} x^{2}\right)+\cdots+\right. \tag{9}\\
& +{ }^{m} C_{m-1}\left({ }^{m-1} C_{1}+{ }^{m-1} C_{2}\left(1+{ }^{2} C_{1} x\right)+{ }^{m-1} C_{3}\left(1+{ }^{3} C_{1} x+{ }^{3} C_{2} x^{2}\right)+\cdots+\right. \\
& \left.\left.\left.\left.+{ }^{m-1} C_{m-2}\left(1+{ }^{m-2} C_{1} x+{ }^{m-2} C_{2} x^{2}+\cdots+{ }^{m-2} C_{m-3} x x^{m-3}\right)\right)\right)\right\} y, x\right]
\end{align*}
$$

This gives

$$
\begin{align*}
0= & {\left[y \left\{{ }^{m} C_{3}{ }^{3} C_{2}{ }^{2} C_{1}+{ }^{m} C_{4}\left({ }^{4} C_{2}{ }^{2} C_{1}+{ }^{4} C_{3}\left({ }^{3} C_{1}+{ }^{3} C_{2}\left(1+{ }^{2} C_{1} x\right)\right)\right)+\right.\right.} \\
& +\cdots+{ }^{m} C_{m-1}\left({ }^{m-1} C_{2}{ }^{2} C_{1}+{ }^{m-1} C_{3}\left({ }^{3} C_{1}+{ }^{3} C_{2}\left(1+{ }^{2} C_{1} x\right)\right)+\cdots\right. \\
\cdots+ & \cdots+{ }^{m-1} C_{m-2}\left({ }^{m-2} C_{1}+{ }^{m-2} C_{2}\left(1+{ }^{2} C_{1} x\right)+\cdots\right. \tag{10}\\
& \cdots+{ }^{m-2} C_{m-3}\left(1+{ }^{m-3} C_{1} x+{ }^{m-3} C_{2} x^{2}+\right. \\
& \left.\left.\left.\left.\left.\cdots+{ }^{m-3} C_{m-4} x^{m-4}\right)\right)\right)\right\} y, x\right]
\end{align*}
$$

Hence, repeating the process of replacing x by $x+1 m$ times, and using the previously obtained results at each stage, equation (10) yields

$$
0=\left[y\left({ }^{m} C_{m-1}{ }^{m-1} C_{m-2}{ }^{m-2} C_{m-3} \cdots{ }^{2} C_{1}\right) y, x\right] .
$$

This implies that

$$
m!\left[y^{2}, x\right]=0
$$

Since R is a m ! torsion free ring, we obtain

$$
\begin{equation*}
\left[y^{2}, x\right]=0 \tag{11}
\end{equation*}
$$

Now as in the proof of theorem 1, equation (11) can be used to show that R is commutative. This completes the proof.

References

[1] R. Awtar, A remark on the commutativity of certain rings, Proc. Amer. Math. Soc. 41 (1973) 370-372.
[2] R. N. Gupta, Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24 (1970) 572-575.
[3] Y. Hirano and H. Tominaga, A commutativity theorem for semiprime rings, Math. Japan 25 (1980), 665-667.

Department of Mathematical Sciences Mathematics Building
The University of Montana Missoula, MT 59812-0864
USA
E-mail address: shoeb21@hotmail.com

[^0]: 1991 Mathematics Subject Classification. Primary: 16U80; Secondary: 16U90.
 Key words and phrases. Commutativity of Rings, Anticommutator, Unital Ring, Torsion Free Ring.

