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Some Results on Commutativity of Rings

M. S. S. Khan

Abstract. Some new results on commutativity theorems of torsion free unital
rings have been obtained.

Throughout the paper, R will denote an associative ring, and Z(R) the center
of R. As usual, for any x, y,∈ R, the commutator [x, y] = xy − yx and the
anticommutator xoy = xy + yx.

A ring R is said to be commutative or anticommutative according as [x, y] = 0
or x ◦ y = 0, for all x, y ∈ R.

An element x ∈ R is said to be m-torsion free if mx = 0 implies x = 0, where
m is a positive integer. It is logically interesting to investigate how far a ring
is commutative or anticommutative if [xy, yx] = 0 or xyoyx = 0. Motivated by
these observations, Gupta [2] proved that a division ring R is commutative if and
only if [xy, yx] = 0. A number of authors [2, 3] have extended this result in several
ways. Awtar [1] established that a semi prime ring R in which [xy, yx] ∈ Z(R)
is necessarily commutative. In the same paper the possibility of extending the
result for arbitrary rings has been ruled out in view of the readily available non-
commutative ring of 3 × 3 strictly, upper triangular matrices over the ring Z of
integers which satisfies the above condition.

The following example shows that the above result is not valid for arbitrary
rings even if it is unital.

Example 1. Let

R =











a b c

0 a d

0 0 a



 : a, b, c, d,∈ Z







.

Then R is a non-commutative unital ring for which [xy, yx] ∈ Z(R) for all x, y

in R.
Therefore, if one replaces Z by (GF (p))2 in the above example, then R satisfies

both the properties [[xy, yx], x] = 0 and [xyoyx, x] = 0, but R is not commutative.
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One can observe that the ring (GF (p))2 in the above example is of character-
istic 2 and some appropriate conditions on the characteristic of the ring implies
commutativity.

In this note, we prove two new results on commutativity of unital rings.

Theorem 1. Let R be an unital ring with [xyoyx, x] = 0 for all x, y ∈ R. If R is

a 2–torsion free ring, then R is commutative.

Proof. By the hypothesis, we have

x(xy2x + yx2y) = (xy2x + yx2y)x, for all x, y ∈ R.

So

(1) x[y2, x]x + [yx2y, x] = 0.

Replacing x by x + 1 in (1), we get

(2) [y2, x] + x[y2, x] + [y2, x]x + x[y2, x]x + [y2, x] + 2[yxy, x] + [y2xy, x] = 0.

Using (1), equation (2) becomes

(3) x[y2, x] + [y2, x]x + 2[y2, x] + 2[yxy, x] = 0.

Now, replacing x by x + 1 in (3) and using (3), one gets 4[y2, x] = 0.
Since R is 2–torsion free, this gives

(4) [y2, x] = 0.

Finally, replacing y by y + 1 in (4) and using (4), we obtain 2[y, x] = 0.
This implies [y, x] = 0 and yields the required result. This completes the

proof. �

Now, we shall prove the following result in a more general setting.

Theorem 2. Let R be an unital ring for which [xymx − yxmy, x] = 0 for all x, y

in R. If R is m!–torsion-free ring, then R is commutative.

Proof. By our assumptions, we have

x(xymx − yxmy) = (xymx − yxmy)x ∀x, y ∈ R.

This implies that

(5) x[ym, x]x = [yxmy, x]

Replacing x by x + 1 in (4), we get

(6)
[ym, x] + x[ym, x] + [ym, x]x + x[ym, x]x =
[y(1 +m C1x +m C2x

2 + · · · +m Cmxm)y, x]

Using (4) in (6), we obtain

(7) [ym, x]+x[ym, x]+ [ym, x]x = [y(1+m C1x+m C2x
2 + · · ·+m Cm−1x

m−1)y, x]
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Replacing x by 1 + x in (7) and combining with the result thus obtained, we
get

(8)

2[ym, x] =

[

y
{

m+mC2(1 + 2C1x) + mC3(1 + 3C1x + 3C2x
2)

+mC4(1 + 4C1x + 4C2x
2 + 4C3x

3) · · ·
· · ·+mCm−1(1 + m−1C1x + m−1C2x

2 + · · ·

· · ·+m−1Cm−2x
m−2)

}

y, x

]

Repeating the same arguments 3rd and 4th times, one gets

(9)

0 =

[

y

{

mC2
2C1 + mC3(

3C1 + 3C2(1 + 2C1x))+

+mC4

(

4C1 + 4C2(1 + 2C1x) + 4C3(1 + 3C1x + 3C2x
2) + · · ·+

+mCm−1

(

m−1C1 + m−1C2(1 + 2C1x) + m−1C3(1 + 3C1x + 3C2x
2) + · · ·+

+m−1Cm−2(1 + m−2C1x + m−2C2x
2 + · · · + m−2Cm−3x

m−3)
)

)}

y, x

]

This gives

(10)

0 =

[

y

{

mC3
3C2

2C1 + mC4(
4C2

2C1 + 4C3(
3C1 + 3C2(1 + 2C1x)))+

+ · · ·+mCm−1

(

m−1C2
2C1 + m−1C3(

3C1 + 3C2(1 + 2C1x)) + · · ·

· · · + · · ·+m−1Cm−2

(

m−2C1 + m−2C2(1 +2 C1x) + · · ·

· · ·+m−2Cm−3

(

1 + m−3C1x + m−3C2x
2+

· · ·+m−3Cm−4x
m−4

)

)

)}

y, x

]

Hence, repeating the process of replacing x by x + 1 m times, and using the
previously obtained results at each stage, equation (10) yields

0 = [y(mCm−1
m−1Cm−2

m−2Cm−3 · · ·
2C1)y, x].

This implies that

m![y2, x] = 0.

Since R is a m! torsion free ring, we obtain

(11) [y2, x] = 0.

Now as in the proof of theorem 1, equation (11) can be used to show that R is
commutative. This completes the proof. �



10 Some Results on Commutativity of Rings

References

[1] R. Awtar, A remark on the commutativity of certain rings, Proc. Amer. Math. Soc. 41 (1973)
370-372.

[2] R. N. Gupta, Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24 (1970)
572-575.

[3] Y. Hirano and H. Tominaga, A commutativity theorem for semiprime rings, Math. Japan 25

(1980), 665-667.

Department of Mathematical Sciences

Mathematics Building

The University of Montana

Missoula, MT 59812-0864

USA

E-mail address: shoeb21@hotmail.com


