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New Generalizations of Caristi’s Fixed Point

Theorem Via Brézis–Browder Principle

Temistocle B̂ırsan

Abstract. In this paper, some generalizations of Caristi’s fixed point theorem
are obtained via the Brézis–Browder principle: Theorems 2.1, 2.2, 3.1, and 3.2.

1. Introduction

In 1976, J. Caristi [4] has established a fixed point theorem for functions on a
complete metric space, and which are not assumed to be continuous. The particu-
lar interest for this result derives from its numerous applications in the nonlinear
functional analysis as well as from the close relation with the mathematical back-
grounds: axiom of choice, and weaker forms of it ([6, 7, 10] etc.). There exists
a rich literature concerning the various generalizations of Caristi’s fixed point
theorem ([1, 2, 5, 6, 8, 9] etc.).

The objective of this paper is to indicate some new extensions of Caristi’s fixed
point result via Brézis–Browder principle [3].

We state this principle in the form:

Theorem 1.1. Let (X,≤) be a partial ordered set and let θ : X → R ∪ {+∞} be
a function. Suppose that

1◦ every increasing sequence in X is bounded, and
2◦ θ is an increasing function.

Then, for each x0 ∈ X there exists an element x∗ ∈ X, with x0 ≤ x∗, such that
x∗ ≤ x⇒ θ(x) = θ(x∗).

We observe that, in order to prove Theorem 1.1, we need to employ only the
countable axiom of choice.

2. Fixed points for the functions

The following statement includes many generalizations of Caristi’s fixed point
theorem.
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Theorem 2.1. Let (X, d) be a complete metric space, f : X → X be an arbitrary
functions, and ϕ : Xk+1 → R (k fixed positive integer) be such that the function

x→ ϕ(x, fx, f2x, . . . , fkx), x ∈ X,

is lower semicontinuous (l.s.c) and bounded below. If the function f satisfies

(1) d(x, fx) ≤ ϕ(x, fx, . . . , fkx) − ϕ(fx, f2x, . . . , fk+1x), x ∈ X,

then f has a fixed point.

Proof. The function θ : X → R defined by θ(x) = −ϕ(x, fx, . . . , fkx) is upper
semicontinuous (u.s.c) and bounded above. Then (1) can be writen in the form

(1′) d(x, fx) ≤ θ(fx) − θ(x), x ∈ X.

Also, it is easy to see that the relation ≤ defined by

(2) x ≤ y ⇔ θ(x) + d(x, y) ≤ θ(y)

is a partial order on X. By (2), θ is increasing on X with respect to ≤.
Now, let (xn)n be an increasing sequence in X. Then (θ(xn))n is bounded above

and increasing in R. Consequently, (θ(xn))n is convergent, hence, it is a Cauchy
sequence. For n ≤ m we have xn ≤ xm, hence

(3) θ(xn) + d(xn, xm) ≤ θ(xm)

or
d(xn, xm) ≤ θ(xm) − θ(xn),

and, consequently, (xn)n is a Cauchy sequence. The space X being complete,
there exists ξ ∈ X such that xn →

n
ξ. Passing to the limit in (3) as m → ∞, we

deduce
θ(xn) + d(xn, ξ) ≤ lim

m→∞

θ(xm).

Because θ is l. s. c. we have limm→∞ θ(xm) ≤ θ(ξ). Therefore, we obtain

θ(xn) + d(xn, ξ) ≤ θ(ξ), n ∈ N,

that is xn ≤ ξ, n ∈ N. Hence, (xn)n is bounded. Thus, we can apply the Brézis–
Browder principle to the space (X,≤) and the function θ introduced above: for
any x0 ∈ X there exists x∗ ∈ X, with x0 ≤ x∗ such that

(4) x∗ ≤ x⇒ θ(x) = θ(x∗).

We shall prove that x∗ is a fixed point of f . Indeed, by (1′) we have

(5) d(x∗, fx∗) ≤ θ(fx∗) − θ(x∗)

and, taking into account (2), we deduce x∗ ≤ fx∗. In view of (4), it follows
θ(fx∗) = θ(x∗) and, as a consequence of (5), we obtain d(x∗, fx∗) ≤ 0. Hence
x∗ = fx∗. �

An easy generalization of the preceding theorem is given by

Theorem 2.2. Let X, f , ϕ be given as in Theorem 2.1. If the function f verifies
the following condition: for any x ∈ X there exists y ∈ X such that
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(i) d(x, y) ≤ ϕ(x, fx, . . . , fkx) − ϕ(y, fy, . . . , fky), and
(ii) d(y, fy) ≤ ϕ(y, fy, . . . , fky) − ϕ(fx, f2y, . . . , fk+1y), then f has a fixed

point.

Proof. We define the function θ and the partial order ≤ on X as in the proof of
theorem 2.1. Therefore, the relations (i) and (ii) can be rewritten in the form

(j) d(x, y) ≤ θ(y) − θ(x), or x ≤ y (by (2)), and
(jj) d(y, fy) ≤ θ(fy) − θ(y), or y ≤ fy.

One can similarly prove that an increasing sequence in X is bounded.
Consequently, by Brézis–Browder principle, for each x0 ∈ X there exists x∗ ∈

X, with x0 ≤ x∗, such that the implication (4) holds. We prove that x∗ is a fixed
point of f in an analogous manner as in the proof of theorem 2.1, except for few
modifications. Indeed, by our hypotheses, for x∗ there is y∗ ∈ X such that

d(x∗, y∗) ≤ θ(y∗) − θ(x∗), i.e. x∗ ≤ y∗, and(6)

d(y∗, fy∗) ≤ θ(fy∗) − θ(y∗), i.e. y∗ ≤ fy∗.(7)

By (4), the relations x∗ ≤ y∗ and y∗ ≤ fy∗ imply that θ(x∗) = θ(y∗) = θ(fy∗).
In view of (6), (7), we obtain d(x∗, y∗) ≤ 0 and d(y∗, fy∗) ≤ 0. Hence x∗ = y∗ =
fy∗. �

We mention some interesting cases of functions ϕ : Xk+1 → R.

I If k = 0, then (1) takes the form

(8) d(x, fx) ≤ ϕ(x) − ϕ(fx), x ∈ X,

and theorem 2.1 is just Caristi’s fixed point theorem, while theorem 2.2 is
Theorem 4.4 in [1].

II If ϕ(x0, x1, . . . , xk) = ψ0(x0) + ψ1(x1) + · · · + ψk(xk), then the condition
(1) becomes

d(x, fx) ≤ [ψ0(x) − ψ0(fx)] + [ψ1(fx) − ψ1(f
2x)] + · · ·+(9)

+ [ψk(f
kx) − ψk(f

k+1x)], x ∈ X.

III If ϕ(x0, x1, . . . , xk) = α0ψ(x0)+α1ψ(x1)+· · ·+αkψ(xk) (i. e. in the case II
we take ψ0 = α0ψ, ψ1 = α1ψ, . . . , ψk = αkψ, where α0, α1, . . . , αk ∈ R),
then (1) has the form

d(x, fx) ≤ α0ψ(x) + (α1 − α0)ψ(fx) + · · ·+(10)

+ (αk − αk−1)ψ(fkx) − αkψ(fk+1x), x ∈ X.

IV If ϕ(x0, x1, . . . , xk) = ψ(x0) + ψ(x1) + · · · + ψ(xk) (i. e. in the case III
α0 = α1 = · · · = αk = 1), then (1) can be rewritten as

(11) d(x, fx) ≤ ψ(x) − ψ(fk+1x), x ∈ X.
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V If ϕ(x0, x1, . . . , xk) = ψ0(x0) +ψ1(x2) + · · ·+ψk(x2k), then the inequality
(1) is equivalent to

d(x, fx) ≤ [ψ0(x) − ψ0(fx)] + [ψ1(f
2x) − ψ1(f

3x)] + · · ·+(12)

+ [ψk(f
2kx) − ψk(f

2k+1x)], x ∈ X.

VI Taking ψ0 = ψ1 = · · · = ψk = ψ in V, we obtain ϕ(x0, x1, . . . , xk) =
ψ(x0) + ψ(x2) + · · · + ψ(x2k), and, therefore

d(x, fx) ≤ ψ(x) − ψ(fx) + ψ(f2x) − ψ(f3x) + · · ·+(13)

+ ψ(f2kx) − ψ(f2k+1x), x ∈ X.

This condition is utilized by M. R. Tasković in theorem 1 of [8].
VII Taking ψ0 = ψ1 = · · · = ψk = −ψ in the case V, then we obtain the

inequality

(14) d(x, fx) ≤ ψ(fx) − ψ(x) + · · · + ψ(f2k+1x) − ψ(f2kx), x ∈ X,

which is also utilized by M. R. Tasković (theorem 1a [9]).

We conclude this section with two remarks concerning the condition of l. s. c.
imposed to the function x→ ϕ(x, fx, . . . , fkx), x ∈ X.

Remark 2.1. If f : X → X is a continuous and ϕ : Xk+1 → R is l. s. c., then
x→ ϕ(x, fx. . . . , fkx), x ∈ X, is l. s. c.

Remark 2.2. If f : X → X is continuous and ψ : X → R is l. s. c., then the
function x→ ψ(x) + ψ(f2x) + · · · + ψ(f2kx), x ∈ X (see (13) and (14)) is l. s. c.

3. Fixed points for the multifunctions

Let F : X  X be a multifunction with nonempty values. A point ξ ∈ X is
said to be a fixed point for F if ξ ∈ Fξ. The orbit of x ∈ X, denoted by O(x,∞),
is a sequence (xn)n∈N which verify the conditions: x0 = x, xn+1 ∈ Fxn, n ∈ N.

Theorem 3.1. Let (X, d) be a complete metric space and let F : X  X be
a multifunction with nonempty values. Suppose that for each x ∈ X an orbit
O(x,∞) is given, and ϕ : Xk+1 → R is a function such that the function x →
ϕ(x0, x1, . . . , xk), x ∈ X, where x0, x1, . . . , xk ∈ O(x,∞), is l. s. c. and bounded
below. If for each x = x0 ∈ X

(15) d(x, x1) ≤ ϕ(x0, x1, . . . , xk) − ϕ(x1, x2, . . . , xk+1),

then the multifunction F admits a fixed point.

Proof. Define the function θ : X → R by θ(x) = −ϕ(x0, x1, . . . , xk), where
x0, x1, . . . , xk ∈ O(x,∞). Then, the relation ≤ given by x ≤ y ⇔ θ(x) + d(x, y) ≤
θ(y) is a partial order on X. As in theorem 2.1, we can apply the Brézis–Browder
principle. Hence, for each x0 ∈ X there is x∗ ∈ X, with x0 ≤ x∗, such that
x∗ ≤ x⇒ θ(x) = θ(x∗). By (15), we have

(16) d(x∗, x∗1) ≤ θ(x∗1) − θ(x∗),
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that is x∗ ≤ x∗1 (with x∗1 ∈ Fx∗). Therefore, θ(x∗1) = θ(x∗), and, taking into
account (16), it follows that x∗ = x∗1. Hence x∗ ∈ Fx∗, that is x∗ is a fixed point
of F . �

Remark 3.1. In fact, the proof utilizes only the finite orbits O(x, k + 1) :=
{x, x1, . . . , xk+1}, where x0 = x and xi+1 ∈ Fxi, i = 1, k.

The next theorem generalizes theorem 3.1 in a similar manner as theorem 2.2
generalizes theorem 2.1.

Theorem 3.2. Let X, f , ϕ be given as in theorem 3.1. If the multifunction F

verifies the condition that for each x ∈ X there is y ∈ X such that

d(x, y) ≤ ϕ(x0, x1, . . . , xk) − ϕ(y0, y1, . . . , yk), and

d(y, y1) ≤ ϕ(y0, y1, . . . , yk) − ϕ(y1, y2, . . . , yk+1),

where x0, x1, . . . , xk ∈ O(x,∞) and y0, y1, . . . , yk+1 ∈ O(y,∞), then F admits a
fixed point.
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