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AN EXTENSION OF BAIRE’S CATEGORY

THEOREM TO RELATOR SPACES

Árpád Száz∗

Abstract. As a particular case of a more general result, we
show that ifR is a topological, topologically filtered, topologically
regular relator on X such that R is either topologically relatively
locally sequentially compact, or uniformly countable and properly
sequentially convergence-adherence complete, then R is a Baire
relator.
IfX is a nonvoid set, then by a relatorR onX we mean a nonvoid
family of binary relations on X . The relator R is called a Baire
relator if the fat subsets of the relator spaceX(R) are not meager.
A subset A of X(R) is called fat if intR(A) �= ∅. While, the set A
is called meager if it is a countable union of rare (nowhere dense)
sets.

1. A few basic facts on relations and relators

A subset F of a product set X × Y is called a relation from X to Y . In
particular, the relations ∆X = {(x, x) x ∈ X} and X2 = X×X are called the
identity and universal relations on X, respectively.

Namely, if in particular X = Y , then we may simply say that F is
a relation on X. Note that if F is a relation from X to Y , then F is also a
relation on X∪Y . Therefore, it is frequently not a severe restriction to assume
that X = Y .

If F is a relation on X, and moreover x ∈ X and A ⊂ X, then the sets
F (x) = {y ∈ X (x, y) ∈ F} and F [A] =

⋃
x∈A F (x) are called the images of x

and A under F , respectively. Whenever A ∈ X seems unlikely, we may write
F (A) in place of F [A].
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If F is a relation on X, then the values F (x), where x ∈ X, uniquely
determine F since we have F =

⋃
x∈X{x}×F (x). Therefore, the inverse F−1

of F can be defined such that F−1(x) = {y ∈ X : x ∈ F (y)} for all x ∈ X.
Moreover, if G is also a relation on X, then the composition F ◦G of F and
G can be defined such that (F ◦G)(x) = F

(
G(x)

)
for all x ∈ X.

A relation f on X is called a function if for each x ∈ Df = f−1(X) there
exists y ∈ X such that f(x) = {y}. In this case, by identifying singletons
with their elements, we usually write f(x) = y. Moreover, sometimes we also
write (fx)x∈Df

= f and {fx}x∈Df
= f(X), where fx = f(x).

A relation R on X is called reflexive, symmetric, transitive, and directed
if ∆X ⊂ R, R = R−1, R◦R ⊂ R, and X2 = R−1◦R, respectively. Moreover, a
reflexive relation is called a tolerance (preorder) if it is symmetric (transitive).
And a directed preorder is called a direction.

If R is a relation on X, then we write Rn = R ◦Rn−1 for all n ∈ N by
agreeing that R0 = ∆X . Moreover, we also write R∞ =

⋃∞
n=0R

n. Note that
thus R∞ is the smallest preorder relation on X such that R ⊂ R∞.

A nonvoid family R of relations on a nonvoid set X is called a relator
on X, and the ordered pair X(R) = (X ,R) is called a relator space. Relator
spaces are straightforward generalizations of the various ordered sets and
uniform spaces [19]. They deserve to be widely investigated because of the
following two facts.

If D is a nonvoid family of certain distance functions on X, then the
relator RD consisting of all surroundings Bd

r = {(x, y) ∈ X2 : d(x, y) < r},
where d ∈ D and r > 0, is a more convenient mean of defining the basic
notions of analysis in the space X(D) than the family of all open subsets of
X(D), or even the family D itself.

Moreover, all reasonable generalizations of the usual topological struc-
tures (such as proximities, closures, topologies, filters and convergences, for
instance) can be easily derived from relators (according to the results of [23]
and [18]), and thus they need not be studied separately.

For instance, if A is a certain generalized topology or a nonvoid stack
(ascending system) in X, then A can be easily derived (according to the
forthcoming definitions of the families TR and ER ) from the Davis-Pervin
relator RA consisting of all preorders RA = A2 ∪ Ac ×X, where A ∈ A and
Ac = X \ A.

Note that, in contrast to the preorders RA, the surroundings Bd
r are

usually tolerances. Therefore, besides preorder relators, tolerance relators are
also important particular cases of reflexive relators. Unfortunately, the class
of all reflexive relators proved to be inadequate for some important purposes.
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2. Some important basic tools in relator spaces

If R is a relator on X, then for any A,B ⊂ X and x ∈ X we write:
B ∈ IntR(A) if R(B) ⊂ A for some R ∈ R,(1)
B ∈ ClR(A) if R(B) ∩A �= ∅ for all R ∈ R;(2)

x ∈ intR(A) if {x} ∈ IntR(A),(3)
x ∈ clR(A) if {x} ∈ ClR(A).(4)

Moreover, we also write
A ∈ τR if A ∈ IntR(A),(5)
A ∈ τ-R if Ac /∈ ClR(A)(6)
A ∈ TR if A ⊂ intR(A),(7)
A ∈ FR if clR(A) ⊂ A;(8)
A ∈ ER if intR(A) �= ∅,(9)
A ∈ DR if clR(A) = X;(10)

and
A ∈ NR if clR(A) /∈ ER,(11)

A ∈MR if A =
∞⋃

n=1

An(12)

for some sequence (An)∞n=1 in NR.
The relations IntR and intR are called the proximal and topological

interiors induced by R, respectively. While, the members of the families τR
and TR are called the proximally and topologically open subsets of X(R),
respectively. And the members of the families ER, NR andMR are called the
fat, rare and meager subsets of X(R), respectively.

The fat sets are frequently more important tools than the open sets. For
instance, if ≺ is a certain order relation on X, then T≺ and E≺ are just the
families of all ascending and residual subsets of the ordered set X(≺), respec-
tively. Moreover, it may occur that TR = {∅,X}, but ER �= {X}. Therefore,
the fat sets may be useful tools even in a quasi-topologically indiscrete relator
space.

A function x of a preordered set Γ into X is called a Γ-net in X. The
Γ-net x is said to be eventually (frequently) in a subset A of X if x−1(A) is a
fat (dense) subset of Γ. Therefore, Γ could be here an arbitrary relator space.
However, preordered nets are usually sufficient.

If R is a relator on X, then for any Γ-nets x and y in X and a ∈ X we
write:

y ∈ LimR(x) if the net (y, x)(13)
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is eventually in each R ∈ R,

y ∈ AdhR(x) if the net (y, x)(14)

is frequently in each R ∈ R;

a ∈ lim
R

(x) if (a) ∈ LimR(x),(15)

a ∈ adhR(x) if (a) ∈ AdhR(x);(16)

where (a) means now the constant net (a)γ∈Γ = Γ× {a}. Note that if Γ fails
to be directed, then limR(x) need not be a subset of adhR(x).

3. Some important unary operations for relators

If R is a relator on X, then the relators

R∗ = {S ⊂ X2 : ∃R ∈ R : R ⊂ S},
R# = {S ⊂ X2 : ∀A ⊂ X : A ∈ IntR

(
S(A)

)
},

R∧ = {S ⊂ X2 : ∀x ∈ X : x ∈ intR
(
S(x)

)
},

R� = {S ⊂ X2 : ∀x ∈ X : S(x) ∈ ER}
are called the uniform, proximal, topological, and paratopological refinements
of R, respectively.

On the other hand, the relators

Rc = {Rc : R ∈ R} and R−1 = {R−1 : R ∈ R}
are called the elementwise complement and inverse of R, respectively. More-
over, the relators

R∞ = {R∞ R ∈ R} and R∂ = {S ⊂ X2 S∞ ∈ R}
are called the direct and inverse preorder modifications of R, respectively.
And, for instance, the relators R#∂ =

(
R#

)∂ and R∧∞ =
(
R∧
)∞ are called

the super-proximal refinement and quasi-topological modification of R, re-
spectively.

The importance of the above refinement and modification operations is
apparent from the following assertions which have been proved in [22], [25],
[11] and [14].

Theorem 3.1. If R is a relator on X, then
(1) R∗ is the largest relator on X such that LimR = LimR∗ , or equiva-

lently AdhR = AdhR∗;
(2) R# is the largest relator on X such that IntR = IntR#, or equiva-

lently ClR = ClR#;
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(3) R∧ is the largest relator on X such that limR = limR∧ , or equiva-
lently adhR = adhR∧ ;

(4) R∧ is the largest relator on X such that intR = intR∧ , or equiva-
lently clR = clR∧ ;

(5) R� is the largest relator on X such that ER = ER� , or equivalently
DR = DR� ;

(6) R#∂ is the largest relator on X such that τR = τR#∂
, or equivalently

τ-R = τ-R#∂
;

(7) R∧∞ is the largest preorder relator on X such that TR = TR∧∞, or
equivalently FR = FR∧∞ .

Remark 3.2. If R is a relator on X, then in general there does not
exist a largest relator R� such that TR = TR� .

In this respect, it is also worth mentioning that the operation #∂ is not
stable in the sense that in general {X2}#∂ �= {X2}.

Moreover, the operations ∧ and � are not inversion compatible. There-
fore, sometimes we shall also need the relators

R∨ =
(
R∧
)−1 and R� =

(
R�)−1

.

Remark 3.3. Because of Theorem 3.1, two relators R and S on X
may, for instance, be called topologically equivalent if R∧ = S∧. And the
relator R may be called topologically fine if R∧ = R.

Moreover, the relator R may be called topologically simple (topolog-
ically countable) if it is topologically equivalent to a singleton (countable)
relator. Therefore, a singleton (countable) relator will be called properly sim-
ple (properly countable).

Remark 3.4. Finally, we note that besides the above basic unary op-
erations it is also convenient to consider some binary operations for relators.

For instance, for any relators R and S on X, we may naturally write

R ◦ S = {R ◦ S R ∈ R, S ∈ S
}

and R ∧ S = {R ∩ S R ∈ R, S ∈ S
}
.

Note that thus we have R∩S ⊂ R∧ S and R∪S ⊂
(
R∧S

)∗, for instance.

4. Reflexive and topological relators

Definicija 4.1. If R is a relator on X, then we say that:
(1) R is reflexive if x ∈ R(x) for all x ∈ X and R ∈ R;
(2) R is quasi-topological if x ∈ intR

(
intR

(
R(x)

))
for all x ∈ X and

R ∈ R;
(3) R is topological if for all x ∈ X and R ∈ R there exists V ∈ TR

such that x ∈ V ⊂ R(x).



78 Árpád Száz

Remark 4.2. Note that the inclusion x ∈ intR
(
R(x)

)
trivially holds

for all x ∈ X and R ∈ R.

Moreover, the relator R may be called proximal if for any A ⊂ X and
R ∈ R there exists V ∈ τR such that A ⊂ V ⊂ R(A).

The appropriateness of Definition 3.1 is quite obvious from the following
three basic theorems which have been proved in [20], [22] and [28].

Theorem 4.3. If R is a relator on X, then the following assertions
are equivalent:

(1) R is reflexive;
(2)

⋂
R is reflexive;

(3) intR(A) ⊂ A for all A ⊂ X;
(4) A ⊂ clR(A) for all A ⊂ X.

Remark 4.4. The reflexivity of the relator R can also be nicely char-
acterized in terms of the relations IntR, ClR, LimR and AdhR.

For instance, we can easily see thatR is reflexive if and only if IntR(A) ⊂
P(A) for all A ⊂ X. Hence, we can immediately infer that IntR is transitive
whenever R is reflexive.

Theorem 4.5. If R is a relator on X, then the following assertions
are equivalent:

(1) R is quasi-topological;
(2) intR

(
R(x)

)
∈ TR for all x ∈ X and R ∈ R;

(3) intR(A) ∈ TR for all A ⊂ X;
(4) clR(A) ∈ FR for all A ⊂ X.

Theorem 4.6. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topological;
(2) R is reflexive and quasi-topological;
(3) intR(A) =

⋃
{V ∈ TR : V ⊂ A} for all A ⊂ X;

(4) clR(A) =
⋂
{W ∈ FR : A ⊂W} for all A ⊂ X.

In view of the latter two theorems, we may also naturally introduce the
following

Definicija 4.7. A relator R on X is called weakly (strongly) quasi-
topological if clR({x}) ∈ FR for all x ∈ X

(
R(x) ∈ TR for all x ∈ X and

R ∈ R
)
.

Moreover, the relator R is called weakly (strongly) topological if it is
reflexive and weakly (strongly) quasi-topological.
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The importance of strongly topological relators lies mainly in the fol-
lowing theorem which has also been proved in [20], [22] and [28].

Theorem 4.8. If R is a relator on X and R◦ is a relation on X for
each R ∈ R such that

R◦(x) = intR
(
R(x)

)
for all x ∈ X, then R◦ = {R◦ : R ∈ R} is a strongly topological relator on X

such that:
(1) R is quasi-topological ⇐⇒ R◦ ⊂ R∧;
(2) R is reflexive ⇐⇒ R ⊂

(
R◦
)∗ ⇐⇒ R ⊂

(
R◦
)∧.

Now, as an immediate consequence of the above theorem and the topo-
logical invariance of topologicalness, we can also state

Corollary 4.9. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topological;
(2) R∧ =

(
R◦
)∧.

In this respect, it is also worth mentioning that we also have the fol-
lowing

Theorem 4.10. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topological;
(2) R∧ =

(
RTR

)∧;
(3) R∧ =

(
R∧∞

)∧;
(4) R is topologically equivalent to a preorder relator.

Remark 4.11. Note that if T is a topology on X, then the preorder
relator RT is not, in general, weakly symmetric. If D is a nonvoid family of
pseudo-metrics on X, then the tolerance relator RD is not, in general, strongly
transitive.

5. Symmetric, transitive and regular relators

Definicija 5.1. If R is a relator on X, then we say that:
(1) R is properly symmetric if R−1 ⊂ R;
(2) R is topologically symmetric if R∨ ⊂ R∧;
(3) R is topologically semisymmetric if R−1 ⊂ R∧.

Remark 5.2. The relator R may be called weakly (strongly) symmet-
ric if

⋂
R ( each member of R ) is symmetric.
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The following theorem of [10] shows that topological symmetry is a
rather restrictive property.

Theorem 5.3. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically symmetric;
(2) R is topologically simple and weakly symmetric.

Definicija 5.4. If R is a relator on X, then we say that:
(1) R is uniformly transitive if R ⊂ (R ◦R)∗;
(2) R is topologically transitive if R ⊂

(
R∧ ◦ R

)∧;
(3) R is strongly topologically transitive if R ⊂ (R ◦R

)∧;
The following theorem of [22] shows that, in contrast to topological

symmetry, topological transitivity is not a very restrictive property.

Theorem 5.5. If R is a reflexive relator on X, then the following as-
sertions are equivalent:

(1) R is quasi-topological;
(2) R is topologically transitive.

As a combination of topological symmetry and topological transitivity,
we may also naturally introduce the following

Definicija 5.6. A relator R on X is called topologically regular if

R ⊂
(
R∨ ◦ R

)∧
,

where R∨ =
(
R∧
)−1.

The appropriateness of this notion is apparent from following theorem
of [17].

Theorem 5.7. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically regular;
(2) for any x ∈ X and A ⊂ X with x /∈ clR(A) there exists U ∈ R and

V ∈ R∧ such that U(x) ∩ V (A) = ∅.
Moreover, improving some theorems of [20], [28] and [30], we can also

easily prove the following

Theorem 5.8. If R is a relator on X and R− is a relation on X for
each R ∈ R such that

R−(x) = clR
(
R(x)

)
for all x ∈ X, then R− = {R− : R ∈ R} is a relator on X such that:

(1) R is reflexive =⇒ R− ⊂ R∗;
(2) R is topologically regular ⇐⇒ R ⊂

(
R−

)∧.
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Hint. To prove the ”if part” of (2), note that if R ⊂
(
R−

)∧, then for
any x ∈ X and R ∈ R there exists U ∈ R such that clR

(
U(x)

)
⊂ R(x), and

thus R(x)c ⊂ clR
(
U(x)

)c. Therefore, for each y ∈ R(x)c there exists Vy ∈ R
such that Vy(y)∩U(x) = ∅. Define a relation V on X such that V (y) = X for
all y ∈ R(x) and V (y) = Vy(y) for y ∈ R(x)c. Then, it is clear that V ∈ R∧
such that V (y)∩U(x) = ∅, and thus y /∈ V −1

(
U(x)

)
for all y ∈ R(x)c. Hence,

it follows that V −1
(
U(x)

)
⊂ R(x). Therefore, R ⊂

(
R∨ ◦R

)∧, and thus R is
topologically regular.

Now, as an immediate consequence of the above theorem and the topo-
logical invariance of reflexivity and topological regularity, we can also state

Corollary 5.9. If R is a reflexive, topologically regular relator on X,
and then R− is a reflexive, topologically regular relator on X such that R∧ =(
R−

)∧.
Remark 5.10. Concerning the above definitions, it is also worth men-

tioning that if R is topologically symmetric and topologically transitive, or
R is topologically semisymmetric and strongly topologically transitive, then
R is already topologically regular.

On the other hand, if R is topologically symmetric and topologically
regular, then R is topologically transitive. Moreover, if R is reflexive and
topologically regular, then R weakly symmetric. (This depends on the fact
that R∨ is always topologically simple.)

Definicija 5.11. If R is a relator on X, then we say that:
(1) R is properly filtered if R ∧R ⊂ R;
(2) R is uniformly filtered if R∧R ⊂ R∗;
(3) R is topologically filtered if R∧R ⊂ R∧.
Remark 5.12. Moreover, the relator R may, for instance, be called

totally filtered if for any R,S ∈ R we have either R ⊂ S or S ⊂ R.

The importance of topological filteredness is apparent from the following
theorem of [20] and [22].

Theorem 5.13. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically filtered;
(2) clR(A ∪B) = clR(A) ∪ clR(B) for all A,B ⊂ X;
(3) intR(A ∩B) = intR(A) ∩ intR(B) for all A,B ⊂ X.

Corollary 5.14. If R is a topologically filtered relator on X, then the
families TR and FR are closed under finite intersections and unions, respec-
tively.
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6. Cauchy nets and completeness in relator spaces

Definicija 6.1. A net x in a relator space X(R) is called convergent
(adherent) if limR(x) �= ∅

(
adhR(x) �= ∅

)
.

Moreover, a net x in a relator space X(R) is called properly convergence
(adherence) Cauchy if it is convergent (adherent) in each of the simple relator
spaces X(R) where R ∈ R.

Remark 6.2. Since

lim
R

(x) =
⋂

R∈R
lim
R

(x)

(
adhR(x) =

⋂
R∈R

adhR(x)

)
,

it is clear that a convergent (adherent) net is in particular properly conver-
gence (adherence) Cauchy.

Moreover, by calling a net x in a relator space X(R) topologically con-
vergence (adherence) Cauchy if it is properly convergence (adherence) Cauchy
in the space X

(
R∧
)
, we can easily establish the following extension of [26,

Theorem 2.1].

Theorem 6.3. If x is a Γ-net in a relator space X(R), then the fol-
lowing assertions are equivalent:

(1) x is convergent (adherent);
(2) x is topologically convergence (adherence) Cauchy.

Remark 6.4. Therefore, the notions of a convergent (adherent) net
and a convergence (adherence) Cauchy net are, in a certain sense, equivalent.

Moreover, it is also worth mentioning that the notion of a convergence
(adherence) Cauchy net is also closely related to the notion of an infinitesimal
family.

Definicija 6.5. A family A of subsets of a relator space X(R) is called
infinitesimal if for each R ∈ R there exist x ∈ X and A ∈ A such that
A ⊂ R(x).

Remark 6.6. Now, an indexed family (Ai)i∈I of subsets of X(R) may
be called infinitesimal if the unindexed family {Ai}i∈I is infinitesimal.

Moreover, by using the notation x(A) = {x(A)}A∈A for any Γ-net x in
X and A ⊂ P(Γ), we can easily establish the following

Theorem 6.7. If x is a Γ-net in a relator space X(R), then the fol-
lowing assertions are equivalent:

(1) x is properly convergence (adherence) Cauchy;
(2) the family x(EΓ)

(
x(DΓ)

)
is infinitesimal.
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Definicija 6.8. An ordered pair (R,S) of relators on X is called prop-
erly sequentially convergence-adherence complete if every properly convergence
Cauchy sequence in X(S) is adherent in X(R).

Remark 6.9. Now, by identifying singletons with their elements, a re-
lator R on X may be naturally called properly sequentially convergence-
adherence complete if the pair (R,R) has the corresponding property.

By Theorems 6.3 and 3.1, it is clear that a pair (R,S) of relators on X
withR ⊂ S∧ is already topologically sequentially convergence-adherence com-
plete in the sense that the pair

(
R,S∧

)
is properly sequentially convergence-

adherence complete.
Moreover, by calling a family A of subsets of X centered [4, p. 57] if⋂

B �= ∅ for any finite subfamily B of A, we can easily prove the following
analogue of [26, Theorem 4.2].

Theorem 6.10. If (R,S) is a pair of relators on X, then the following
assertions are equivalent:

(1) (R,S) is properly sequentially convergence-adherence complete;
(2)

⋂∞
n=1 clR(An) �= ∅ for any decreasing, infinitesimal sequence (An)∞n=1

of nonvoid subsets of X(S);
(3)

⋂
A∈A clR(A) �= ∅ for any countable, centered, infinitesimal family

A of subsets of X(S).

Hint To prove the implication (1) =⇒ (2), note that if (An)∞n=1 is as
in the assertion (2), then by choosing xn ∈ An for each n ∈ N we can get a
properly convergence Cauchy sequence (xn)∞n=1 in X(S) such that

adhR
(
(xn)∞n=1

)
=
∞⋂

n=1

clR
(
{xk}∞k=n

)
⊂
∞⋂

n=1

clR(An).

Therefore, if the assertion (1) holds, then we have not only adhR
(
(xn)∞n=1

)
�=

∅, but also
⋂∞

n=1 clR(An) �= ∅.

7. Baire complete relators

Definicija 7.1. A relator R on X is called Baire complete if there
exists a properly countable relator S on X with S ⊂ R∧ such that the pair
(R,S) is properly sequentially convergence-adherence complete.

Remark 7.2. Baire completeness seems to be the natural counterpart
of the weak hypocompactness of Császár [4, p. 388] which is a generalization
of Čech completeness studied by several authors. (See [6, p. 256].)
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Theorem 7.3. If R is a uniformly countable and properly sequentially
convergence-adherence complete relator on X, then R is Baire complete.

Proof. Since R is uniformly countable, there exists a properly count-
able relator S on X such that R∗ = S∗. This implies that R ⊂ S∗. Therefore,
for each R ∈ R there exists S ∈ S such that S ⊂ R. Hence, it is clear that if
(xn)∞n=1 is a properly convergence Cauchy sequence in X(S), then (xn)∞n=1 is
also properly convergence Cauchy in X(R). Hence, by the assumed complete-
ness property ofR, it follows that (xn)∞n=1 is adherent in X(R). Therefore, the
pair (R,S) is properly sequentially convergence-adherence complete. Hence,
since R∗ = S∗ also implies S ⊂ R∧, it is clear that R is Baire complete.

Now, as a simple application of the above theorem, we can also state

Corollary 7.4. If d is complete pseudo-metric on X in the usual sense,
then Rd is a Baire complete relator on X.

Proof. Note that Rd = {Bd
r : r > 0} is now a properly sequentially

convergence-adherence complete relator on X such that under the notation
S = {Bd

1/n : n ∈ N} we have R∗ = S∗. Therefore, Theorem 7.3 can be applied.
Because of [29, Theorem 4.1], we may also naturally introduce the fol-

lowing

Definicija 7.5. A subset Y of a relator space X(R) is called properly
relatively sequentially compact if every sequence (xn)∞n=1 in Y is properly ad-
herence Cauchy in X(R).

Now, by calling a subset Y of a relator space X(R) topologically rela-
tively sequentially compact if it is properly relatively sequentially compact in
the relator space X

(
R∧
)
, we can easily establish the following consequence of

Theorem 6.3.

Theorem 7.6. If Y is a subset of a relator space X(R), then the fol-
lowing assertions equivalent:

(1) Y is topologically relatively sequentially compact;
(2) each sequence (xn)∞n=1 in Y is adherent in X(R).

Moreover, analogously to [29, Theorems 5.1 and 5.2], we can also easily
establish the following

Theorem 7.7. If Y is a subset of a relator space X(R), then the fol-
lowing assertions are equivalent:

(1) Y is topologically relatively sequentially compact;
(2)

⋂∞
n=1 clR(An) �= ∅ for any decreasing sequence (An)∞n=1 of nonvoid

subsets of Y ;
(3)

⋂
A∈A clR(A) �= ∅ for any countable centered family A of subsets of

Y .
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Definicija 7.8. A relator R on X is called properly relatively locally
sequentially compact if for each x ∈ X there exists R ∈ R such that R(x) is
properly relatively sequentially compact in X(R).

Now, by calling a relator R on X topologically relatively locally sequen-
tially compact if the relator R∧ is properly relatively locally sequentially com-
pact, we can easily establish the following

Theorem 7.9. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically relatively locally sequentially compact;
(2) for each x ∈ X there exists R ∈ R such that R(x) is topologically

relatively sequentially compact in X(R).

However, the importance of topologically relatively sequentially com-
pact relators lies mainly in the following

Theorem 7.10. If R is a topologically relatively locally sequentially
compact relator on X, then R is Baire complete.

Proof. In this case, by Theorem 7.9, for each x ∈ X there exists Sx ∈
R such that Sx(x) is topologically relatively sequentially compact in X(R).
Define a relation S on X such that S(x) = Sx(x) for all x ∈ X. Then,
it is clear that S = {S} is a countable relator on X such that S ⊂ R∧.
Moreover, we can also easily see that the pair (R,S) is properly sequentially
convergence-adherence complete. Therefore, R is Baire complete.

Namely, if (xn)∞n=1 is a properly convergence Cauchy sequence in X(S),
then by the corresponding definitions there exist x ∈ X and n0 ∈ N such
that the sequence (xn0+n)∞n=1 is in S(x) = Sx(x). Hence, by Theorem 7.6,
it follows that adhR

(
(xn)∞n=1

)
= adhR

(
(xn0+n)∞n=1

)
�= ∅. Therefore, the

sequence (xn)∞n=1 is adherent in X(R).

8. An extension of Baire’s category theorem

Definicija 8.1. A relator R on X is called a Baire relator if

ER ∩MR = ∅.

Remark 8.2. Note that thus a relator space X(R) is a Baire relator
space if and only if the fat subsets of X(R) are not meager.

Moreover, as a simple, but important characterization of Baire relator,
we can easily establish the following theorem of [33].
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Theorem 8.3. If R is a relator on X, then the following assertions
are equivalent:

(1) R is a Baire relator;
(2) if

⋃∞
i=1An ∈ ER, then clR(An) ∈ ER for some n ∈ N;

(3) if intR(An) ∈ DR for all n ∈ N, then
⋂∞

n=1An ∈ DR.

Now, having all the necessary preparations, we are ready to prove the
following generalization of Baire’s category theorem [2, p. 193].

Theorem 8.4. If R is a topological, topologically filtered, topologically
regular and Baire complete relator on X, then R is a Baire relator.

Proof. Note that, by Theorem 4.8, we may assume without loss of
generality that the relator R is strongly topological. Namely, all the properties
occurring in the theorem can easily be seen to be topologically invariant.
Moreover, by Theorem 9.3, it is enough to prove only that if (An)∞n=1 is
a sequence of subsets of X such that intR(An) ∈ DR for all n ∈ N, then
A =

⋂∞
n=1An ∈ DR. That is, for any x0 ∈ X and U0 ∈ R we have A ∩

U0(x0) �= ∅. For this, note that by the Baire completeness of R there exists
a countable relator S = {Sn}∞n=1 on X with S ⊂ R∧ such that the pair
(R,S) is properly sequentially convergence-adherence complete. Moreover,
since intR(A1) ∈ DR, there exists x1 ∈ X such that

x1 ∈ intR(A1) and x1 ∈ U0(x0).

Thus, by the definition of the relation intR and the strong quasi-topologicalness
of R, there exist V1 ∈ R and V2 ∈ R such that

V1(x1) ⊂ A1 and V2(x1) ⊂ U0(x0).

Moreover, since S1 ∈ R∧ and R is topologically filtered, there exist V3 ∈ R
and V4 ∈ R such that

V3(x1) ⊂ S1(x1) and V4(x1) ⊂ V1(x1) ∩ V2(x1) ∩ V3(x1).

On the other hand, since R is topologically regular, by Theorem 5.8 there
exists U1 ∈ R such that

clR
(
U1(x1)

)
⊂ V4(x1).

Now, in conclusion of the above argument, we can state that there exist
x1 ∈ X and U1 ∈ R such that

clR
(
U1(x1)

)
⊂ A1 ∩ U0(x0) ∩ S1(x1).

Moreover, by repeating the above argument with x1, U1, A2 and S2 in place
of x0, U0, A1 and S1, we can see that there exist x2 ∈ X and U2 ∈ R such
that

clR
(
U2(x2)

)
⊂ A2 ∩ U1(x1) ∩ S2(x2).
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Hence, by induction, it is clear that there exist sequences (xn)∞n=1 and (Un)∞n=1

in X and R, respectively, such that

clR
(
Un(xn)

)
⊂ An ∩ Un−1(xn−1) ∩ Sn(xn)

for all n ∈ N.
Hence, since by the reflexivity of R we have

xn ∈ Un(xn) ⊂ clR
(
Un(xn)

)
for all n ∈ N, it is clear that

(
Un(xn)

)∞
n=1

is a decreasing, infinitesimal
sequence of nonvoid subsets of X(S). Therefore, by Theorem 6.10, we have

∞⋂
n=1

clR
(
Un(xn)

)
�= ∅.

Moreover, by the corresponding inclusions and the definition of A, it is clear
that we also have
∞⋂

n=1

clR
(
Un(xn)

)
⊂
∞⋂

n=1

An ∩ Un−1(xn−1) ⊂
∞⋂

n=1

An ∩ U0(x0) = A ∩ U0(x0).

Therefore, the required assertion A ∩ U0(x0) �= ∅ is also true.
From Theorem 9.5, by Theorems 7.3 and 7.10, it is clear that in partic-

ular we also have the following

Theorem 8.5. If R is a topological, topologically filtered, topologically
regular relator on X such that R is either topologically relatively locally se-
quentially compact, or uniformly countable and properly sequentially conver-
gence-adherence complete, then R is a Baire relator.

Remark 8.6. Note that the sets Un(xn) used in the proof of Theorem
9.4 are, in addition, open. Therefore, by introducing some weaker complete-
ness and compactness properties of relators, Theorems 9.4 and 9.5 could be
sharpened.

First of all, the pseudocompactness properties of relators should be be
investigated. Namely, according to Engelking [6, p.264], a Tychonoff space X
is pseudocompact if and only if

⋂∞
n=1 cl(An) �= ∅ for any decreasing sequence

(An)∞n=1 of nonvoid open subsets of X.
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[15] G. Pataki and Á. Száz, A unified treatment of well-chainedness and connected-
ness properties, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 19 2003, 101–165.
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[31] Á. Száz, Somewhat continuity in a unified framework for continuities of relations,
Tatra Mt. Math. Publ. 24 2002, 41–56.

[32] Á. Száz, Upper and lower bounds in relator spaces, Serdica Math. J. 29 2003,
2391–270.
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