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ON SOME FIXED POINT THEOREMS FOR

MAPPINGS SATISFYING A NEW TYPE OF
IMPLICIT RELATION

Valeriu Popa

Abstract. In this paper we introduce a new class of func-
tions F : R6

+ → R such that the fulfilment of the inequality of
type (3) for x, y in X , ensures the existence and the uniqueness
of a fixed point.

1. Introduction

The notion of contractive mapping has been introduced by Banach
in [1].

In the last thirty years different types of generalizations of this concept
appeared. The connection between them have been studied in different papers,
for example [2], [3], [5]-[9].

Let (X, d) be a metric space and T : (X, d) → (X, d) a mapping in
essence, T is a generalized contraction if an inequality of type

d(Tx, Ty) ≤ f
(
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
(1)

holds for x, y ∈ X, where f : R5
+ → R satisfies some properties or has a

special form.
In [4], the present author established a class of mappings F : R6

+ → R
such as the fulfilment of the inequality of type

F
(
d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
≤ 0(2)

for x, y ∈ X, ensures the existence and the uniqueness of a fixed point for T .
The purpose of this paper is to introduce a new class of mappings

F : R6
+ → R such that the fulfilment of the inequality of type

F
(
d(Tx, Ty), d(x, y), d(x, Ty), d(y, Ty), d(y, T 2x), d(y, Tx)

)
≤ 0(3)

for x, y ∈ X, ensures the existence and the uniqueness of a fixed point for T .
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2. Implicit relations

Let Φ be the set of all real continuous functions F (t1, ..., t6) : R6
+ → R

satisfying the following conditions:
∅1:F is nonincreasing in variable t5,
∅h: there exists h ∈ [0, 1) such that for every u, v ≥ 0

F (u, v, v, u, u, 0) ≤ 0 implies u ≤ hv;
∅u : F (u, u, 0, 0, u, u) > 0,∀u > 0.
Ex.1. F (t1, ..., t6) = t21 − at5t6 − bmax{t22, t23, t24}, where a > 0, b ≥ 0

and a+ b < 1.
(∅1): Obviously.
(∅h): Let u > 0, v ≥ 0 and F (u, v, v, u, u, 0) = u2 − bmax{u2, v2} ≤ 0.

If u ≥ v then u2(1 − b) < 0, a contradiction. Thus u < v and u ≤ hv, where
h =

√
b < 1.
If u = 0 and v ≥ 0 then u ≤ hv.
(∅u)F (u, u, 0, 0, u, u) = u2(1− a− b) > 0,∀u > 0.
Ex.2. F (t1, ..., t6) = t21 − at5t6 − t1(bt2 + ct3 + dt4), where a, b, c, d ≥ 0

and a+ b+ c+ d < 1.
(∅1): Obviously.
(∅h): Let u > 0, v ≥ 0 and F (u, v, v, u, u, 0) = u2 − u(bv+ cv+ du) ≤ 0.

Then u ≤ hv, where h = c+ b/1− d < 1. If u = 0, v ≥ 0 then u ≤ hv.
(∅u) : F (u, u, 0, 0, u, u) = u2(1− a− b) > 0,∀u > 0.
Ex.3. F (t1, ..., t6) = t31 − at21t2 − bt1t

2
2 − ct2t3t4 − dt25t6, where a >

0, b, c, d ≥ 0 and a+ b+ c+ d < 1.
(∅1): Obviously.
(∅2): Let u > 0, v ≥ 0 and F (u, v, v, u, u, 0) = u3−au2v− buv2− cuv2 ≤

0, which implies u2 − auv − (b + c)v2 ≤ 0. If b = c = 0, then u ≤ hv, where
0 < h = a < 1.

If b+ c > 0 then f(t) = (b+ c)t2 + at− 1 ≥ 0, where t = v/u > 0. Since
f(1) = (a + b + c) − 1 < 0, let r > 1 be the root of equation f(t) = 0. Then
f(t) > 0 for t > r which implies u ≤ hv, where h = 1/r < 1. If u = 0 then
u ≤ hv.

(∅u) : F (u, u, 0, 0, u, u) = u3(1− a− b− d) > 0,∀u > 0.

3. Fixed points in complete metric spaces

Theorem 1. Let (X, d) be a metric space and T : (X, d) → (X, d) be
a mapping satisfying the inequality (3) for every x, y ∈ X, where F satisfies
condition (∅u). Then T has at most one fixed point.
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Proof. Suppose that T has two fixed points u and v with u �= v. Then
by (3) we have successively

F
(
d(Tu, Tv), d(u, v), d(u, Tu), d(v, Tv), d(v, T 2u), d(v, Tu)

)
≤ 0

F
(
d(u, v), d(u, v), 0, 0, d(u, v), d(u, v)

)
≤ 0,

a contradiction of (∅u).

Theorem 2. Let (X, d) be a metric space and T : (X, d) → (X, d) be
a mapping such that there exists h ∈ [0, 1) with d(T 2x, Tx) ≤ hd(x, Tx) for
every x ∈ X. Then for every x ∈ X the sequence {T nx} is a Cauchy sequence.

Proof. Let x ∈ X and the sequence {T nx}. Since d(T 2x, Tx) ≤
hd(x, Tx) by induction we have d(T n+1x, Tnx) ≤ hnd(x, Tx). By a routine
calculation it follows that {T nx} is a Cauchy sequence.

Theorem 3. Let (X, d) be a complete metric space and T : (X, d) →
(X, d) a mapping satisfying the inequality (3) for every x, y ∈ X where F ∈ Φ.
Then T has a unique fixed point.

Proof. Let x be arbitrary in X. We shall show that the sequence
defined by xn+1 = Txn is a Cauchy sequence. From (3) for y = Tx we have

F
(
d(Tx, T 2x), d(x, Tx), d(x, Tx), d(Tx, T 2x), d(Tx, T 2x), 0

)
≤ 0.

By (∅h) we have d(T 2x, Tx) ≤ h · d(x, Tx). By Theorem 2, xn+1 = T nx is
a Cauchy sequence. Since (X, d) is complete, there exists u ∈ X such that
lim xn = u.

By (3) we have successively

F
(
d(Txn, Tu), d(xn, u), d(xn, Txn), d(u, Tu), d(u, T 2xn), d(u, Txn)

)
≤ 0.

F
(
d(xn+1, Tu), d(xn, u), d(xn, xn+1), d(u, Tu), d(u, xn+2), d(u, xn+1)

)
≤ 0.

Letting n tend to infinity we have successively

F
(
d(u, Tu), 0, 0, d(u, Tu), 0, 0

)
≤ 0,

F
(
d(u, Tu), 0, 0, d(u, Tu), d(u, Tu), 0

)
≤ 0,

which implies by (∅h) that u = Tu. By Theorem 1 u is the unique fixed point
of T .

Corollary 1. Let (X, d) be a complete metric space and T : (X, d) →
(X, d) satisfying one of the following inequalities:

d2(Tx, Ty)≤ad(y, T 2x)d(y, Tx)+bmax{d2(x, y), d2(x, Tx), d2(y, Ty)},(1.1)



64 Valeriu Popa

where a > 0, b ≥ 0 and a+ b < 1, or

d2(Tx, Ty) ≤
ad(y, T 2x)d(y, Tx) + d(Tx, Ty)(bd(x, y) + cd(x, Tx) + dd(y, Ty),

(1.2)

where a, b, c, d ≥ 0 and a+ b+ c+ d < 1, or

d3(Tx, Ty)− ad2(Tx, Ty)d(x, y) − bd(Tx, Ty)d2(x, y)−
cd(x, y)d(x, Tx)d(y, Ty) − d · d2(y, T 2x) · d(y, Tx) ≤ 0,

(1.3)

where a > 0, b, c, d ≥ 0 and a + b + c + d < 1 for all x, y in X, then T has
unique fixed point.

Remark 1. Let Ψ be the set of all real continuous functions F (t1, ..., t6) :
R6

+ → R satisfying the following conditions:
(Ψ1): F is nonincreasing in variable t5,
(Ψh): there exists h ∈ [0, 1) such that for every u, v ≥ 0, F (u, v, u, v, u, 0) ≤

0 implies u ≤ h · v,
(Ψu) : F (u, u, 0, 0, u, u) > 0,∀u > 0.

Theorem 4. If the inequality

F
(
d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, T 2y), d(x, Ty)

)
≤ 0(4)

holds for all x, y in X, where F ∈ Ψ, then F has a unique fixed point.

Proof. The proof is similar to the proof of Theorem 3.

4. Fixed points in compact metric spaces

Let Φ be the set of all real continuous functions F (t1, ..., t6) : R6
+ → R

satisfying the following conditions:
(Φh): For every u ≥ 0, v > 0, F (u, v, v, u, u, 0) < 0 implies u < v,
(Φu): F (u, u, 0, 0, u, u) > 0,∀u > 0.

Remark 2. The functions F from Ex. 1-3 satisfies conditions (Φh) and
(Φu).

Remark 3. There exists functions F ∈ Φ which is increasing in vari-
able t5.

Ex.4. F (t1, ..., t6) = t31 − c
t2t3t4

1 + t5 + t6
, where 0 < c < 1.

(Φh): Let u, v > 0 and F (u, v, v, u, u, 0) = u3 − c
v2u

1 + u
< 0, then u2 <

c

1 + v
v2 which implies u < v. If u = 0, then u < v.

(Φu) : F (u, u, 0, 0, u, u) = u3 > 0,∀u > 0.
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Theorem 5. Let T be a continuous mapping of the compact metric
space (X, d) into itself such that

F
(
d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(y, T 2x), d(y, Tx)

)
< 0(5)

for every x �= y in X, where F ∈ Φ. Then T has a unique fixed point.

Proof. Let f(x) = d(x, Tx) for all x ∈ X. Since T is continuous, there
exists a point z ∈ X such that f(z) = inf{f(x) : x ∈ X}. Suppose that
z �= Tz.

By (5) for x = z and y = Tz we obtain

F
(
d(Tz, T 2z), d(z, T z), d(z, T z), d(Tz, T 2z), d(Tz, T 2z), 0

)
< 0

which implies d(Tz, T 2z) < d(z, T z) = inf{d(x, Tx) : x ∈ X}. A contradic-
tion.

Hence, z = Tz. From Theorem 1 z is the unique fixed point of T .

Corollary 2. Let T be a continuous mapping of the compact metric
space (X, d) into itself such that

d3(Tx, Ty) < c
d(x, y)d(x, Tx)d(y, Ty)
1 + d(y, T 2y) + d(y, Tx)

for all x �= y in X and 0 < c < 1. Then T has a unique fixed point.

Proof. The proof follows from Theorem 5 and Ex.4.

Remark 4. A Corollary analogous to Corollary 1 is obtained by Ex.1-
3.

Remark 5. A Theorem similar to Theorem 4 is obtained for compact
metric space.
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