A NOTE ON NEARLY PARACOMPACTNESS

Ilija Kovačević*

Abstract. The purpose of the present paper is to study some properties of nearly paracompactness, α -Hausdorff subset, almost closed mappings and closed graphs.

1. Preliminaries

Our notation is standard. No separation properties are assumed for spaces unless explicitly stated.

A subset A of a space X is regular open iff IntClA = A. A subset A of a space X is regular closed iff ClIntA = A, [13].

A set P is said to be δ -closed if for each point $x \notin P$, there exists an open set G containing x such that $\alpha(G) \cap P = \emptyset(\alpha(G) = \overline{G}^0)$. A set G is δ -open iff its complement is δ -closed, [15].

For every topological space (X, τ) , the collection of all δ -open sets forms a topology for X, which is weaker than τ . This topology has a base consisting of all regular open subsets in (X, τ) . We shall denote this topology by τ^* . An open cover \mathcal{U} is *even* if there exists a neighborhood V of the diagonal in $X \times X$ such that $V[x] \subset U$, $(V[x] = \{y : (x, y) \in V\})$ for some $U \in \mathcal{U}$ [2].

A subset A of a space X is α -paracompact (α -nearly paracompact) with respect to a subset B iff for every open (regular open) cover $\mathcal{U} = \{U_i : i \in I\}$ of A there is an open family $\mathcal{V} = \{V_j : j \in J\}$ such that:

1. \mathcal{V} refines \mathcal{U} ,

2. $A \subset \bigcup \{V_j : j \in J\},\$

3. \mathcal{V} is locally finite at each point $x \in B$.

Subsets A and B of a space X are mutually α -paracompact (α -nearly paracompact) iff the subset A is α -paracompact (α -nearly paracompact) with respect to the subset B and B is α -paracompact (α -nearly paracompact) with respect to the subset A [8].

AMS (MOS) Subject Classification 1991. Primary: 54D10, 54D18.

Key words and phrases: compact, α -Hausdorff, α -nearly paracompact, α -paracompact, α -regular, almost closed mappings, closed graph, equivalence relation.

A subset A of a space X is α -Hausdorff iff for any two points a, b of a space X, where $a \in A$ and $b \in X \setminus A$, there are disjoint open sets U and V containing a and b respectively.

A subset A of a space X is α -regular (α -almost regular) iff for any point $a \in A$ and any open (regular open) set U containing a, there is an open set V such that $a \in V \subset ClV \subset U$, [11].

A mapping $f : X \to Y$ is almost closed iff for every regular closed set F in X, the set f(F) is closed, [13].

A mapping $f : X \to Y$ has a closed graph G(f) iff $G(f) = \{(x, f(x)) : x \in X\}$ is closed in $X \times Y$, [1].

Let X be any topological space. Let (X, ρ) be a graph, where ρ is an equivalence relation in X. Let $\rho(X)$ denote ρ -class of x. Let X/ρ denote the set of all ρ -classes of equivalence relation ρ in X.

A subset A of a space X is admissible if it is the union of members of X/ρ , [2].

The equivalence relation ρ is upper semicontinuous (almost upper semicontinuous) if for each $D \in X/\rho$ and any open (regular open) neighborhood U of D in X there is an open admissible set V such that

$$D \subset V \subset U.$$
 [2]

2. Results

Definicija 2.1. An open cover \mathcal{U} is δ -even if there exists a τ_p^* -open neighborhood V of the diagonal in $(X \times X, \tau_p)$, (where τ_p is the product topology), such that $V[x] \subset U$ for some $U \in \mathcal{U}$.

Theorem 1. An almost-regular space (X, τ) is nearly paracompact iff every regular open cover is δ -even.

Proof. Necessity: Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be any regular open covering of X.

Since X is almost-regular and nearly paracompact, there exists by Theorem 1.6 in [15], a regular open star refinement $\mathcal{V} = \{V_{\beta} : \beta \in J\}$. Let $V = U\{V_{\beta} \times V_{\beta} : \beta \in J\}$. Then V is τ_{ρ}^* -open neighborhood of the diagonal in $X \times X$. We shall prove that for each $x \in X$, $V[x] \subset U_{\alpha}$ for some $\alpha \in I$.

If $y \in V[x]$, then $(x, y) \in V$ and hence there exists $\beta \in J$ such that $(x, y) \in V_{\beta} \times V_{\beta}$. Then $x \in V_{\beta}$ and $y \in V_{\beta}$. Hence, $y \in St(x, \mathcal{V})$. Then, $V[x] \subset St(x, \mathcal{V})$. Since \mathcal{V} is star refinement of \mathcal{U} , therefore there exists $\alpha \in I$ such that $V[x] \subset St(x, \mathcal{V}) \subset U_{\alpha}$. Hence the result.

Sufficiency: We shall prove that (X, τ^*) is paracompact.

Let $\mathcal{G} = \{G_{\alpha} : \alpha \in I\}$ be any τ^* -open covering of X. Then, there exists a τ -regular open refinement $\mathcal{U} = \{U_{\beta} : \beta \in J\}$ of \mathcal{G} .

Since, every regular open cover is δ -even, therefore there exists a τ_p^* open neighborhood V of diagonal in $X \times X$ such that for each $x \in X$, $V[x] \subset U_{\beta}$ for some $\beta \in J$. Then, (X, τ^*) is the space, which is regular and every τ^* -open cover is even, therefore (X, τ^*) is paracompact by Theorem 5.28 in [2].

Hence (X, τ) is nearly paracompact.

It would be interesting to see that ρ is closed in X^2 , where ρ is an equivalence relation in X. Some results will be given in that sense.

In [2] the following result is proved.

Theorem A. If X/ρ is a Hausdorff space, then ρ is closed in X^2 . If the projection $P: X \cdot X/\rho$ is an open mapping and ρ is a closed subset of X^2 , then X/ρ is Hausdorff.

This result will be used in the proves of some theorems.

Theorem 2. Let (X, ρ) be a graph, where ρ is an upper semicontinuous equivalence relation in X. For each $x \in X$, let the equivalence class $\rho(x)(X \in \rho(x))$ be an α -Hausdorff α -paracompact subset of X. Then ρ is closed in X^2 .

Proof. It follows that the quotient space X/ρ is Hausdorff (Theorem 2.1 in [11]. Thus, by Theorem A, ρ is closed in X^2 .

Theorem 3. Let X be any space. Let A be a compact subset of X such that every two points of A can be strongly separated by open subsets of X. Let $X \setminus A$ be an α -Hausdorff α -nearly paracompact subset of X. Let ρ be an equivalence relation in X defined as follows

 $\rho = \{ (x, y) : x, y \in X \setminus A \quad or \quad x = y \}.$

Then the quotient space X/ρ is Hausdorff and compact. ρ is closed in X^2 .

Proof. The equivalence relation ρ is upper semicontinuous such that $\rho(x)$ is α -Hausdorff α -nearly paracompact, for each $x \in X$. Thus, X/ρ is Hausdorff. Hence ρ is closed in X^2 .

Now, let

$$\mathcal{U} = \{U_i : i \in I\}$$

be any open covering of X/ρ . Then

$$\{P^{-1}(U_i) : i \in I\}$$

is an open covering of X. Since A is compact, there is a finite subset I_0 of I such that

$$A \subset \cup \{P^{-1}(U_i) : i \in I_0\}.$$

Let U^* be such element of \mathcal{U} such that

 $P(X \backslash A) \subset U^*.$

 $(X \setminus A \text{ is a point of the quotient space } X/\rho)$. Since

$$X = \bigcup \{ P^{-1}(U_i) : i \in I_0 \} \cup P^{-1}(U^*)$$

it follows that the family

$$\{U_i : i \in I_0, U^*\}$$

is a finite open covering of X/ρ , hence X/ρ is compact.

Theorem 4. Let X be any regular space. Let X be an open subset of X such that every two points of A can be strongly separated by open subsets of X. Let $X \setminus A$ be α -Hausdorff. Let ρ be an equivalence relation in X defined by

$$\rho = \{(x, y) : x, y \in X \setminus A \text{ or } x = y\}.$$

Then ρ is closed in X^2 .

Proof. It would be proved that X/ρ is *a*-Hausdorff space. If *m* and *n* are two points of *A*, then there are open sets *U* and *V* of *X* such that

$$m \in U, n \in V, U \cap V = \emptyset.$$

Let

$$U_1 = U \cap A, V_1 = V \cap A.$$

Then $P(U_1)$ and $P(V_1)$ are disjoint open sets of X/ρ containing P(m) and P(n) respectively.

Now, let

 $m \in A$.

Since $X \setminus A$ is α -regular, it follows that there are two open subsets U and V of X such that

$$x \in U, X \setminus V, U \cap V = \emptyset.$$

Then

$$P(U)$$
 and $P(V)$

are two disjoint open subsets of X/ρ containing P(m) and $P(X \setminus A)$ respectively. Hence X/ρ is Hausdorff. By Theorem A it follows that ρ is closed in X^2 .

In [2] the following result is proved.

Theorem B. If f_1 and f_2 are two continuous mappings of a space X into a Hausdorff space Y, then

$$F = \{x : f_1(x) = f_2(x)\}$$

is closed in X. If F is a dense subset of X(C1F = X) then $f_1 = f_2$.

Similar results is not always true for two equivalence relation in X, as it is shown by the following example

Example 1. Let R be the real line (the set of all real numbers endowed with the usual topology in P). Define an equivalence relation ρ_1 in R as

$$\rho_1 = \{ (x, y) : x, y \in [0, 1] \text{ or } x = y \}.$$

Define an equivalence relation ρ_2 in R as follows

 $\rho_2 = \{(x, y) : x, y \in [0, 2] \text{ or } x = y\}.$

The equivalence relation ρ_1 is upper semicontinuous such that, for each $x \in R$, $\rho_1(x)$ is an α -Hausdorff compact subset of R, thus R/ρ_1 is Hausdorff. Hence ρ_1 is closed in R^2 .

The equivalence relation ρ_2 is upper semicontinuous such that, for each $x \in R$, $\rho_2(x)$ is an α -Hausdorff compact subset of R, thus R/ρ_2 is Hausdorff. Hence ρ_2 is closed in R^2 .

Now, we have

$$\rho_1(x) = \rho_2(x)$$
 for each $x \in A = R \setminus [0, 2]$

but the subset A is not closed in R.

Theorem 5. Let ρ_1 and ρ_2 be any two equivalence relation in X and let

$$\mathcal{U} = \{ \rho_1(x) : \rho_1(x) = \rho_2(x) \}.$$

If each member of \mathcal{U} is an α -Hausdorff α -paracompact subset and \mathcal{U} is locally finite, then

$$U = \cup (\rho_1(x) : \rho_1(x) \in \mathcal{U}\}$$

is closed in X. If U is dense, then $\rho_1 = \rho_2$, i.e. $X/\rho_1 = X/\rho_2$.

Proof. Since every α -Hausdorff α -paracompact subset is closed ([11]) it follows that $\rho_1(x)$ is closed for each $\rho_1(x) \in \mathcal{U}$. Since \mathcal{U} is locally finite, it follows that

$$C1U = C1 \cup \{\rho_1(x) : \rho_1(x) \in \mathcal{U}\} = \cup \{C1\rho_1(x) : \rho_1(x) \in \mathcal{U}\} = \\ = \cup \{\rho_1(x) : \rho_1(x) \in \mathcal{U}\} = U.$$

Since, any union of α -Hausdorff subsets is α -Hausdorff, thus U is α -Hausdorff. If U is dense in X, then C1U = X. Thus

$$\rho_1 = \rho_2$$
 i.e. $X/\rho_1 = X/\rho_2$.

3. Some examples of quotient spaces

Example 2. Let \equiv_1 be a congruence in the space R $(x \equiv_1 y) = ((\exists n \in Z)x = y + n).$

Every equivalence class is a closed paracompact subset of R. The projection $P: R \to R/\equiv_1$ is an open (not a closed) mapping. The space R/\equiv_1 is Hausdorff. Thus, \equiv_1 is closed in R^2 .

Example 3. Let

 $A = [0, 1] \subset R$

have a subspace topology with respect usual topology. Let \equiv_1 be a congruence in the space R.

Every equivalence class is a closed compact subset of A. The projection $P: A \to A/\equiv_1$ is a closed (not an open) mapping. The space A/\equiv_1 is Hausdorff, hence \equiv_1 is closed in A^2 i.e. in R^2 (A^2 is closed in R^2). Since every continuous image of compact space is compact, it follows that A/\equiv_1 is compact.

Example 4. Let

$$A = [-1, 1] \subset R$$

have a subspace topology with respect usual topology. Define an equivalence relation ρ in A by taking

 $\rho = \{(x, y) : y = x \lor y = -x \text{ for } x \in (-1, 1)\} \cup \{(1, 1), (-1, 1)\}.$

Every equivalence class is a closed compact subset of A. The projection $P: A \to A/\rho$ is an open mapping, hence A/ρ is not Hausdorff (ρ is not closed in A^2). A/ρ is T_1 (every point is closed).

Example 5. Define an equivalence relation ρ in R as follows

 $\rho = \{ (x, y) : x, y \in Z \text{ or } x = y \}.$

Every equivalence class is a closed α -paracompact subset of R.

It follows that the quotient space R/ρ is Hausdorff, thus ρ is closed in R^2 . The space R/ρ is not locally compact (for point P(Z) there is not an open subset V such that C1V is compact in R/ρ).

Example 6. Let

$$A = [0, \infty] \subset R$$

have a subspace topology with respect usual topology. Define an equivalence relation ρ by taking

 $\rho = \{(x, y) : y = x \lor y = 1/x \text{ for } x \notin 0\} \cup \{(0, 0)\}.$

Every equivalence class is a closed compact subset of A. ρ is closed in A^2 . The projection P is an open (not a closed) mapping). Hence A/ρ is Hausdorff. The space A/ρ is compact.

4. References

- T.R. Hamlet and L.L. Herrington, The closed graph and P-closed graph properties in general topology, Amer. Math. Soc. Providence R.I. (1981), 1–68.
- [2] J.L. Kelley, General Topology, Van Nostrand, Princeton, N.J., 1961.
- [3] I. Kovačević, A note on almost closed mappings and nearly paracompactness, Univ. u N. Sadu, Zb. rad. Prir. mat. Fak. Mat. Ser. 13 (1983), 87–101.
- [4] I. Kovačević, A note on quotient spaces and paracompactness, Univ. u N. Sadu, Zb. rad. Prir. mat. Fak. Mat. Ser. 11 (1981), 89–99.
- [5] I. Kovačević, On α-Hausdorff subsets, almost closed mappings and almost upper semicontinuous decomposition, Indian J. Pure Appl. Math. 20(4) (1989), 334– 340.
- [6] I. Kovačević, On almost closed mappings, paracompactness and partial equivalence relations, Indian J. Pure Appl. Math. 25(9) (1994), 949–954.
- [7] I. Kovačević, On M_N subsets, J. Math. Novi Sad **27(1)** (1997), 45–52.
- [8] I. Kovačević, On subsets, almost closed mappings and paracompactness, Glasnik matematički 24(44) (1989), 125–132.
- [9] I. Kovačević, Some properties of M_N subset and almost closed mappings, Indian J. Pure Appl. Math. 27(9) (1996), 875–881.
- [10] I. Kovačević, Some properties of nearly and almost compact spaces, Math. Balkanica 7 (1977), 195–200.
- [11] I. Kovačević, Subsets and paracompactness, Zb. rad. Prir. mat. Fak. Univ. u N. Sadu 14(2) (1984), 79–87.
- [12] T. Noiri, Almost-continuity and some separation axioms, Glasnik matematički 9(29) (1974), 131–135.
- [13] M.K. Singal and A.R. Singal, Almost continuous mappings, Yokohoma Math. J. 16(1968), 63–73.
- M.K. Singal and Asha Mathur, On nearly compact spaces II, Boll. Un. Mat. Ital. (4) 2(1969), 702–710.
- [15] M.K. Singal and S.P. Arya, On nearly paracompact spaces, Matem. vesnik 6(21) (1969), 3–16.

Faculty of Engineering University of Novi Sad Trg D. Obradovića 6 21000 Novi Sad Serbia & Montenegro