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THE NUMERICAL FUNCTION OF A
∗–REGULARLY VARYING SEQUENCE

Dragan D- určić and Aleksandar Torgašev∗

Abstract. In this paper, we impose some conditions under
which there is a close relation between the asymptotic behaviour
of a ∗–regularly varying sequence and the asymptotic behaviour
of its numerical function δc(x), x > 0.

1. Introduction and results

A sequence of positive numbers (cn) is called O–regularly varying [2], if
we have

kc(λ) = lim n→+∞
c[λn]

cn
< +∞, λ > 0.(1)

The class of all O–regularly varying sequences is denoted ORV .
An O–regularly varying sequence (cn) is called ∗–regularly varying [6],

if it is nondecreasing, and if

lim
λ→1+

kc(λ) = 1.(2)

The class of all ∗–regularly varying sequences is denoted ∗RV.
The above two classes of sequences represent the important objects in

the sequential theory of regular variability in the Karamata sense [1], and in
particular in the theory of statements of Tauberian type [4], as well as in some
other parts of qualitative analysis of divergent processes [7].

The class K∗c [5], consists of all ∗–regularly varying sequences which
satisfy the condition

kc(λ) = lim n→+∞
c[λn]

cn
> 1, λ > 1.(3)
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Notice that, in particular, the class K∗c contains all nondecreasing reg-
ularly varying sequences in the Karamata sense [1] whose index ρ > 0, and
also all sequences whose general term is the n-th (n ∈ N) partial sum of a
∗–regularly varying sequence, but does not contain slowly varying sequences
in the Karamata sense [1].

If next, (cn) is an increasing sequence of positive numbers, then its
numerical function δc(x), x > 0, is defined by δc(x) =

∑
cn≤x

1, x > 0.

We shall prove several statements about the mentioned classes.
By � we shall denote the weak, while by ∼ the strong asymptotic

equivalence.

Theorem 1. Let (cn) be an increasing sequence from the class K∗c and
assume that g : [1,+∞) �→ (0,+∞) is a continuous and increasing function.
Then we have

cn ∼ g(n), n→∞,(4)

if and only if

δc(x) ∼ g−1(x), x→ +∞.(5)

Notice that if (cn) is an arbitrary increasing sequence of positive num-
ber which is not in the class K∗c , it is easy to construct a contionuous and
increasing function g : [1,+∞) �→ (0,+∞), so that (4) is true but not (5) or,
(5) is true but not (4).

Corollary 1. Let (cn) be an increasing sequence from the class K∗c ,
and (dn) be an increasing sequence of positive numbers. Then we have

cn ∼ dn, n→∞(4’)

if and only if

δc(x) ∼ δd(x), x→∞.(5’)

Corollary 1 follows easily from the theorem above.

Corollary 2. Let (cn) be an increasing sequence from the class K∗c and
let g : [1,+∞) �→ (0,+∞) be a continuous and increasing function. If (4)
holds, then we have ∑

cn≤x

cn � x g−1(x), x→ +∞.(6)

Corollary 3. Let (cn) be an increasing sequence from the class K∗c and
(dn) be an increasing sequence of positive numbers. If (4’) holds, then we have∑

cn≤x

cn �
∑
dn≤x

dn, x→ +∞.(6’)
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2. Proofs of statements

Proof of the theorem. Consider the function f(x), x ≥ 1, for which
we have cn = f(n). It is obviously linear on intervals [n, n+ 1], n ∈ N .

For any δ > 0, there is some n0 = n0(δ) ∈ N , so that for all n ≥ n0 we

have 1 ≤ 1+
1
n
≤ δ+1, so that we find 1 ≤ lim n→+∞

cn+1

cn
≤ kc(1+δ). Since by

assumption (cn) ∈ K∗c , it is ∗–regularly varying, so that lim
n→∞

cn+1

cn
= 1. If (4)

holds true, then we have f(x) ∼ g(x), x→ +∞, because for all n ≤ x < n+1,
n ∈ N , we have that

cn
cn+1

· cn+1

g(n+ 1)
≤ f(x)
g(x)

≤ cn
g(n)

· cn+1

cn
.

Next, let for any λ > 0, kf (λ) = lim x→+∞
f(λx)
f(x)

. Then for every δ > 0

we have

kc(λ) ≤ kf (λ) ≤ lim x→+∞
f([λx] + 1)
f([x])

≤

≤ lim x→+∞
c[λ[x]]

c[x]
· lim x→+∞

c[λx]+1

c[λ[x]]
≤

≤ kc(λ) · kc(1 + δ),
because

lim
x→+∞

[λx] + 1
[λ[x]]

= 1 + .

This means that for every λ > 0 we have kc(λ) = kf (λ).
If we next redefine f(x) by f(0) = 0, and on the interval [0, 1] as a linear

function, then we have that f ∈ K∗c (see [5]). If we in a similar way redefine
g(x) for 0 ≤ x < 1, and we suppose (4), then by [3] we have

f−1(x) ∼ g−1(x), x→ +∞.(7)
Since δc(x) = [f−1(x)], x > 0, we obtain (5).
Conversely, supposing that (5) holds true, then with the so redefined

functions f and g we have (7). Since f ∈ K∗c , we get f(x) ∼ g(x), x→ +∞,
so that we obtain (4). �

Remark. If (cn) is an increasing and unbounded ∗–regularly varying
sequence, out the class K∗c , then (5) implies (4) for every function g described
in the Theorem. But it is not difficult to see that there is a function g which
has properties from the Theorem, such that (4) does not implies (5).

If a sequence (cn) is increasing and unbounded, and it is not ∗–regularly
varying, it is not clear if, in the general case, (4) and (5) are equivalent to
each other for an arbitrary function g described in the Theorem.
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Proof of Corollary 2. By assumptions, we have that∑
cn≤x

cn =
∫ x

0
t d δc(t) ≤ x δc(x), x > 0.(8)

On the other side, we have∑
cn≤x

cn ≥
∫ x

x/2
t d δc(t) ≥

x

2
(δc(x)− δc

(x
2
)
), x > 0.(9)

Since (cn) ∈ K∗c we have that kc(λ) > 1, λ > 1, so that kδc
(2) > 1. In

other words, kδc

(1
2

)
< 1. Next, define p = 1 − kδc

(1
2

)
. Then for all x ≥ x0

we have that
p

4
≤
∑

cn≤x cn

x δc(x)
≤ 1,

so that
∑

cn≤x
cn � x δc(x), x→ +∞. By assumptions of the colollary, and the

Theorem, we have that then δc(x) ∼ g−1(x), x→ +∞, so that (6) holds true.
�

Finaly, Corollary 3 is a direct consequence of the Theorem and the
Corollary 2.
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