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WEAK ASYMPTOTIC EQUIVALENCE

RELATION AND INVERSE FUNCTIONS IN
THE CLASS OR

Dragan D- určić and Aleksandar Torgašev∗

Abstract. If f(x) is a continuous, strictly increasing and
unbounded function defined on an interval [a,+∞) (a > 0), in
this paper we shall prove that f−1(x) (x ≥ a) belongs to the
Karamata class OR of all O–regularly varying functions, if and
only if for every function g(x) (x ≥ a) which satisfies f(x) � g(x)
as x → +∞, we have f−1(x) � g−1(x) as x → +∞. Here, �
is the weak asymptotic equivalence relation. We shall also prove
some variants of the previous theorem, in which, except the weak,
we also deal with the strong asymptotic equivalence relation.

1. Introduction and results

A measurable function f : [a,+∞) �→ (0,+∞) (a > 0) is called O–
regularly varying in the Karamata sense [1], if it satisfies

lim x→+∞
f(λx)
f(x)

= kf (λ) < +∞, λ > 0.(1)

The class of all such functions is denoted OR, and as is well known,
this class is one of the essential objects in the qualitative analyse of divergent
asymptotic processes [1].

An O– regularly varying function f : [a,+∞) �→ (0,+∞) (a > 0), is
called slowly varying in the Karamata sense [1], if it satisfies

kf (λ) = 1, λ > 0.(2)

The class of all such functions is denoted SV , and it is the most impor-
tant object in the Karamata theory of regular variability [3].
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Two positive functions f(x), g(x) (x ≥ a) (a > 0), are called weakly
asimptoticaly equivalent, and denoted f(x) � g(x) as x → +∞, if there is
some ε > 1 such that

1
ε
≤ f(x)
g(x)

≤ ε, x ≥ x0(ε).(3)

Next, they are called strongly asymptotically equivalent, and denoted
f(x) ∼ g(x) as x→ +∞, if (3) is satisfied for every ε > 1.

Next, let A be the class of all positive functions, defined for x ≥ a, for a
fixed a > 0, which are continuous, increasing and unbounded on the interval
[a,+∞).

Assume that f and g are two functions from the class A. We shall
discuss some conditions under which we have that we have (4) implies (5),
where (4) and (5) are the next relations:

f(x) ρ1 g(x), x→ +∞,(4)

f−1(x) ρ2 g
−1(x), x→ +∞,(5)

and ρ1 and ρ2 are some relations from the set {�,∼}.
We notice that the case ρ1 = ρ2 =∼ is considered in the paper [2].

Theorem 1. (a) Suppose that f and g are two functions from the class
A, next at least one of the functions f−1, g−1 belongs to the class OR, and
relation (4) is satisfied for ρ1 =�. Then the relation (5) is also true with
ρ2 =�.

(b) If f ∈ A, and every function g ∈ A which satisfies (4) with ρ1 =�
also satisfies (5) with ρ2 =�, then f−1 ∈ OR, and g−1 ∈ OR.

Theorem 2. (a) Suppose that f, g ∈ A, next at least on of the functions
f−1, g−1 belongs to the class SV , and relation (4) is true for ρ1 =�. Then
the relation (5) is also true with ρ2 =∼.

(b) If f ∈ A and for every function g ∈ A which satisfies (4) for ρ1 =�,
(5) is also true with ρ2 =∼, then f−1 ∈ SV , and g−1 ∈ SV .

Theorem 3. (a) Suppose that f, g ∈ A, next at least one of the func-
tions f−1, g−1 ∈ OR, and relation (4) is true for ρ1 =∼. Then the relation
(5) is also true for ρ2 =�.

(b) If f ∈ A, and for every function g ∈ A which satisfies (4) with
ρ1 =∼, (5) is also true with ρ2 =�, then f−1 ∈ OR and also g−1 ∈ OR.

We notice that previous theorems are in fact some characterizations of
the Karamata classes OR ∩A and SV ∩A.
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2. Proofs of theorems

Proof of Theorem 1. (a) Without loos of generality, we can assume
that the function g−1 ∈ OR. By relation f(x) � g(x) (x → +∞), we have

that lim x→+∞
f(x)
g(x)

= m > 0. Therefore, there is a λ1 >
1
m

such that f(x) ≥
1
λ1
g(x) for x ≥ x0(λ1). Thus, for all enough large x we have

f−1(x)
g−1(x)

≤ g−1(λ1x)
g−1(x)

.

Hence we get

lim x→+∞
f−1(x)
g−1(x)

≤ kg−1(λ1) < +∞.

Besides, we have that lim x→+∞
f(x)
g(x)

= M < +∞. Therefore, there is

a positive number λ2 <
1
M

such that f(x) ≤ 1
λ2
g(x), for x ≥ x0(λ2). This

means that for all enough large x we have
f−1(x)
g−1(x)

≥ g−1(λ2x)
g−1(x)

.

Hence, we find that

lim x→+∞
f−1(x)
g−1(x)

≥ 1
kg−1(1/λ2)

> 0.

Therefore, we have that f−1(x) � g−1(x) as x→ +∞.
(b) Suppose that f ∈ A. Let λ > 0 and g(x) = λ · f(x) (x ≥ a, a > 0).

Then we have that g ∈ A and f(x) � g(x), x → +∞. Therefore, f−1(x) �
g−1(x), x→ +∞, so that

+∞ > A(λ) ≥ lim x→+∞
f−1(x)
g−1(x)

=

= lim t→+∞
f−1(g(t))
g−1(g(t))

=

= lim t→+∞
f−1(λf(t))

t
=

= lim t→+∞
f−1(λf(t))
f−1(f(t))

=

= lim p→+∞
f−1(λ p)
f−1(p)

=

= kf−1(λ), λ > 0.
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Hence, the function f−1 ∈ OR. Besides, for every function g ∈ A for
which f(x) � g(x), x → +∞, we have that g−1(x) = h(x) · f−1(x) for
0 < 1

A(g) ≤ h(x) ≤ A(g) < +∞ if x ≥ x0(g). Therefore,

kg−1(λ) ≤ kf−1(λ) · A2(g) < +∞, λ > 0.

Hence, g ∈ OR. �

Theorem 2 can be proved analogously as the Theorem 1, and the The-
orem 3 (a) is a direct consequence of the Theorem 1 (a). So, we shall only
prove Theorem 3 (b).

Proof of Theorem 3. (b) Suppose that f ∈ A. Then kf−1(λ) ≤ 1
for 0 < λ ≤ 1. Next notice that if g ∈ A and f(x) ∼ g(x), x → +∞, then
f−1(x) � g−1(x), x→ +∞, so that

+∞ > A(g) ≥ lim x→+∞
f−1(x)
g−1(x)

=

= lim t→+∞
f−1(g(t))
g−1(g(t))

=

= lim t→+∞
f−1(g(t))
f−1(f(t))

.

Next, let α(t) (t ≥ a; a > 0) be an arbitrary positive continuous function
such that α(t) ≥ 1 and α(t) → 1+ for t→ +∞. We shall discuss the function
β(t) = α(f(t)) for t ≥ a. If the function h(t) = β(t) f(t), t ≥ a, is increasing,
then h ∈ A and we have f(t) ∼ h(t) as t→ +∞. Hence we get

+∞ > A(h) ≥ lim t→+∞
f−1(β(t)f(t))
f−1(f(t))

=

= lim t→+∞
f−1(α(f(t)) f(t))

t
=

= lim p→+∞
f−1(α(p) · p)

f−1(p)
.

If h(t), t ≥ a, is not increasing, then we can consider the function
r(t) = max

a≤x≤t
h(x), t ≥ a. This function is continuous, nondecreasing and

satisfies r(t) → +∞, t→ +∞, and r(t) ≥ β(t) · f(t), t ≥ a. Let ε > 0. Then
there is a t0 ≥ a such that

1 ≤ h(t)/f(t) < 1 + ε, t ≥ t0,

and next there is a t1 > t0 such that

h(t) ≥ max
a≤u≤t0

h(u),
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for all t ≥ t1. Then for every t ≥ t1 and a function v(t) ∈ [t0, t1] we have that

1 ≤ r(t)
f(t)

=
1
f(t)

max
a≤u≤t

h(u) =

=
1
f(t)

max
t0≤u≤t

h(u) =
h(v(t))
f(t)

≤

≤ h(v(t))
f(v(t))

< 1 + ε.

Hence we get r(t) ∼ f(t), t → +∞. Define next the function r1(t),
t ≥ a, with r1(t) = r(t) + u(t), where u(t), t ≥ a is an increasing, continuous
function such that u(t) → 1−, t → +∞. Then r1 ∈ A and we have that
r1(t) ∼ r(t) ∼ f(t), t→ +∞. Therefore we find that

lim t→+∞
f−1(β(t)f(t))
f−1(f(t))

≤ lim t→+∞
f−1(r1(t))
f−1(f(t))

≤ A(r1) < +∞.

Hence,

lim t→+∞
f−1(β(t)f(t))
f−1(f(t))

= lim t→+∞
f−1(α(f(t))f(t))

f−1(f(t))
=

= lim p→+∞
f−1(α(p) p)
f−1(p)

≤ A(r1) < +∞.
(6)

Now we shall prove that lim
λ→1+
x→+∞

f−1(λx)
f−1(x)

= A < +∞, where A is a finite

real number.
On the contrary, suppose that there are some sequences (λn), (xn) such

that λn → 1+ and xn → +∞ as n→∞, such that

f−1(λnxn)
f−1(xn)

→ +∞, n→∞.

Without loss of generality, we can assume that xn ≥ a (n ∈ N), next
that (xn) is an increasing sequence, and that λn ≥ 1 for every n ∈ N . Define a
function α(x), x ≥ a, with α(xn) = λn (n ∈ N), and α(x) = λ1 for x ∈ [a, x1),
and on the interval (xk, xk+1) (k ≥ 1) take the usual linear and continuous
extension. The so obtained function α : [a,+∞) �→ [1,+∞) is continuous,
and we have α(x)→ 1+ as x→ +∞. Consequently, we get

lim n→+∞
f−1(α(xn)xn)

f−1(xn)
= lim n→+∞

f−1(λn xn)
f−1(xn)

= +∞,

what is a contradiction to (6).
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Hence, for every ε > 0 there is an x0 ≥ a and a δ > 0, so that for all
x ≥ x0 and all λ ∈ [1, 1 + δ], we have

1 ≤ f−1(λx)
f−1(x)

≤ A+ ε.

Thus, if λ ∈ (0, 1 + δ] we have that kf−1(λ) ≤ A+ ε < +∞. Since f−1

is increasing, we have that kf−1(λ) < +∞ for all λ > 0 (see e.g. [3]), so we
find that f−1 ∈ OR.

The remaining part of the proof coincides with the corresponding part
of the proof of Theorem 1 (b). �

Corollary. Assume that both f, g ∈ A.
(a) If at least one of the functions f−1, g−1 ∈ OR, and (4) holds for

ρ1 =� or ρ1 =∼, then both functions f−1, g−1 ∈ OR.
(b) If at least one of the functions f−1, g−1 ∈ SV , and (4) is true for

ρ1 =� or ρ1 =∼, then both functions f−1, g−1 ∈ SV .
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