NOTE ON CONGRUENCE CLASSES OF n-GROUPS

Janez Ušan

Abstract. In the paper the following proposition is proved. Let (Q, A) be an *n*-group, $|Q| \in N \setminus \{1\}$, and let $n \geq 3$. Further on, let Θ be an arbitrary congruence of the *n*-group (Q, A) and let C_t be an arbitrary class from the set Q/Θ . Then there is a $k \in N$ such that the pair (C_t, A) is a (k(n-1)+1)-subgroup of the (k(n-1)+1)-group (Q, A).

1. Preliminaries

1.1. Definition: Let (Q, A) be an *n*-groupoid and $n \ge 2$. We say that (Q, A) is a Dörnte *n*-group [briefly: *n*-group] iff is *n*-semigroup and an *n*-quasigroup as well.

1.2. Proposition [8]: Let (Q, A) be an *n*-groupoid and $n \ge 2$. Then the following statements are equaivalent: (i) (Q, A) is an *n*-group; (ii) there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q, \{A, ^{-1}, \mathbf{e}\})$ [of the type < n, n - 1, n - 2 >]

(a)
$$A(x_1^{n-2}, A(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})),$$

(b) $A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x$ and
(c) $A((a_1^{n-2}, a)^{-1}, a_1^{n-2}, a) = \mathbf{e}(a_1^{n-2});$ and

(iii) there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q, \{\cdot, \varphi, b\})$ [of the type < n, n-1, n-2 >]

$$\begin{array}{l} (\overline{a}) \ A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}), \\ (\overline{b}) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x \ and \\ (\overline{c}) \ A(a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}). \end{array}$$

AMS Mathematisc Subject Classification 2000. Primary: 20N15.

Key words and phrases: *n*-semigroup, *n*-quasigroup, *n*-group.

1.3. Remark: e is an $\{1, n\}$ -neutral operation of n-groupoid (Q, A) iff algebra $(Q, \{A, e\})$ of the type $\langle n, n-2 \rangle$ satisfies the laws (b) and (\overline{b}) from 1.2[4].

1.4. Proposition (Hosszú–Gluskin Theorem) [2, 3]: For every n-group (Q, A), $n \geq 3$, there is an algebra $(Q, \{\cdot, \varphi, b\})$ such that the following statements hold: 1° (Q, \cdot) is a group; 2° $\varphi \in Aut(Q, \cdot)$; 3° $\varphi(b) = b$; for every $x \in Q$, $\varphi^{n-1}(x) \cdot b = b \cdot x$; and 5° for every $x_1^n \in Q$, $A(x_1^n) = x_1 \cdot \varphi(x_2) \cdots \varphi^{n-1}(x_n) \cdot b$.

1.5. Definition [5]: We say that an algebra $(Q, \{\cdot, \varphi, b\})$ is a Hosszú-Gluskin algebra of order $n(n \ge 3)$ [briefly: nHG-algebra] iff $1^{\circ} - 4^{\circ}$ from 1.4 hold. In adition, we say that an nHG-algebra $(Q, \{\cdot, \varphi, b\})$ is associated to the n-group (Q, A) iff 5° from 1.4 holds.

2. Auxiliarly proposition

2.1. Proposition [5]: Let (Q, A) be an n-group, \mathbf{e} its $\{1, n\}$ -neutral operatorn [:1.3] and $n \geq 3$. Further on, let c_1^{n-2} be an arbitrary sequence over Q and let for every $x, y \in Q$

(1)
$$B_{(c_1^{n-2})}(x) \stackrel{def}{=} A(x, c_1^{n-2}, y),$$

(2) $\varphi_{(c_1^{n-2})}(x, y) \stackrel{def}{=} A(\mathbf{e}(c_1^{n-2}), x, c_1^{n-2})$ and
(3) $b_{(c_1^{n-2})} \stackrel{def}{=} A(\overline{\mathbf{e}(c_1^{n-2})})).$

Then, the following statements hold:

(4) $(Q,\{B_{(c_1^{n-2})},\varphi_{c_1^{n-2})},b_{(c_1^{n-2})}\})$ is an nHG-algebra associated to the n-group (Q,A); and

(5) $C_A \stackrel{def}{=} \{ (Q, \{B_{(c_1^{n-2})}, \varphi_{(c_1^{n-2})}, b_{(c_1^{n-2})}\}) | c_1^{n-2} \in Q \}$ is the set of all nHG-algebras associated to the n-group (Q, A).

2.2. Proposition [10]: Let (Q, A) be an n-group and let $n \geq 3$. Further on, let Θ be an arbitrary congruence of the n-group (Q, A). Then, for every $C_t \in Q/\Theta$ there is an nHG-algebra $(Q, \{\cdot, \varphi, b\})$ associated to the n-group (Q, A) such that the following statements hold:

(i) $(C_t, \cdot) \lhd (Q, \cdot);$

(ii) (C_t, φ) is a 1-quasigroup; and

(iii) (C_t, A) is an *n*-subgroup of the *n*-group (Q, A) iff $b \in C_t$.

2.3. Remark: Let \mathbf{e} be a $\{1, n\}$ -neutral operation of the n-group (Q, A) [:1.3]. Then: a) for n = 3, $\mathbf{e} \in Q$!; and b) for n > 3, (Q, \mathbf{e}) is an

(n-2)-quasigroup [5]. nHG-algebra in Prop. 2.2. is defined with $\mathbf{e}(c_1^{n-2}) = t$ and with (1) - (3) from Prop. 2.1.

2.4. Proposition: Let (Q, A) be an *n*-semigroup, $n \ge 2$ and let $(i, j) \in$ N^2 . Let also $\stackrel{1}{A} \stackrel{def}{=} A$ and for every $m \in N$ and for every $x_1^{(m+1)(n-1)+1} \in Q$

$$\overset{m+1}{A}(x_{1}^{(m+1)(n-1)+1}) \overset{def}{=} A(\overset{m}{A}(x_{1}^{m(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}) \overset{def}{=} A(\overset{m}{A}(x_{1}^{m(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}) \overset{def}{=} A(\overset{m}{A}(x_{1}^{m(n-1)+1}), x_{m(n-1)+2}^{(m+1)(n-1)+1}), x_{m(n-1)+1}^{(m+1)(n-1)+1}), x_{m(n-$$

Then, for every $x_1^{(m+1)(n-1)+1} \in Q$ and for every $t \in \{1, ..., i(n-1)+1\}$, the following equality holds

 $\overset{i}{A}(x_1^{t-1}, \overset{j}{A}(x_t^{t+j(n-1)}), x_{t+j(n-1)+1}^{(i+j)(n-1)+1}) = \overset{i+j}{A}(x_1^{(i+j)(n-1)+1}).$ By 2.4 an by 1.1, we conclude that the following proposition holds:

2.5. Proposition: Let (Q, A) be an n-group, $n \ge 2$ and $i \in N$. Then (Q, A) is an (i(n-1)+1)-group.

2.6. Proposition [11]: Let (Q, A) be an *n*-group and $n \ge 2$. Then for every $k \in N \setminus \{1\}$ the following equality holds Con(Q, A) = Con(Q, A).

3. Result

3.1. Theorem: Let (Q, A) be an n-group, $|Q| \in N \setminus \{1\}$ and let $n \geq 3$. Further on, let Θ be an arbitrary congruence of the n-group (Q, A) [$\Theta \in$ Con(Q, A) and let C_t $[t \in Q]$ be an arbitrary class from the set Q/Θ . Then there is a $k \in N$ such that the pair $(C_t, \overset{k}{A})$ is a (k(n-1)+1)-subgroup of the $(k(n-1)+1)-qroup (Q, \tilde{A})$.

Proof. Firstly, we prove that under the assumptions the following statements hold:

1 If $(Q, \{\cdot, \varphi, b\})$ is an *nHG*-algebra [:1.5], then for every $k \in N$ $(Q, \{\cdot, \varphi, b^k\})$ is a (k(n-1)+1)HG-algebra; and

 $\overline{2}$ If $(Q, \{\cdot, \varphi, b\})$ is an *nHG*-algebra associated to the *n*-group (Q, A), then for every $k \in N$ $(Q, \{\cdot, \varphi, b^k\})$ is a (k(n-1)+1)HG-algebra associated to the (k(n-1)+1)-group $(Q, A)^{1}$.

The sketch of the proof of $\overline{1}$:

a)
$$\varphi(b^1) = b$$
, $\varphi(b^t) = b^t$,
 $\varphi(b^{t+1}) = \varphi(b^t) \cdot \varphi(b) = b^t \cdot b = b^{t+1}$;

 $^{1)}$ See 2.5.

b)
$$\varphi^{t(n-1)}(x) \cdot b^{t} = b^{t} \cdot x$$
$$\varphi^{(t+1)(n-1)}(x) \cdot b^{t+1} = \varphi^{t(n-1)}(\varphi^{n-1}(x)) \cdot b^{t} \cdot b$$
$$= b^{t} \cdot \varphi^{n-1}(x) \cdot b$$
$$= b^{t} \cdot b \cdot x$$
$$= b^{t+1} \cdot x \quad [: 1.5].$$

The sketch of the proof of $\overline{2}$:

$$\overline{a}) \stackrel{1}{A} \stackrel{2\cdot4}{=} A, \ A(x_1^n) \stackrel{1\cdot5}{=} x_1 \cdot \varphi(x_2) \cdots \varphi^{n-1}(x_n) \cdot b;$$

$$\overline{b}) \stackrel{t}{A}(x_1^{t(n-1)+1}) = x_1 \cdot \varphi(x_2) \cdots \varphi^{t(n-1)}(x_{t(n-1)+1}) \cdot b^t;$$

$$\overline{c}) \stackrel{t+1}{A}(x_1^{(t+1)(n-1)+1}) \stackrel{2\cdot4}{=} A(x_1^{n-1}, \stackrel{t}{A}(x_n^{(t+1)(n-1)+1})) = x_1 \cdot \varphi(x_2) \cdots \varphi^{n-2}(x_{n-1}) \cdot \varphi^{n-1} \stackrel{t}{A}(x_n^{(t+1)(n-1)+1}) \cdot b^{\overline{b}} = x_1 \cdot \varphi(x_2) \cdots \varphi^{n-2}(x_{n-1}) \cdot \varphi^{n-1}(x_n) \cdots \varphi^{(t+1)(n-1)}(x_{(t+1)(n-1)+1}) \cdot b^t \cdot b = x_1 \cdot \varphi(x_2) \cdots \varphi^{n-2}(x_{n-1}) \cdot \varphi^{n-1}(x_n) \cdots \varphi^{(t+1)(n-1)}(x_{(t+1)(n-1)+1}) \cdot b^{t+1}.$$

Finally, by Proposition 2.6, by $\overline{1}$, $\overline{2}$, by $|Q| \in N \setminus \{1\}$, and by Proposition 2.2, we conclude that the Theorem holds. \Box

4. Remark

If $n \geq 3$, then: 1) there exist n-group (Q, A) and its congruence Θ such that **for every** $C_a \in Q/\Theta$ the pair (C_a, A) **is not** an n-group [6,9]; 2) there exist an n-group (Q, A) and its congruence Θ such that **for every** $C_a \in Q/\Theta$ the pair (C_a, A) **is** an n-group [6,7,9]; and 3) there exist n-group (Q, A) and its congruence Θ such that **exactly one** $C_a \in Q/\Theta$ the pair (C_a, A) **is** an n-group [6].

5. References

- W. D. Dörnte: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29(1928), 1–19.
- M. Hosszú: On the explicit form of n-group operations, Publ. Math. (Debrecen) 10(1963), 88–92.
- [3] L. M. Gluskin: Positional operatives, (Russian), **68**(110)(1965), 444–472.
- [4] J. Ušan: Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18.2(1988), 117-126.
- [5] J. Ušan: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25.1(1995), 101–119.
- [6] B. Janeva: Congruences on n-groups, Mat. Bilten (Skopje) 45(1995), 85–90.

- [7] J. Ušan: On congruences on n-groups, Novi Sad J. Math. 27.2(1997), 89-100.
- [8] J. Ušan: *n-groups as variety of type* $\langle n, n 1, n 2 \rangle$, in: Algebra and Model Theory, (A. G. Pinus and K.N.Ponomaryov, eds.) Novosibirsk 1997, 182-208.
- [9] J. Ušan: On congruence classes of n-groups, Novi Sad J. Math. 28.1(1998), 75-89.
- [10] J. Ušan: Congruences of n-group and of associated Hosszú-Gluskin algebras, Novi Sad J. Math. 28.2.(1998), 91–108.
- [11] J. Ušan: A comment on a class of polyadic group, Scientific Bulletin of the Polytechnic University Timişoara, Math.-Phys. Ser. 44(58)-2(1999), 8-14.

Institute of Mathematics University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia