ONE CHARACTERIZATION OF NEAR-P-POLYAGROUP

Janez Ušan

Abstract. In the present paper the following proposition is proved. Let $k > 1, s \ge 1$, $n = k \cdot s + 1$ and let (Q, A) be an *n*-groupoid. Then, (Q, A) is an near-P-polyagroup (briefly: NP-polyagroup) of the type (s, n - 1) iff for some $i \in \{t \cdot s + 1 | t \in \{1, \ldots, k - 1\}\}$ the following conditions hold: (a) the $\langle i - s, i \rangle$ -associative law holds in (Q, A); (b) the $\langle i, i + s \rangle$ -associative law holds in (Q, A); and (c) for every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{i-1}, x, a_i^{n-1}) = a_n$.

1. Introduction

1.1 Definition [6]: Let $k > 1, s \ge 1$, $n = k \cdot s + 1$ and let (Q, A) be an n-groupoid. Then, we say that (Q, A) is an Ps-associative n-groupoid iff for every $i, j \in \{t \cdot s + 1 | t \in \{0, 1, \dots, k\}\}, i < j$, the following law holds $A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1})$ [: < i, j > -associative law].

Remark: For s = 1 (Q, A) is a (k + 1)-semigroup; k > 1. A notion of an *s*-associative *n*-groupoid was introduced by F.M. Sokhatsky (for example [2]).

1.2. Definitions [6]: Let $k > 1, s \ge 1$, $n = k \cdot s + 1$ and let (Q, A) be an n-groupoid. Then: (a) we say that (Q, A) is a P-polyagroup of the type (s, n - 1) iff is an Ps-associative n-groupoid and a n-quasigroup; and (b) we say that (Q, A) is an **near-P-polyagroup (briefly: NP-polyagroup)** of the type (s, n - 1) iff for every $i \in \{t \cdot s + 1 | t \in \{0, 1, \dots, k\}\}$ and for all $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the equalityty

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n.$$

holds.

AMS Mathematics Subject Classification 2000. Primary: 20N15.

Key words and phrases: n-groupoid, n-semigroup, n-quasigroup, Ps-associative n-groupoid, P-polyagroup, NP-polyagroup.

A notion of an **polyagroup** was introduced by F.M. Skohatsky (for example [3]).

Remark: Every P-polyagroup of the type (s, n-1) is an NP–polyagroup of the type (s, n-1). In [6] NP–polyagroups is described as algebras with laws of type (s, n-1, n-2). See, also [4].

2. Auxiliary propositions

 $\{0, 1, \ldots, k\}\}$ and let (Q, A) be an *n*-groupoid. Also let (i) the $\langle i - s, i \rangle$ -associative law holds in the (Q, A); (ii) the $\langle i, i + s \rangle$ -associative law holds in the (Q, A); and (iii) for every $x, y, a_1^{n-1} \in Q$ the following implication holds $A(a_1^{i-1}, x, a_i^{n-1}) = A(a_1^{i-1}, y, a_i^{n-1}) \Rightarrow x = y.$ Then (Q, A) is an Ps-associative n-groupoid. The sketch of the part of the proof: $i = t \cdot s + 1, n = k \cdot s + 1$ $i < (k-1) \cdot s + 1:$ $A(a_{1}^{t\cdot s}, A(b_{1}^{k\cdot s+1}), a_{t\cdot s+1}^{k\cdot s}) = A(a_{1}^{t\cdot s}, b_{1}^{s}, A(b_{s+1}^{k\cdot s+1}, a_{t\cdot s+1}^{(t+1)\cdot s}), a_{(t+1)\cdot s+1}^{k\cdot s}) \Rightarrow$ $A(c_1^{t \cdot s}, d_1^s, A(a_1^{t \cdot s}, A(b_1^{k \cdot s+1}), a_{t,s+1}^{k \cdot s}), e_{(t+1),s+1}^{k \cdot s}) =$ $A(c_1^{t\cdot s}, d_1^s, A(a_1^{t\cdot s}, b_1^s, A(b_{s+1}^{k\cdot s+1}, a_{t\cdot s+1}^{(t+1)\cdot s}), a_{(t+1)\cdot s+1}^{k\cdot s}), e_{(t+1)\cdot s}^{k\cdot s}) \Rightarrow$ $A(c_1^{t\cdot s}, A(d_1^s, a_1^{t\cdot s}, A(b_1^{k\cdot s+1}), a_{t\cdot s+1}^{(k-1)\cdot s}), a_{(k-1)\cdot s+1}^{k\cdot s}, e_{(t+1)\cdot s}^{k\cdot s}) =$ $A(c_{1}^{t\cdot s}, A(d_{1}^{s}, a_{1}^{t\cdot s}, b_{1}^{s}, A(b_{s+1}^{k\cdot s+1}, a_{t\cdot s+1}^{(t+1)\cdot s}), a_{(t+1)\cdot s+1}^{(k-1)\cdot s}), a_{(k-1)\cdot s+1}^{k\cdot s}, e_{(t+1)\cdot s}^{k\cdot s}) \Rightarrow$ $A(d_1^s, a_1^{t \cdot s}, A(b_1^{k \cdot s+1}), a_{t-s+1}^{(k-1) \cdot s}) =$ $A(d_1^s, a_1^{t \cdot s}, b_1^s, A(b_{s+1}^{k \cdot s+1}, a_{t \cdot s+1}^{(t+1) \cdot s}), a_{(t+1) \cdot s+1}^{(k-1) \cdot s})$ /:(*ii*), (*iii*) /.

Remark: For k = 2 the conditions (i) and (ii) are equivalent to the condition that (Q, A) is an Ps-associative n-groupoid.

2.2. Proposition [7]: Let $k > 1, s \ge 1$, $n = k \cdot s + 1$ and let (Q, A) be an *n*-groupoid. Then, (Q, A) is an **NP**-polyagroup of the type (s, n - 1) iff the following statements hold:

(a) (Q, A) is an < 1, n > -associative n-groupoid;

(b) (Q, A) is an < 1, s + 1 > -associative n-groupoid or $< (k-1) \cdot s + 1, k \cdot s + 1 > -$ associative n-groupoid; and

(c) for every $a_1^n \in Q$ there is at least one $x \in Q$ and at least one $y \in Q$ such that the following equalities hold

$$A(a_1^{n-1}, x) = a_n \text{ and } A(y, a_1^{n-1}) = a_n.$$

3. Result

3.1. Theorem: Let $k > 1, s \ge 1$, $n = k \cdot s + 1$ and let (Q, A) be an *n*-groupoid. Then the following statements are equalvalent:

(i) (Q, A) is an NP-polyagroup of the type (s, n-1);

(ii) There is at least one $i \in \{t \cdot s + 1 | t \in \{1, \ldots, k - 1\}\}$ such that the following conditions hold: (a) the $\langle i - s, i \rangle$ -associative law holds in (Q, A); (b) the $\langle i, i + s \rangle$ -associative law holds in (Q, A); and (c) for every $a_1^n \in Q$ there is **exactly one** $x \in Q$ such that the following equality holds $A(a_1^{i-1}, x, a_n^{n-1}) = a_n$.

Proof. 1) \Rightarrow :

Let (i) holds. Then the implication $(i) \Rightarrow (ii)$ holds tautologically.

 $2) \Leftarrow:$

Let (ii) holds. We prove respectively that the following proposition hold:

 $1^{\circ}(Q, A)$ is an *Ps*-associative *n*-groupoid;

2° For every $a_1^n \in Q$ there is at least one $x \in Q$ such that the following equality holds $A(x, a_1^{n-1}) = a_n$; and

3° For every $a_1^n \in Q$ there is at least one $y \in Q$ such that the following equality holds $A(a_1^{n-1}, y) = a_n$.

Proof of 1° :

a) For k = 2 the conditions (a) and (b) are equalvalent to the condition that (Q, A) is an Ps-associative n-groupoid.

b) For k > 2, by (a), (b), (c) [*i*-cancelation] and Proposition 2.1, we conclude that (Q, A) is an Ps-associative n-groupoid.

Proof of 2°

a) By 1° and (c) [*i*-cancelation], we conclude that for every $x, a_1^{k \cdot s+1}, c_1^{k \cdot s} \in Q$ the following sequence of equivalences holds:

$$A(x, a_1^{k \cdot s}) = a_{k \cdot s + 1} \Leftrightarrow$$

 $A(c_1^{t\cdot s}A(x,a_1^{k\cdot s}),c_{t\cdot s+1}^{k\cdot s})=A(c_1^{t\cdot s},a_{k\cdot s+1},c_{t\cdot s+1}^{k\cdot s})\Leftrightarrow$

 $A(c_1^{t \cdot s}, x, a_1^{s-1}, A(a_s^{k \cdot s}, c_{t \cdot s+1}^{(t+1) \cdot s}), c_{(t+1) \cdot s+1}^{k \cdot s}) = A(c_1^{t \cdot s}, a_{k \cdot s+1}, c_{t \cdot s+1}^{k \cdot s}),$ i.e. the following equivalence holds

$$\begin{split} A(x, a_1^{k \cdot s}) &= a_{k \cdot s+1} \Leftrightarrow \\ A(c_1^{t \cdot s}, x, a_1^{s-1}, A(a_s^{k \cdot s}, c_{t \cdot s+1}^{(t+1) \cdot s}), c_{(t+1) \cdot s+1}^{k \cdot s}) = A(c_1^{t \cdot s}, a_{k \cdot s+1}, c_{t \cdot s+1}^{k \cdot s}) \end{split}$$

 $i = t \cdot s + 1, \ t \in \{1, \dots, k - 1\}.$

b) By (c), we conclude that for every $a_1^{k \cdot s+1}, c_1^{k \cdot s} \in Q$ there is exactly one $x \in Q$ such that the following equality holds:

 $A(c_1^{t\cdot s}, x, a_1^{s-1}, A(a_s^{k\cdot s}, c_{t\cdot s+1}^{(t+1)\cdot s}), c_{(t+1)\cdot s+1}^{k\cdot s}) = A(c_1^{t\cdot s}, a_{k\cdot s+1}, c_{t\cdot s+1}^{k\cdot s}).$

c) Finally, by a) and b), we conclude that the statement 2° holds.

Similarly, it is possible to prove the statement 3° .

By 1°, 2°, 3° and Proposition 2.2, we conclude that the Theorem 3.1 holds.

3.2. Remark: 1) For s = 1 Theorem 3.1 is proved in [5]. 2) A part of Theorem 1.4 in [1] is the following proposition. Let $n \ge 3$ and let (Q, A) be an n-semigroup. Then (Q, A) is an n-group iff for some $i \in \{2, \ldots, n-1\}$ and for every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{i-1}, x, a_i^{n-1}) = a_n$. See, also Th.1 in [9].

4. References

- Monk J. D., Sioson F. M.: On the general theory of m-groups, Fund. Math. 72(1971), 233-244.
- [2] Sokhatsky F. M.: On the associativity of multiplace operations, Quasigroups and Related Systems 4(1997), 51–66.
- [3] Sokhatsky F. M. and Yurevych O.: Invertible elements in associates and semigroups. 2, Quasigroups and Related Systems 6(1999), 61–70.
- [4] Ušan J.: n-groups as variety of type < n, n 1, n 2 >, Algebra and model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182–208.
- [5] Ušan J.: A note on *n*-groups for $n \ge 3$, Novi Sad J. Math. **29–1**(1999), 55–59.
- [6] Ušan J. and Galić R.: On NP-polyagroups, Math. Communications Vol.6, No.2, 153-159.
- [7] Ušan J. and Žižović M.: Note on near-P-polyagroups, Filomat (Niš), T15 (2001), 85-90.
- [8] Ušan J.: A comment on (n,m)-groups for $n \ge 3m$, Math. Moravica 5(2001), 159-162.
- [9] Dudek A. W.: On some old and new problems in n-ary groups, Quasigroups and Related Systems 8(2001), 15-36.

Institute of Mathematics University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia