A GENERAL FIXED POINT THEOREM FOR MAPPINGS IN PSEUDOCOMPACT TICHONOFF SPACES

Valeriu Popa

Abstract. In [2] Jain and Dixit have obtained some interesting results on fixed points in pseudocompact Tichonoff spaces. In this paper we present a general fixed point theorem in pseudocompact Tichonoff spaces for mappings satisfying an implicit relation which generalize Theorem 1 and 2 from [2] and some results from [3] and [4].

1. Introduction

A topological space P is said to be pseudocompact iff every real valued continuous function on P is bounded. Every compact space is pseudocompact but the converse is not true (Ex.5,pp.150 [1]).

Remark 1. In a metric space the notions "compact" and "pseudocompact" coincide. By Tichonoff space we mean a completely regular Hausdorff space. It is observed that the product of two Tichonoff space is again a Tichonoff space, whereas the product of two paracompact spaces need be pseudocompact.

In [2] the following theorems are proved:

Theorem 1. Let P be a pseudocompact Tichonoff space and f be a non-negative real valued continuous function over $P \times P$ satisfying

(1.1)
$$\begin{cases} f(x,x) = 0 \text{ for all } x \in P \text{ and} \\ f(x,y) \le f(x,z) + f(z,y) \text{ for all } x, y, z \in P \end{cases}$$

If $T: P \to P$ is a continuous mapping satisfying

(1.2)
$$\left[f(Tx,Ty) \right]^2 < f(x,Tx)f(y,Ty) + af(x,Ty)f(y,Tx)$$

for all distinct points $x, y \in P$, where $a \ge 0$, then T has a fixed point in P, which is unique whenever $a \le 1$.

AMS (MOS) Subject Classification 1991. Primary: 54H25.

 $^{{\}bf Key}\ {\bf words}\ {\bf and}\ {\bf phrases:}$ fixed point, pseudocompact spaces, Tichonoff space, implicit relation.

Theorem 2. Let P and f be the same as defined in Theorem 1. If $T: P \rightarrow P$ is a continuous mapping satisfying

(1.3)
$$\begin{bmatrix} f(Tx,Ty) \end{bmatrix}^2 < a \begin{bmatrix} f(x,Tx)f(y,Ty) + f(x,Ty)f(y,Tx) \end{bmatrix} + b \begin{bmatrix} f(x,Tx)f(y,Tx) + f(x,Ty)f(y,Ty) \end{bmatrix}$$

for all distinct points $x, y \in P$, where $a, b \ge 0$ and 0 < a + 2b < 1. Then T has a unique fixed point.

Remark 2. In the proofs of Theorems 1 and 2 the authors suppose that

f(x,y) = f(y,x) for all $x, y \in P$.

The purpose of this paper is to prove a general fixed point theorem in pseudocompact Tichonoff space for mappings satisfying an imiplicit relation which generalize Theorems 1 and 2 and some results from [3] and [4].

2. Implicit relations

Let \mathcal{F}_5 be the set of all real continuous functions $F(t_1, \ldots, t_5): \mathbb{R}^5_+ \to \mathbb{R}$ satisfying the following conditions:

(F₁): F is non-increasing in variable t_5 ;

(F₂) If F(u, v, u, 0, u + v) < 0 for u, v > 0, then u < v.

The function F satisfies the condition (F_U) if $F(u, 0, 0, u, u) \ge 0$, $\forall u \ge 0$.

Ex.l. $F(t_1, \ldots, t_5) = t_1^2 - t_2 t_3 - a t_4 t_5$ where $a \ge 0$.

 (F_1) : Obvious,

 (F_2) : F(u, v, u, 0, u + v) < 0 implies $u^2 - uv < 0$ which implies u < v for u, v > 0.

 (F_U) : Let $0 < a \le 1$ then $F(u, 0, 0, u, u) = u^2(1-a) \ge 0, \forall u \ge 0.$

Ex.2. $F(t_1, \ldots, t_5) = t_1^2 - a(t_2t_3 + t_4t_5) - b(t_2t_4 + t_3t_5)$ where $0 < a + 2b < 1, a \ge 0, b \ge 0$.

 (F_1) : Obvious.

(F₂): Let $F(u, v, u, 0, u + v) = u^2 - auv - buv - bu(u + v) < 0$. If $u \ge v$, then $u^2(1 - a - 2b) < 0$, a contradiction. Thus u < v.

Ex.3. $F(t_1, \ldots, t_5) = t_1^2 - t_1(at_2 + bt_3) - ct_4t_5$ where $a, b, c \ge 0$ and 0 < a + b < 1.

 (F_1) : Obvious.

(F₂): Let F(u, v, u, 0, u + v) < 0 then $u < \frac{a}{1-b}v < v$. (F_U): If $0 < c \le 1$, then $F(u, 0, 0, u, u) = u(1-c) \ge 0$, $\forall u \ge 0$. **Ex.4.** $F(t_1, \ldots, t_5) = t_1^3 + t_1^2 t_3 + t_1 t_2^2 - c \frac{t_2^2 t_3^2 + t_4^2 t_5^2}{t_1 + t_2 + t_3 + 1}$ where 0 < c < 1. (F₁): Obvious.

$$(F_2): \text{ If } F(u, v, u, 0, u + v) < 0 \text{ then } u^3 + u^2v + uv^2 - c\frac{u^2v^2}{2u + v + 1} < 0$$

which implies $u^3 - \frac{cu^2v^2}{2u + v + 1} < 0$ and thus $u < \frac{cv^2}{2u + v + 1} < cv \le v.$
$$(F_3): F(u, 0, 0, u, u) = u^3 \cdot \frac{(1 - c)u + 1}{u + 1} \ge 0, \forall u \ge 0.$$

3. Main result

Theorem 3. Let P and f be the same as defined in Theorem 1. If $T: P \rightarrow P$ is a continuous mapping satisfying

(1.4)
$$F(f(Tx,Ty), f(x,Tx), f(y,Ty), f(y,Tx), f(x,Ty)) < 0$$

for all distinct points $x, y \in P$, where $F \in \mathcal{F}_5$, then T has a fixed point.

Furthermore if f(x, y) = f(y, x) for all $x, y \in P$ and F satisfies property (F_U) , the fixed point is unique.

Proof. We define $\varphi : P \to R$ by $\varphi(p) = f(p, Tp)$ for all $p \in P$. Clearly is continuous being the composite of two continuous function f and T. Since P is pseudocompact Tichonov space, every real valued function over P is bounded and attains its bounds. Thus there exists a point $v \in P$ such that $\varphi(v) = \inf{\{\varphi(p) : p \in P\}}$. We now affirm that v is a fixed point for T. If not, let us suppose that $Tv \neq v$. Then using (4) we have successively

$$F(f(Tv, T^{2}u), f(v, Tv), f(Tv, T^{2}v), f(Tv, Tv), f(v, T^{2}v)) < 0$$

$$F(f(Tv, T^{2}v), f(v, Tv), f(Tv, T^{2}v), 0, f(v, Tv) + f(Tv, T^{2}v)) < 0$$

which implies by (F_2) that $f(Tv, T^2v) < f(v, Tv)$ i.e. $\varphi(Tv) < \varphi(v)$, a contradiction. Thus $v \in P$ is a fixed point for T. If f(x, y) = f(y, x) and F satisfies property (F_U) then v is the unique fixed point.

Indeed, let $w \in P$ be another fixed point of T, i.e. Tw = w and $v \neq w$. Then using (4) we have successively,

$$\begin{split} F\big(f(Tv,Tw),f(v,Tv),f(w,Tw),f(w,Tv),f(v,Tw)\big) &< 0\\ F\big(f(v,w),f(v,v),f(w,w),f(w,v),f(v,w)\big) &< 0\\ F\big(f(v,w),0,0,f(v,w),f(v,w)\big) &< 0 \end{split}$$

a contradiction of (F_U) which proves that $v \in P$ is the unique fixed point of T.

Corollary 1. Theorem 1.

Proof. It follows from Theorem 3 and Ex.l.

Corollary 2. Theorem 2.

Proof. It follows from Theorem 3 and Ex.2.

Theorem 4. Let T be a continuous self mapping of a compact metric space (X, d) satisfying

(1.5) F(d(Tx,Ty), d(x,Tx), d(y,Ty), d(y,Tx), d(x,Ty)) < 0for all distinct points $x, y \in X$, where $F \in \mathcal{F}_5$. Then T has a fixed point. Furthermore, if T satisfies and properties (F_U) , the fixed point is unique.

Proof. It follows from Theorem 3 and Remark 1.

Corollary 3. (Fisher [3]). Let T be a continuous self mapping of a compact metric space (X, d) satisfying

(1.6) $[d(Tx,Ty)]^2 \leq d(x,Tx)d(y,Ty) + ad(x,Ty)d(y,Tx)$ for all distinct points $x, y \in X$, where $a \geq 0$. Then T has a fixed point. If $a \leq 1$, then the fixed point is unique.

Proof. It follows from Theorem 4 and Ex.l.

Corollary 4. (Pachpatte [4]). If T is a continuous self mapping of a compact metric space (X, d) satisfying

(1.7)
$$\begin{bmatrix} d(Tx,Ty) \end{bmatrix}^2 < a (d(x,Tx)d(y,Ty)) + d(x,Ty)d(y,Tx) + b (d(x,Tx)d(y,Tx) + d(x,Ty)d(y,Ty)) \end{bmatrix}$$

for all distincts points $x, y \in X$, where $a, b \ge 0$, and a + 2b < 1, then T has a unique fixed point.

Proof. It follows from Theorem 4 and Ex.2.

4. References

- R, Engleking: Outline of General Topology, North Holland Company, New York, 1968.
- [2] R.K. Jain and S.P. Dixit: Some fixed point theorems for mappings in pseudocontact Tichonoff spaces, Publ.Math.Debrecen, 33, 3-4(1986),195-197.
- B. Fisher: Fixed point and constant mappings on metric spaces, Rend. Accad. Nat. Lincei, 6(1976),329-332.
- [4] B. G. Pachpatte: On certain fixed point mappings in metric spaces, J. of M.A.C.T., 13(1980),59-63.

Department of Mathematics University of Bacău 5500 Bacău Romania E-mail:vpopa@ub.ro