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COMMON FIXED POINT THEOREMS OF

GREGUS TYPE IN CONVEX METRIC SPACES

Sushil Sharma and Bhavana Deshpande

Abstract. In this paper, we prove common fixed point theorems
of Gregus type for three mappings in convex metric spaces. We extend
and generalize some well known results by many authors.

1. Introduction

The notion of convex metric spaces was initially introduced by Taka-
hashi [17]. He and others gave some fixed point theorems for nonexpansive
mappings in convex metric spaces ([2], [5], [7], [8], [9], [13], [15], [16]).

On the other hand Gregus [6] proved a fixed point theorem in Banach
spaces, which is called Gregus fixed point theorem and then many authors
have obtained some fixed point theorems of Gregus type.

The aim of this paper is to prove some common fixed point theorems
of Gregus type for compatibile mappings in convex metric spaces.

Recently, Huang and Cho [8], proved common fixed point theorems of
Gregus type in convex metric spaces. They proved results for two mappings. In
this paper, we prove results for three mappings. We also extend and generalize
some known results of Gregus type.

2. Preliminaries

In this section, we give some definitions and lemmas for our main re-
sults.

Definition 1. Let (X, d) be a metric space and J = [0, 1]. A mapping
W : X ×X × J → X is called a convex structure on X if for each (x, y, λ) ∈
X ×X × J and u ∈ X,

d
(
u,W (x, y, λ)

)
≤ λd(u, x) + (1 − λ)d(u, y).
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a metric space X together with a convex structure W is called a convex metric
space.

Definition 2. A nonempty subset K of X is said to be convex if,

W (x, y, λ) ∈ K

For all (x, y, λ) ∈ K ×K × J .

Obviously, a Banach space or any convex subset of a Banach space is
a convex metric space. But there are many examples of convex metric spaces
which are not embedded in any Banach spaces. For further information on
convex metric spaces, we refer to [17].

Definition 3. Let (X, d) be a convex metric space and letK be a convex
subset of X. A mapping S : K → K is said to be W -affine if

SW (x, y, λ) = W (Sx, Sy, λ) for all (x, y, λ) ∈ K ×K × J.

Definition 4. [10]. Let (X, d) be a metric space and let S, T : X → X
be two mappings. S and T are said to be compatible if, whenever {xn} is a
sequence in X such that Sxn, Rxn → t ∈ X, then

d(STxn, TSxn) → 0.

Lemma 1. [10]. Let S and T be compatible mappings of a metric space
(X, d) into itself. If Sz = Tz for some z ∈ X, then STz = TSz = S2z = A2z.

Lemma 2. [10]. If S and T are compatible self maps of a metric space
(X, d) and limn→∞ Sxn =limn→∞ Txn =z for some z in X, then limn→∞ TSxn

= Sz if S is continuous.

Lemma 3. Let a > 0, c > 0 and p ≥ 1. If a+ c < (3−31−p)(3p −1)−1,
then a1/p + c1/p < 1.

Proof. Let f(x) = xp for all x in (0,∞) and p ≥ 1. It follows from
p ≥ 1 that

f
(
(1/3)(x + y)

)
≤ (1/3)f(x) + (1/3)f(y)

for all x, y > 0. Thus we have(
(1/3)(a1/p + c1/p)

)p ≤ (1/3)(a + c) < (1 − 3−p)(3p − 1)−1,

which implies that

a1/p + c1/p <
(
3p(1 − 3−p)(3p − 1)

)1/p =
(

3p

(
3p − 1

3p
· 1
3p − 1

))1/p

.

This completes the proof.
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3. Main results

Throughout this section, we assume that X is a complete convex metric
space with a convex structure W and K is a nonempty closed convex subset
of X.

Theorem 1. Let A, B and S be three mappings of K into itself satis-
fying the following conditions:

(1.1) S and B are W -affine,
(1.2) S is continuous,
(1.3) the pair (S,A) and (S,B) are compatible,
(1.4) A(K) ⊂ S(K), B(K) ⊂ S(K),
(1.5) dp(Ax,By) ≤ adp(Sx, Sy) + bmax

{
dp(Ax,Sx), dp(By, Sy)

}
+cmax

{
dp(Sx, Sy), dp(Ax,Sx), dp(By, Sy)

}
for all x, y in K, where a, b, c >

0, p ≥ 1, a+ b+ c = 1 and max
{

(1 − b)2

a
, b+ c

}
< (3 − 31−p)(3p − 1)−1.

Then A, B and S have a unique common fixed point z∗ in K. also A

and B are continuous at z∗.

Proof. Let x = x0 be an arbitrary point in K and choose four points
x1, x2, x3 and x4 in K such that

Sx1 = Ax, Sx2 = Bx1, Sx3 = Ax2, Sx4 = Bx3.

In general

Sx2r+1 = Ax2r, Sx2r+2 = Bx2r+1, for r = 0, 1.

This can be done since A(K) ⊂ S(K), B(K) ⊂ S(K).
For r = 0, 1, (1.1) leads to

dp(Ax2r, Bx2r−1) ≤ adp(Sx2r, Sx2r−1) +

bmax
{
dp(Ax2r, Sx2r), dp(Bx2r−1, Sx2r−1

}
+

+cmax
{
dp(Sx2r, Sx2r−1), dp(Ax2r, Sx2r), dp(Bx2r−1, Sx2r−1

}
.

Therefore, we have

dp(Ax2r, Bx2r−1) ≤ dp(Bx2r−1, Sx2r−1).(1.6)

From (1.5) and (1.6), we have

dp(Ax,Bx3) ≤ adp(Sx, Sx3) + bmax
{
dp(Ax,Sx), dp(Bx3, Sx3)

}
+cmax

{
dp(Sx, Sx3), dp(Ax,Sx), dp(Bx3, Sx3)

}
≤ 3padp(Ax,Sx) + bdp(Ax,Sx) + 3pcdp(Ax,Sx)(1.7)

=
(
(a+ c)3p + b

)
dp(Ax,Sx).
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Letting z = W (x2, x4, 1/2) then z ∈ K and since S is W -affine, we have
Sz = W (Sx2, Sx4, 1/2) = W (bx1, Bx3, 1/2).(1.8)

It follows from (1.6)-(1.8) and p ≥ 1 that
dp(Sz, Sx1) = dp(Sx1,W (Bx1, Bx3, 1/2))
≤ ((1/2)d(Sx1 , Bx1) + (1/2)d(Sx1, Bx3))p

≤ (1/2)(dp(Sx1, Bx1) + dp(Sx1, Bx3))(1.9)
≤ (1/2)(1 + b+ (a+ c)3p)dp(Ax,Sx)

and
dp(Sz, Sx3) = dp(Sx3,W (Bx1, Bx3, 1/2))
≤ ((1/2)d(Sx3 , Bx1) + (1/2)d(Sx3, Bx3))p(1.10)

≤ dp(Ax,Sx).
By (1.5) to (1.7), (1.10) and p ≥ 1, we have

dp(Ax,Sz) = dp(Ax,W (Bx1, Bx3, 1/2)
≤ (1/2)dp(Az,Bx1) + (1/2)dp(Az,Bx3)

≤ (a/4)(1 + b+ (a+ c)3p)dp(Ax,Sx) + (b/2)max
{
dp(Az, Sz), dp(Ax,Sx)

}
+

(c/2)max
{
(1/2)(1 + b+ (a+ c)3p)dp(Ax,Sx), dp(Az, Sz),

dp(Ax,Sx)
}

+ (a/2)dp(Ax,Sx) + (b/2)max
{
dp(Az, Sz), dp(Ax,Sx)

}
+(c/2)max

{
dp(Ax,Sx), dp(Az, Sz), dp(Ax,Sz)

}
(1.11)

≤ (a/4)(1 + b+ (a+ c)3p + 2)dp(Ax,Sx)
+bmax

{
dp(Az, Sz), dp(Ax,Sx)

}
+ ((c/4)(1 + b+ (a+ c)3p + (c/2))

max
{
dp(Az, Sz), dp(Ax,Sx)

}
≤ λ

{
Ax,Sx), dp(Ax,Sx)

}
,

where λ = (a/4)(3 + b(a + c)3p) + b + ((c/4)(1 + b + (a + c)3p) + c/2). It is
easy to see that 0 < λ < 1 since

(1 − b)2

a
< (3 − 31−p)(3p − 1)−1

and λ =
(1 − b)2

4
(3p − 1) + 1.

Hence (1.11) implies
dp(Ax,Sz) ≤ λdp(Ax,Sx).(1.12)

Since x is an arbitrary point in K from (1.12) it follows that there exists
a sequence {zn} in K such that

dp(Az0, Sz0) ≤ λdp(Ax0, Sx0),
dp(Az1, Sz1) ≤ λdp(Az0, Sz0),

dp(Azn, Szn) ≤ λdp(Azn−1, Szn−1),
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which yield that dp(Azn, Szn) ≤ λn+1dp(Ax0, Sx0), and so we have

lim
n→∞ d(Az, Szn) = 0,(1.13)

Setting Kn1 = {x ∈ K : d(Ax,Sx) ≤ 1/n1} for n1 = 1, 2, . . . then
(1.13) shows that Kn)1 �= φ for n1 = 1, 2, . . . and K1 ⊃ K2 ⊃ K3 ⊃ · · ·
Obviously, we have AKn1 �= φ and AKn1 ⊃ AKn1+1 for n1 = 1, 2, . . .

If we take u = W (x1, x3, 1/2) and since B is W -affine we can see that

dp(Au,Bu) ≤ λmax
{
dp(Ax,Sx), dp(Ax,Sx)

}
,

where value of λ is same as given above. By the same way as shown above we
can find

lim
n→∞ d(Aun, Bun) = 0.(1.14)

Seting Kn2 = {x ∈ K : d(Ax,Bx) ≤ 1/n2} for n2 = 1, 2, . . . then
AKn2 �= φ and AKn2 ⊃ AKn2+1 for n2 = 1, 2, . . .

Using (1.5) and Minkowski’s inequality, we have

d(Ax,By) ≤ a1/pd(Sx, Sy) + b1/p max
{
d(Ax,Sx), d(By, Sy)

}
(1.15)

+c1/p max
{
d(Ax,Sy), d(Ax,Sx), d(By, Sy)

}
for all x, y in K. for any x, y ∈ Kn1 ∩Kn2, by (1.15), we have

d(Ax,By) ≤ a1/pd(Sx, Sy) + (n−1
1 + n−1

2 )b1/p

+c1/p max
{
d(Sx, Sy), (n−1

1 + n−1
2 )

}
≤ a1/p(2n−1

1 + d(Ax,Ay)) + (n−1
1 + n−1

2 )b1/p

+c1/p max
{
2n−1

1 + d(Ax,Ay), (n−1
1 + n−1

2 )
}
.

Let n = min(n1, n2), then

d(Ax,By) ≤ a1/p(2n−1 + d(Ax,Ay)) + 2n−1b1/p +

+c1/p max
{
2n−1 + d(Ax,Ay)

}
.(1.16)

Since (a/4)(3 + b+ (a+ c)3p) + b+ c < λ < 1, we have

(1/4)(b + (a+ c)3p + 31−p) < 1

and hence a+ c < (3− 31−p)(3p − 1)−1. It follows from (1.15) and Lemma 3,
that

d(Ax,By) ≤ 2n−1(a1/p + b1/p + c1/p)(1 − a1/p − c1/p)−1

Therefore, we have

d(Ax,Ay) ≤ d(Ax,By) + d(By,Ay)

≤ 2n−1(a1/p + b1/p + c1/p)(1 − a1/p − c1/p)−1 + n−1
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It follows that

lim
n→∞ diam(AKn1) = lim

n→∞ diam(AKn1) = 0.

Also

lim
n→∞ diam(AKn2) = lim

n→∞ diam(AKn2) = 0.

By Cantor’s theorem, there exists a point v1 in K such that
∞⋂

n1=1

AKn1 = {v1}

Similarly there exists a point v2 in K such that
∞⋂

n2=1

AKn2 = {v2}

So there exists a point v in K such that
∞⋂

n=1

AKn = {v}.

Since v ∈ K for each n = 1, 2, . . . , there exists a point yn in AKn

such that d(yn, v) < n−1. Then there exists a point xn in Kn such that
d(v,Axn) < n−1 and so Axn → v as n → ∞. Since xn ∈ Kn we also have
d(Axn, Sxn) < n−1 and d(Axn, Bxn) < n−1. So Sxn → v and Bxn → v as
n→ ∞. Since S is continuous, SSxn → Sv and SAxn → Sv as n→ ∞. Since
S is continuous and comaptible with A by Lemma 2, we have

lim
n→∞ASxn = Sv.

Now, (1.15) yields that

d(ASxBv) ≤ a1/pd(SSxn, Sv) + b1/p max
{
d(ASxn, SSxn), d(Bv, Sv)

}
+c1/p max

{
d(SSxn, Sv), d(ASxn, SSxn), d(Bv, Sv)

}
.

Letting n → ∞ we obtain, d(Sv,Bv) ≤ (b1/p + c1/p)d(Sv,Bv). By
Lemma 3, we have Sv = Bv.

From (1.15) we have

d(Av,Bv) ≤ a1/pd(Sv, Sv) + b1/p max
{
d(Av, Sv), d(Bv, Sv)

}
+c1/p max

{
d(Sv, Sv), d(Av, Sv), d(Bv, Sv)

}
= (b1/p + c1/p)d(Av,Bv)

By Lemma 3, we have Ab = Bv. Then Av = Bv = Sv.
Thus ASv = SAv and by Lemma 1, AAv = ASv = SAv, since S and

A are compatible.
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Also BSv = SBv, since S and B are comaptible.
Furthermore, we have

dp(AAv,Bv) ≤ adp(SAv, Sv) + bmax
{
dp(AAv, SAv), dp(Bv, Sv)

}
+cmax

{
dp(SAv, Sv), dp(AAv, SAv), dp(Bv, Sv)

}
= (a+ c)dp(AAv,Bv).

This leads to d(AAb,AV ) = 0 since a+ c < 1.
Let z∗ = Av = Bv = Sv. Then Az∗ = z∗ and Sz∗ = SAv = AAv =

Az∗ = z∗. Also Bz∗ = BSv = SBv = SSv = Sz∗ = z∗.
Obviously, z∗ is a unique common fixed point of A, B and S.
Now, we prove that A and B are continuous at z∗. Let {hn} be a

sequence in K such that hn → z∗. Since S is continuous Shn → Sz∗.
By (1.15), we have

d(Ahn, Bz
∗) ≤ a1/pd(Shn, Sz

∗) + b1/p max
{
d(Ahn, Shn), d(Bz∗, Sz∗)

}
+c1/p max

{
d(Shn, Sz

∗), d(Ahn, Shn), d(Bz∗, Sz∗)
}

≤ a1/pd(ShnSz
∗) + b1/pd(Ahn, Shn)

+c1/p max
{
d(Shn, Sz

∗), d(Ahn, Shn)
}
.

Letting n → ∞, we obtain Ahn → Az∗ and so A is continuous at z∗.
Again by (1.15), we have

d(Az∗, Bhn) ≤ a1/pd(Sz∗, Shn) + b1/p max
{
d(Az∗, Sz∗), d(Bhn, Shn)

}
+c1/p max

{
d(Sz∗, Shn), d(Az∗, Sz∗), d(Bhn, Shn)

}
.

Letting n → ∞, we obtain Bhn → Bz∗ and so b is continuous at z∗.
This completes the proof.

From Theorem 1, the following corollaries can be obtained.

Corollary 2. Let A, B and S be three mappings of K into itself satis-
fying the conditions (1.1) to (1.4) of Theorem 1, and

d(Ax,By) ≤ ad(Sx, Sy) + bmax
{
d(Ax,Sx), d(By, Sy)

}
(1.17)

+cmax
{
d(Sx, Sy), d(Ax,Sx), d(By, Sy)

}
for all x, y in K, where a, b, c > 0, a + b + c = 1 and a + c < a1/2. Then
A, B and S have a unique common fixed point z∗ in K. Also A and B are
continuous at z∗.

Corollary 3. Let A, B and S be three mapings of K into itself satis-
fying the conditions (1.1) to (1.4) of Theorem 1, and

d(Ax,By) ≤ ad(Sx, Sy) + (1 − a)max
{
d(Ax,Sx), d(By, Sy)

}
(1.18)

for all x, y in K, where 0 < a < 1. Then A, B and S have a unique common
fixed point z∗ in K. Also A and B are continuous at z∗.
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Remark (1) Corollary 3 is an extension of the Gregus fixed point thee-
orem [6] in convex meetric spaces.

(2) Theorem 1, Corollary 2 and 3 are generalization of some main results
in [1], [3]-[6] and [11]-[14].
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