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QUASI-ALMOST CONVERGENCE IN A

NORMED SPACE

Dimitrije Hajduković

Abstract. 1. In [1] was shown the existence of the functionals of
the kind of Banach limits defined on the real vector space m of all
bounded sequences in a real normed space X . In [2] by these functionals
was defined the almost convergence of a sequence (xi) ∈ m and shown
that (xi) almost converges to s ∈ X iff∣∣∣∣∣
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X

→ 0 as p→ ∞(0.1)

uniformly in k (= 0, 1, 2, . . . ).
2. The basic idea in this paper is to obtain a new method of summability
of the vector sequences (xi) ∈ m. The paper is organized as follows. First,
we will show the existence of an another family of functionals (of the
kind of Banach limits) defined on the space m. Next, we define, by these
functionals, a new method of summability of sequences (xi) ∈ m which
will be called quasi almost convergence. Further, we will show a theorem
which contains a necessary and sufficient condition for a sequence (xi) ∈
m to be quasi almost convergent. Next, we shall prove two theorems
which shows that the class of quasi almost convergent sequences lies
between the class of almost convergent sequences and the class of C-
summable sequences.

1. A family of functionals of the kind of Banach limits

Let us define on the space m the functional q by

q(x) ≡ q(xi) = lim
p→∞
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⎫⎬
⎭ (xi) = x ∈ m),(1)
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where the supremum is taken over all n (= 0, 1, 2, . . . ). The functional q clearly
is real-valued and it satisfies the conditions

q(x) ≥ 0, q(ax) = |a|q(x), q(x+ y) ≤ q(x) + q(y) (a ∈ R; x, y ∈ m);

that is, q is a symmetric convex functional on the space m. According to a
corollary of Hahn-Banach theorem (see also [3], Esercise 11.2, p.187) must
exist a nontrivial linear functional L on the space m such that

|L(xi)| ≤ q(xi)
(
(xi) ∈ m

)
.(2)

Next, let us define the sequence y = (yi) by

yi = xi+1 − xi (i = 0, 1, 2, . . . ).

Then, by (1), we have

q(yi) = lim
p→∞

{
supn

1
p

∣∣∣∣x(n+1)p − xnp

∣∣∣∣} ≤ lim
p→∞

2
p
supi||xi||X = 0.

Whence, by (2), we obtain

L(yi) = L(xi+1 − xi) = L(xi+1) − L(xi) = 0 or L(xi+1) = L(xi), (xi) ∈ m.

Further, we wish to show that the functional L, satisfying the above con-
ditions, is not unique. To do this denote by m0 the subspace of all sequences
(xi) ∈ m having limi→∞ xi = 0 ∈ X. Then clearly we have

q(xi) = L(xi) = 0 , (xi) ∈ m0.(3)

Next, let us choose a point s ∈ X (s �= 0) and define the sequence y = (yi)
by yi = s (i = 0, 1, 2, . . . ). Then y ∈ mBS m0 and q(y) = ||s|| > 0. To extend
the functional L: m0 → R to the space spanned by m0 and {y} (that is,
the space m0 ∪{y}), the value L(yi) we can choose arbitrarily in the segment
[−q(yi), q(yi)]. Thus, the functional L can be extended such that it has distinct
values at the point y ∈ m. This means that there are distinct functionals on m
satisfying the above conditions. Indeed, we can take the value L(y) arbitrarily
in the segment [k,K], where

k = supx∈m0

{
− q(x+ y)

}
, K = inf

x∈m0

{
q(x+ y)

}
since L(x) = 0, ∀x ∈ m0 (see, for example, [4], p.222). Further, by (1) we
have q(x+ y) = q(y) = q(yn) since the sequence x+ y = (xi) + y converges to
s. Consequently, we can take arbitrarily L(y) in [−q(yi), q(yi)].

The following lemma is well known in the literature.

Lemma. Let X be a real linear space and q : X → R a functional such
that the following assertions are valid

q(x) ≥ 0, q(ax) = |a|q(x), q(x+ y) ≤ q(x) + q(y) (a ∈ R; x, y ∈ X).
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Then, for each x0 ∈ X, there exists a linear functional L on X such that

(∀x ∈ X) |L(x)| ≤ q(x), L(x0) = q(x0).

Denoting now by Π the family of functionals satisfying the above con-
ditions, then for each s ∈ X we have

(∀L ∈ Π) L(xi − s) = 0 iff q(xi − s) = 0
(
(xi) ∈ m

)
.(4)

Indeed, q(xi − s) = 0 clearly implies L(xi − s) = 0, ∀L ∈ Π. Also, the
implication

(∀L ∈ Π) L(xi − s) = 0 ⇒ q(xi − s) = 0

is equivalent to the implication

q(xi − s) > 0 ⇒ (∃L ∈ Π) L(xi − s) �= 0

which, by the lemma proved before, is valid. So, (4) is true.
The results obtained before we summarize by the following statement.

Theorem 1. There exists the family Π of nontrivial functionals L de-
fined on the space m such that for ali a, b ∈ R, each s ∈ X and all (xn), (yn) ∈
m, the following assertions are valid

1◦ L(axi + byi) = aL(xi) + bL(yi),
2◦ L(xi+1) = L(xi),
3◦ |L(xn)| ≤ q(xn),
4◦ (∀L ∈ Π) L(xi − s) = 0 iff q(xi − s) = 0.

Having obtained the functionals L ∈ Π we can proceed to the investi-
gation of the sequences (xi) ∈ m which ail the functionals L ∈ Π assigned
same value.

2. Quasi-almost convergence

The following definition gives a natural extension of aimost convergence
of a sequence (xi) ∈ m.

Definition 1. A sequence (xi) ∈ m is quasi almost convergent to s ∈
X or quasi F -summable to s and s is its quasi aimost limit (we will write
(Q− F ) − limi→∞ xi = s) if

(∀L ∈ Π) L(xi − s) = 0.(5)

Let us show that quasi aimost limit of a sequence defined in such way
is unique. To do this, suppose s′ and s” are any two quasi aimost limits of a
sequence (xi) ∈ m and define the sequences (yi) and (zi) by

yi = s′

zi = s′′ i = 1, 2, . . .
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Then, by (5),

(∀L ∈ Π) L(zi − yi) = L(xi − yi) − L(xi − zi) = L(xi − s′) − L(xi − s”) = 0

which, by (4) and (1), implies

q(zi − yi) = ||s′ − s′′|| = 0 or s′ = s′′.

Example. Let 0 ∈ X be the aditive identity element of the vector
adition. Next, let s ∈ X (s �= 0) and fix it. Then the sequence

(xi) : s, 0, s, 0, . . .

converge quasi-almost and (Q− F )-limi→∞ xi =
1
2
s.

Indeed, by the theorem l we have

(∀L ∈ Π)L(xi+1) = L(xi)

thus is

(∀L ∈ Π)L(xi) =
1
2
L(xi + x1+i) =

1
2
L(x),

and

(∀L ∈ Π)L
(
xi −

1
2
s

)
= L(xi) −

1
2
L(s) = 0.

Hence, by the definition l, we have (Q− F ) − limi→∞ xi =
1
2
s.

Now, we will show the follovving theorem containing a necessary and
sufficient condition for a sequence (xi) ∈ m to be quasi almost convergent.

Theorem 2. A sequence (xi) ∈ m quasi almost converges to s ∈ X iff∣∣∣∣∣∣

∣∣∣∣∣∣
1
p

(n+1)p−1∑
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xi − s
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X

→ 0 as p→ ∞(6)

uniformly in n (= 0, 1, 2, . . . ).

Proof. Suppose, for a sequence (xi) ∈ m, we have (Q−F )−limi→∞ xi =
s. Then, by (5) and (4), we have q(xi − s) = 0 or, by (1),

lim
p→∞
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⎩supn
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i=np

(xi − s)

∣∣∣∣∣∣

∣∣∣∣∣∣
X

⎫⎬
⎭ = 0.

Thence, for any ε > 0 there exists an integer p0 > 0 such that for all p
and n (p > p0, n = 0, l, 2, . . . ), we have

1
p
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∣∣∣∣∣∣
(n+1)p−1∑

i=np

(xi − s)
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X

< ε.
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Since ε > 0 is arbitrary, we have∣∣∣∣∣∣
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xi − s
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X

→ 0 as p→ ∞

uniformly in n; so, the condition (6) is necessary. Conversely, let the condition
(6) be true. This means that

supn
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or

q(xi − s) = lim
p→∞
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⎩supn

1
p
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(xi − s)
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X

⎫⎬
⎭ = 0.

Hence, by (4), we have

(∀L ∈ Π) L(xi − s) = 0,

which, by (5), means that (Q − F ) − limi→∞ xi = s; so, the condition (6) is
sufficient. The proof is now complete.

Remark 1. We here take, by definition, that a sequence (xi), xi ∈ X
(i = 0, 1, 2, . . . ) is C-summable to s ∈ X iff∣∣∣∣∣∣
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p
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i=np

xi − s

∣∣∣∣∣∣

∣∣∣∣∣∣
X

→ 0 as p→ ∞.(7)

Now, we show the following two theorems that show that the class of
quasi almost convergent sequences lies between the class of almost convergent
sequences and the class of C-summable sequences.

Theorem 3. If a sequence (xi) ∈ m almost converges to s ∈ X, then
it quasi almost converges to s.

Proof. Let a sequence (xi) ∈ m almost converges to s ∈ X. Then, by
(0.1), for any ε > 0 there exists an integer p0 > 0 such that∣∣∣∣∣
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< ε (p > p0, k = 0, 1, 2, . . . ).

Hence for k = np (p > p0, n = 0, 1, 2 . . . ) we have∣∣∣∣∣
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Since ε > 0 is arbitrary, we have∣∣∣∣∣∣
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xi − s
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X

→ 0 as p→ ∞

uniformly in n which, by (6), means that (xi) quasi almost converges to s.

Theorem 4. If a sequence (xi) ∈ m quasi almost converges to s ∈ X,
then it is C-summable to s.

Proof. Let (xi) ∈ m quasi almost converges to s ∈ X. Then (6) is true
which for n = 0 implies (7); so, (xi) is C-summable to s.

Remark 2. From the comparison of the definition of the almost-con-
vergence and the definition 1, follows that there is a very big possibility that
there exist sequences that converge quasi-almost, but not almost. Proof of
that is still an open problem.

Clearly, the similar remark also stands for relationship of the quasi-
almost convergence and the C-summability.
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