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THE STRENGTHENING AND WEAKENING

INSTRUMENT: COMPARABILITY OF
TOPOLOGIES SPACES

B. Dvalishvili

Abstract. Along with noncomparable topologies, the paper con-
centrates on situations, where in a bitopological space one topology is
finer than the other, which is frequently encountered in applications. In
this context, different families of sets are considered and the bitopological
modification of the Cantor-Bendixson theorem is proved. The three op-
erators are defined, which characterize the degrees of nearness of the four
boundaries of any set, tangency of topologies, S-, C- and N -relations,
and thus make it possible to compare small inductive dimensions at
some special point. Furthermore, different properties of pairwise small
and pairwise large inductive dimensions are studied. In the final part,
the conditions are given, under which a bitopological space preserves the
property to be an (i, j)-Baire space to the image and preimage. Relations
between pairwise small and large inductive dimensions of the domain and
the range of a d-closed and d-continuous function are investigated.

1. Introduction

J. C. Kelly defined a bitopological space (X, τ1, τ2) to be a set X with
two topologies τ1 and τ2 on it [15].

In studying various kinds of bitopologies, i.e., ordered pairs of topologies
on a set, this paper concentrates on situations, where one of the topologies is
finer than the other, which is typical of applications of the theory of bitopo-
logical spaces.

Throughout the paper the following abbreviations are used: BS for a
bitopological space, BsS for a bitopological subspace (the plural form for
all abbreviated nouns is ’s) and the symbols N, Z, Q and R for sets of all
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natural numbers (excluding zero), all integers, all rational numbers and all
real numbers, respectively. Always i, j ∈ {1, 2} and i �= j. Given a family
A = {As}s∈S ⊂ 2X , where 2X is the power set of X, let coA denote the
conjugate family coA = {X\As : As ∈ A}. Further, the cardinal number
|X|, called the cardinality of X, is assigned to each set X and the cardinal
number assigned to the set of all natural numbers is denoted by ℵ0.

If (X, τ1, τ2) is a BS and P is some topological property, then (i, j)-P
denotes the analogue of this property for τi with respect to τj, and p-P denotes
the conjunction (1, 2)-P∧(2, 1)-P , i.e., p-P denotes the “absolute” bitopological
analogue of P , where p is the abbreviation for “pairwise”. As we will see
below, sometimes (1, 2)-P ⇐⇒ (2, 1)-P (and thus ⇐⇒ p-P) so that it suffices
to consider one of these three bitopological analogues. Also note that (X, τi)
has a property P ⇐⇒ (X, τ1, τ2) has a property i-P and d-P ⇐⇒ 1-P ∧ 2-P,
where d is the abbreviation for “double”. By a BS (X, τ1 < τ2) is always be
meant a BS (X, τ1, τ2) with τ1 ⊂ τ2.

Let (X, τ1, τ2) be any BS and A ∈ 2X be its any subset. Then τi clA and
τi intA denote respectively the closure and the interior of A in the topology τi.
If A = {As}s∈S ⊂ 2X is any family, then i-ClA = {τi clAs}s∈S . Furthermore,
p-Cl(X) = {A ∈ 2X : A = τ1 clA ∩ τ2 clA}, i-Bd(X) = {A ∈ 2X : τi-intA =
∅}, i-D(X) = {A ∈ 2X : τi clA = X} and (i, j)-ND(X) = {A ∈ 2X :
τi int τj clA = ∅} are the families of all p-closed, i-boundary, i-dense and
(i, j)-nowhere dense subsets of X, respectively.

Also note that here i-Fσ(X) = {A ∈ 2X : A is an i-Fσ set}, (i, j)-
SO(X) = {A ∈ 2X : there is a set U ∈ τi such that U ⊂ A ⊂ τj clU} and

(i, j)- Catg
I
(X) = {A ∈ 2X : A =

∞
∪

n=1
An, An ∈ (i, j)-ND(X), n = 1,∞},

(i, j)- Catg
II
(X) = 2X\(i, j)- Catg

I
(X) and X ∈ (i, j)- Catg

I
(X) ⇐⇒ X is of

(i, j)-Catg I, X ∈ (i, j)-Catg
II
(X) ⇐⇒ X is of (i, j)-Catg II.

In a BS (X, τ1, τ2) the following double indexation is used: Ad
i = {x ∈

X : x is an i-accumulation point of A} and Ai
j = {x ∈ X : x is a j-isolated

point of A}, i.e., the lower indices i and j denote the belonging to the topology
and therefore always i, j ∈ {1, 2}, while the upper indices d and i are fixed as
the accumulation and isolation symbols, respectively. Thus in a BS (X, τ1, τ2)
we have: Ai

j = A\Ad
j , A is a j-discrete set ⇐⇒ A = Ai

j , A is a j-dense in itself
set ⇐⇒ A ⊂ Ad

j and A is a j-perfect set ⇐⇒ A = Ad
j .

The paper consists of three paragraphs, of which §1 deals with the
bitopological modifications of open and closed domains [16], and locally closed,
dense in themslves, perfect and scattered sets (see, for example [17]). It
contains the proof of the bitopological analogue of the well-known Cantor-
Bendixson theorem. Moreover, in a BS (X, τ1 < τ2) a special subfamily of the
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family (2, 1)-ND(X) is chosen, the union of whose elements also belongs to
(2, 1)-ND(X). At the end of the paragraph, three special operators are intro-
duced and studied on 2X , which are used to determine exactly the degrees of
nearness of the four boundaries of any set and give a simple characterization
of the <S-, <C- and <N -relations.

It should be mentioned that one of these operators also defines the
tangency of topologies at a certain point of a BS (X, τ1 < τ2) in the sense
of [2], which thus makes it possible, in addition to the results from [9], [10],
to compare at this point the small inductive dimension functions 2-indX
and (1, 2)-indX, aas well as (2, 1)-indX and 1-indX. In our opinion, it is
interesting to apply the introduced operators in considering initial and fine
topologies in the potential theory especially when a fine topology is compatible
with a quasi topology in the sense of B. Fuglede [12] (see also [9], [11]).

The notion of a zero dimensional BS was introduced by I. L. Reilly
[21] on the basis of the idea of bitopological disconnectedness considered by
J. Swart [23]. A systematic study of bitopological dimension functions was
undertaken by M. Jelić [13], [14], M. D. Ćirić [4] and by us [5]–[7]. As different
from [4], [13], [14], the ideas set forth in [5]–[7] were essentially based on the
notion of a bitopological boundary.

In §2, pairwise small and large inductive dimensions are formulated in
terms of both bitopological partitions and neighbourhoods in a manner such
that for n = 0 a pairwise small inductive dimension leads to the notion of
I. L. Reilly. Moreover, the analogues of the well-known sum theorem and
the first decomposition theorem are proved for a pairwise small inductive
dimension.

Furthermore, interrelations of pairwise inductive dimensions and their
topological versions are considered when topologies are comparable by inclu-
sion or are coupled, <C-related, near and <N -related. The sum theorem is
also proved for a large inductive dimension and the conditions, under which
pairwise small and large inductive dimensions coincide, are established.

In §3, the conditions are given, under which a BS preserves the property
to be an (1, 2)-Baire space to the image and preimage, and relations between
pairwise small and large inductive dimensions of the domain and the range of
a d-closed and d-continuous function are studied.

2. Some Special Operators and Families of Sets in Bitopological
Spaces

The family (i, j)-ND(X) plays an important role not only in the defini-
tion of Baire-like properties, but also has interest of its own, especially when
dealing with BS’s of the type (X, τ1<τ2).
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Definition 2.1. A subset A of a BS (X, τ1, τ2) is (i, j)-nowhere dense
((i, j)-boundary) at a point x ∈ X if there exists an i-open neighborhood U(x)
such that τi int τj cl(A ∩ U(x)) = ∅ (τi int τj int(A ∩ U(x)) = ∅) [9].

For every point x ∈ X the family of all sets, which are (i, j)-nowhere
dense ((i, j)-boundary) at the point x, is denoted by (i, j)-ND(X,x) ((i, j)-
Bd(X,x)).

In a BS (X, τ1 < τ2) the following inclusions and equality hold for every
point x ∈ X :

1-ND(X,x) ⊂ (1, 2)-ND(X,x) and (2, 1)-ND(X,x) ⊂ 2-ND(X,x),
(1, 2)-Bd(X,x) = 1-Bd(X,x) ⊂ (2, 1)-Bd(X,x) ⊃ 2-Bd(X,x).

Proposition 2.1. Let (X, τ1 < τ2) be a BS and x ∈ X any point. Then

A ∈ (1, 2)-ND(X,x) ⇐⇒ τ2 clA ∈ 1-Bd(X,x).
Proof. If A∈ (1, 2)-ND(X,x), then τ1 int τ2 cl(A∩U(x)) �= ∅ for every

1-open neighborhood U(x). Therefore there exists a set V ∈ τ1\{∅} such that
V ⊂ τ2 cl(A∩U(x)). The inclusion τ1 ⊂ τ2 implies V = V ∩ τ2 cl(A∩U(x)) ⊂
τ2 cl(V ∩A∩U(x)), where V ∩U(x) ⊂ τ2 cl(A∩U(x))∩U(x) ⊂ τ2 cl(A∩U(x)).
Thus τ1 int(τ2 clA ∩ U(x)) �= ∅ so that τ2 clA ∩ U(x)∈ 1-Bd(X) and, since
U(x) ∈ τ1 is an arbitrary neighborhood, we obtain τ2 clA∈ 1-Bd(X,x).

Conversely, let τ2 clA∈ 1-Bd(X,x). Then τ1 int(τ2 clA ∩ U(x)) �= ∅ for
every 1-open neighborhood U(x). Hence there is a set V ∈ τ1\{∅} such that
V ⊂ τ2 clA∩U(x) ⊂ τ2 cl(A∩U(x)). Therefore τ1 int τ2 cl(A∩U(x)) �= ∅ and,
since U(x) ∈ τ1 is an arbitrary neighborhood, we obtain A∈ (1, 2)-ND(X,x).

At this point it should additionally be said that in a BS (X, τ1 < τ2)
the inclusion U ∩ τ1 clA ⊂ τ1 cl(U ∩A) is not correct for any sets U ∈ τ2 and
A ⊂ X as is demonstrated by the following simple example: X = {a, b, c, d},
τ1 = {∅, {a, b},X}, τ2 is the discrete topology on X, U = {c} ∈ τ2 and
A = {b, d}.

Thus we find that the analogue of the latter proposition does not, gen-
erally speaking, hold for the (2, 1)-case.

Corollary. In a BS (X, τ1 < τ2) the following conditions are satisfied:
(1) {x ∈ X : A∈ (1, 2)-ND(X,x)} = τ1 cl τ1 int τ2 clA.
(2) {x ∈ A : A ∈ (1, 2)-ND(X,x)} ∈ (1, 2)-ND(X).

Proof. (1) Using Theorem 2 from [17, p. 78], we obtain {x ∈ X :
τ2 clA∈ 1-Bd(X,x)} = τ1 cl τ1 int τ2 clA. It remains to use Proposition 2.1.

(2) It is clear that {x ∈ A : A ∈ (1, 2)-ND(X,x)} = A\τ1 cl τ1 int τ2 cl
A ⊂ τ2 clA\τ1 int τ2 clA and τ1 int(τ2 clA\τ1 int τ2 clA) = τ1 int τ2 clA∩(X\τ1
cl τ1 int τ2 clA) = ∅. Therefore τ2 clA\τ1 int τ2 clA ∈ co τ2 ∩ 1-Bd(X) ⊂ (1, 2)-
ND(X).
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In particular, if A is (1, 2)-nowhere dense at each of its points, then
A = A\τ1 cl τ1 int τ2 clA so that τ1 int τ2 clA = ∅ ⇐⇒ A ∈ (1, 2)-ND(X).

Definition 2.2. A family A = {As}s∈S of subsets in a BS (X, τ1, τ2)
is i-locally finite at a j-dense set of points of X if for every set U ∈ τi\{∅}
there exists a set V ∈ τj\{∅} such that V ⊂ U and {s ∈ S : V ∩As �= ∅} is
finite.

Clearly, if A = {As}s∈S is i-locally finite at a j-dense set of points of X,
then the family j-ClA is also i-locally finite at a j-dense set of points of X.

Theorem 2.1. If a family A = {As}s∈S ⊂ (2, 1)-ND(X) is 2-locally fi-
nite at a 1-dense set of points of a BS (X, τ1 < τ2), then ∪

s∈S
As ∈ (2, 1)-ND(X).

Proof. Let A = {As}s∈S be 2-locally finite at a 1-dense set of points
of X. Then 1-ClA = {τ1clAs}s∈S must also be 2-locally finite at a 1-dense set
of points of X so that for every set U ∈ τ2\{∅} there exists a set V ∈ τ1\{∅}
such that V ⊂ U and {sk ∈ S : V ∩ τ1 clAsk

�= ∅} is finite. Let {τ1 clAsk
}n

k=1

be the corresponding finite family. Since τ1 clAsk
∈ (2, 1)-ND(X) for every

k = 1, n, we have X\τ1 clAsk
∈ τ1 ∩ 2-D(X) for every k = 1, n. One can easily

verify that W =V ∩ (
n
∩

k=1
(X\τ1 clAsk

)) �= ∅. Contrary, let W = ∅ so that V ⊂

X\(
n
∩

k=1
(X\τ1 clAsk

)) =
n
∪

k=1
τ1 clAsk

. In that case ∅ �= τ1 int
n
∪

k=1
τ1 clAsk

=

τ1 int τ1 cl
n
∪

k=1
Ask

⊂ τ2 int τ1 cl
n
∪

k=1
Ask

, which is impossible since, by Corollary

2 of Proposition 2.1.3 in [11],
n
∪

k=1
Ask

∈ (2, 1)-ND(X). Hence W ∈ τ1\{∅}.
On the other hand, V ∩ τ1 clAs = ∅ for s �= sk so that V ⊂ X\τ1 clAs

for every s �= sk and consequently the set W ⊂ V satisfies the inclusion
W ⊂ ∩

s∈S
(X\τ1 clAs) = X\ ∪

s∈S
τ1 clAs. Hence W ∈ τ1\{∅} implies W ⊂

τ1 int(X\ ∪
s∈S

τ1 clAs) = X\τ1 cl ∪
s∈S

τ1 clAs ⊂ X\τ1 cl ∪
s∈S

As. But W ⊂ V ⊂ U

and therefore U ∩ (X\τ1 cl ∪
s∈S

As) �= ∅ so that τ2 cl(X\τ1 cl ∪
s∈S

As) = X since

U ∈ τ2\{∅} is an arbitrary set. Thus ∪
s∈S

As ∈ (2, 1)-ND(X).

Definition 2.3. A subset A of a BS (X, τ1, τ2) is (i, j)-locally closed at
its point x if there exists a set U ∈ τi such that x ∈ U and U ∩A = U ∩ τj clA
[9].

For every point x ∈ X the family of all sets that are (i, j)-locally closed
at the their common point x is denoted by (i, j)-LC(X,x).

A subset A of a BS (X, τ1, τ2) is (i, j)-locally closed if it is (i, j)-locally
closed at each of its points. The family of all such subsets of X is denoted by
(i, j)-LC(X).



26 B. Dvalishvili

In a BS (X, τ1 < τ2) the following inclusions hold for every point x ∈ X:

1-LC(X,x) ⊂ (2, 1)-LC(X,x)
∩ ∩

(1, 2)-LC(X,x) ⊂ 2-LC(X,x)

and therefore
1-LC(X) ⊂ (2, 1)-LC(X)

∩ ∩
(1, 2)-LC(X) ⊂ 2-LC(X).

Theorem 2.2. Let A be a subset of a BS (X, τ1 < τ2). Then the set
{x ∈ A : A is not (2, 1)-locally closed at a point x} coincides with the set
A ∩ τ2 cl(τ1 clA\A).

Proof. First assume that x ∈ A and x∈A ∩ τ2 cl(τ1 clA\A), i.e.,
x∈τ2 cl(τ1 clA\A). If U = X\τ2 cl(τ1 clA\A), then x ∈ U and U∩(τ1 clA\A) =
∅ and so (U ∩ τ1 clA)\A = ∅. Hence (U ∩ τ1 clA) ∩ (X\A) = ∅ and conse-
quently U ∩ τ1 clA ⊂ A so that U ∩ τ1 clA ⊂ U ∩A. Thus U ∩ τ1 clA = U ∩A,
i.e., the set A is (2, 1)-locally closed at the point x.

Conversely, let A be a (2,1)-locally closed set at a point x ∈ A. Then
there is a set U ∈ τ2 such that x ∈ U and U∩A = U∩τ1 clA. Moreover, U ∈ τ2
implies U ∩τ2 cl(U ∩A) = U ∩τ2 clA ⊂ U ∩τ1 clA = U ∩A. Hence τ1 clA\A ⊂
τ1 clA\(U∩A) ⊂ τ1 clA\(U∩τ2 cl(U∩A)) = (τ1 clA\U)∪(τ1 clA\τ2 cl(U∩A)),
i.e.,

τ1 clA\A ⊂ (τ1 clA\U) ∪ (τ1 clA\τ2 cl(U ∩A)).(1)

Since (τ1 clA\τ2 cl(U ∩A))∩U = (τ1 clA∩U)\(τ2 cl(U ∩A)∩U) = (A∩
U)\(τ2 clA∩U) = ∅, we have τ1 clA\τ2 cl(U∩A) ⊂ X\U . Clearly, τ1 clA\U ⊂
X\U . Thus by inclusion (1), τ1 clA\A ⊂ X\U and therefore τ2 cl(τ1clA\A) ⊂
X\U because U ∈ τ2. But x ∈ U and hence x∈A ∩ τ2 cl(τ1 clA\A).

Proposition 2.2. Let A be a subset of a BS (X, τ1, τ2). Then the con-
ditions below are equivalent:

(1) A ∈ (i, j)-LC(X).
(2) A ∈ τ ′i in a BsS (τj clA, τ ′1, τ

′
2).

(3) A = U ∩ F , where U ∈ τi and F ∈ co τj .

Proof. (1) =⇒ (2). If A ∈ (i, j)-LC(X), then for every point x ∈ A
there is an i-open neighborhood U(x) such that U(x) ∩ A = U(x) ∩ τj clA.
But A = ∪

x∈A
(U(x) ∩ A) = ∪

x∈A
(U(x) ∩ τj clA) and for every point x ∈ A

the set U(x) ∩ τj clA is i-open in (τj clA, τ ′1, τ
′
2). Therefore A is i-open in

(τj clA, τ ′1, τ ′2).
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(2) =⇒ (1). Let x ∈ A be any point. Then there is an i-open set U such
that A = U ∩ τj clA. Hence x ∈ U and U ∩A = U ∩ τj clA.

(2) ⇐⇒ (3) is obvious.

Corollary. In a BS (X, τ1, τ2) we have τi ∪ co τj ⊂ (i, j)-LC(X). More-
over, in a BS (X, τ1 < τ2) for every subset A ⊂ X we have the equivalence

A ∈ (2, 1)-LC(X) ⇐⇒ τ2 cl(τ1 clA\A) = τ1 clA\A
and the inclusions

τ2 ∪ co τ2 ⊂ 2-LC(X) ⊃ (2, 1)-LC(X) ⊃ τ2 ∪ co τ1
∪ ∪

(1, 2)-LC(X) ⊃ 1-LC(X)
∪ ∪

τ1 ∪ co τ2 τ1 ∪ co τ1

Proof. Indeed, the first inclusion is correct by (3) of Proposition 2.2,
while the others are immediate consequences of the inclusions given after
Definition 2.3.

If τ1 clA\A = τ2 cl(τ1 clA\A), then the equality A = τ1 clA\(τ1 clA\A)
implies that A is a difference of the 1-closed set and the 2-closed set and
therefore A is the meet of the 1-closed set with the 2-open set.

On the other hand, if A = F ∩ U , where F ∈ co τ1 and U ∈ τ2, then
A = F\B, where B = X\U ∈ co τ2. Hence A = τ1 clA ∩ (F\B) = (τ1 clA ∩
F )\(τ1 clA ∩ B). From A ⊂ F and F ∈ co τ1 we obtain τ1 clA ⊂ F and
therefore τ1 clA∩F = τ1 clA. Thus A = τ1 clA\(τ1 clA∩B) and τ1 clA\A =
τ1 clA ∩B ∈ co τ2 as τ1 ⊂ τ2.

Definition 2.4. A BS (X, τ1, τ2) is (i, j)-regular if for each point x ∈ X
and each i-closed set F ⊂ X, x∈F , there exist an i-open set U ⊂ X and a
j-open set V ⊂ X such that x ∈ U , F ⊂ V and U ∩ V = ∅ [15].

It is not difficult to see that (X, τ1, τ2) is (i, j)-regular ⇐⇒ for each
point x ∈ X and each i-open set U ⊂ X, x ∈ U , there exists an i-open set V
such that x ∈ V ⊂ τj clV ⊂ U .

Theorem 2.3. A subset A of an (i,j)-regular BS (X, τ1, τ2) is (i, j)-
locally closed at a point x ∈ A if and only if there exists an i-neighborhood
U(x) such that U(x) ∩A = τj cl(U(x) ∩A).

Proof. If A ⊂ X is (i, j)-locally closed at a point x ∈ A, then there
is a set U ∈ τi such that x ∈ U and U ∩ A = U ∩ τj clA. Hence U ∩ A ⊂
τj cl(U ∩ τj clA) so that U ∩ A ⊂ U ∩ τj cl(U ∩ τj clA). On the other hand,
τj cl(U ∩ τj clA) ⊂ τj clA implies U ∩ τj cl(U ∩ τj clA) ⊂ U ∩ τj clA = U ∩A.
Thus U∩A = U∩τj cl(U∩τj clA) = U∩τj cl(U∩A). Since x ∈ U and (X, τ1, τ2)
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is (i, j)-regular, there is a set V ∈ τi such that x ∈ V and τj clV ⊂ U , i.e.,
τj clV ∩U = τj clV and τj clV ∩A = τj clV ∩U∩A = τj clV ∩U∩τj cl(U∩A) =
(τj clV ∩ U) ∩ τj cl(U ∩ A) = τj clV ∩ τj cl(U ∩ A). If τj clV = U(x), then
U(x) is an i-neighborhood of x such that U(x) ∩ A ∈ co τj, i.e., U(x) ∩ A =
τj cl(U(x) ∩A).

Conversely, assume that x ∈ A and U(x) is its i-neighborhood such that
U(x) ∩ A = τj cl(U(x) ∩ A). If U = τi intU(x), then U �= ∅ and U ∩ A =
U ∩ (U(x) ∩ A) = U ∩ τj cl(U(x) ∩ A) so that U ∩ A is j-closed in U . Hence
U ∩A = U ∩ τj clA, i.e., A is (i, j)-locally closed at the point x.

Note that the requirement that a BS (X, τ1, τ2) in Theorem 2.3 be (i, j)-
regular is essential. Indeed, if (X, τ1, τ2) is not (i, j)-regular, then there are a
point x ∈ X and a neighborhood U(x) ∈ τi such that τj clV (x)∩ (X\U(x)) �=
∅ for every i-open neighborhood V (x). From Corollary of Proposition 2.2
it follows that U(x) ∈ (i, j)-LC(X) and thus U(x) ∈ (i, j)-LC(X,x). If the
condition of Theorem 2.3 is fulfilled, then there exists an i-neighborhoodW (x)
such that W (x) ∩ U(x) = τj cl(W (x) ∩ U(x)). Let H = τi intW (x). Then
H ∩ U(x) = E(x) ∈ τi and τj clE(x) = τj cl(H ∩ U(x)) = τj cl(τi intW (x) ∩
U(x)) ⊂ τj cl(W (x) ∩ U(x)) ⊂ U(x), which contradicts the assumption.

Definition 2.5. In a BS (X, τ1, τ2) an (i, j)-boundary is an operator
(i, j)-Fr : 2X → p-Cl(X) defined as follows: (i, j)-FrA = τi clA ∩ τj cl(X\A)
for each set A ∈ 2X [6].

The most important properties of this operator are listed in Theo-
rem 1.3.1 [11].

Definition 2.6. A subset A of a BS (X, τ1, τ2) is an (i, j)-open domain
in X if A = τi int τj clA. The complement in X of an (i, j)-open domain is
an (i, j)-closed domain in X, i.e., a subset B of X is an (i, j)-closed domain
in X if B = τi cl τj intB [22].

The family of all (i, j)-open domains ((i, j)-closed domains) of X is
denoted by (i, j)-OD(X) ((i, j)-CD(X)).

Note that the i-interior (i-closure) of every intersection (union) of (i, j)-
open domains ((i, j)-closed domains) of a BS (X, τ1, τ2) is an (i, j)-open do-
main (an (i, j)-closed domain) [23].

Theorem 2.4. The following statements are satisfied in a BS (X, τ1, τ2):
A ∈ (i, j)-OD(X) ⇐⇒ A ∈ τi and
(j, i)-FrA = (j, i)-Fr τj clA = (i, j)-Fr τj int(X\A) ⊂ τi cl τj int(X\A)
so that
A ∈ (i, j)-CD(X) ⇐⇒ A ∈ co τi and
(i, j)-FrA = (i, j)-Fr τj intA = (j, i)-Fr τj cl(X\A) ⊂ τi cl τj intA.



The Strengthening and Weakening Instrument: Comparability of Topologies spaces 29

Proof. A = τi int τj clA clearly implies (j, i)-Fr τj clA = τj clA∩
τi cl(X\τj clA) = τj clA∩(X\A) = τj clA∩τi cl(X\A) = (j, i)-FrA and by (4)
of Theorem 2.3.1 in [11] we also have (j, i)-Fr τj clA = (i, j)-Fr τj int(X\A).
Furthermore, if A = τi int τj clA, then A ∈ τi and (j, i)-FrA = τj clA ∩
τi cl(X\A) ⊂ τi cl(X\A) = τi cl τj int(X\A).

Conversely, if (j, i)-FrA ⊂ τi cl τj int(X\A), then (j, i)-FrA ∪ τi cl τj
int(X\A)=τi cl τj int(X\A). On the other hand, (j, i)-FrA∪τi cl τj int(X\A)=
(τj clA∩τi cl(X\A))∪τi cl τj int(X\A) = X∩τi cl(X\A) = τi cl(X\A). Hence
τi cl(X\A) = τi cl τj int(X\A) and A ∈ τi implies A = τi intA = τi int τj clA,
i.e, A ∈ (i, j)-OD(X).

For the second equivalence it suffices to replace the set A ∈ (i, j)-CD(X)
by the set X\A ∈ (i, j)-OD(X) and to apply (4) of Theorem 1.3.1 in [11].

Corollary. The following conditions are satisfied in a BS (X, τ1 < τ2) :
(1) A ∈ τ1 ∩ (2, 1)-OD(X) =⇒ (1, 2)-FrA = 1-FrA and A ∈ τ1∩

2-OD(X) =⇒ 2-FrA = (2, 1)-FrA.
(2) 1-OD(X) ⊂ (1, 2)-OD(X), (2, 1)-OD(X) ⊂ 2-OD(X) and τ1 ∩ (2, 1)-

OD(X) = (1, 2)-OD(X) ∩ (2, 1)-OD(X) = 1-OD(X) ∩ (2, 1)-OD(X)
⊂ 1-OD(X) ∩ 2-OD(X) ⊂ τ1 ∩ 2-OD(X) = (1, 2)-OD(X) ∩ 2-OD(X)
so that 1- CD(X) ⊂ (1, 2)- CD(X), (2, 1)- CD(X) ⊂ 2- CD(X) and
co τ1 ∩ (2, 1)- CD(X) = (1, 2)- CD(X) ∩ (2, 1)- CD(X) = 1- CD(X) ∩
(2, 1)-CD(X) ⊂ 1-CD(X)∩2-CD(X) ⊂ co τ1∩2-CD(X) = (1, 2)-CD(X)∩
2-CD(X).

Proof. (1) By virtue of Theorem 2.4, A ∈ τ1 ∩ (2, 1)-OD(X) =⇒
(1, 2)-FrA = (1, 2)-Fr τ1 clA = τ1 clA ∩ τ2 cl(X\τ1A) = τ1 clA ∩ (X\A) =
τ1 clA ∩ τ1 cl(X\A) = 1-FrA; A ∈ τ1 ∩ 2-OD(X) =⇒ 2FrA = 2-Fr τ2 clA =
τ2 clA ∩ τ2 cl(X\τ2A) = τ2 clA ∩ (X\A) = τ2 clA ∩ τ1 cl(X\A) = (2, 1)-FrA.

(2) A ∈ 1-OD(X) =⇒ A ∈ τ1 and 1-FrA ⊂ τ1 cl τ1 int(X\A) =⇒ A ∈ τ1
and (2, 1)-FrA ⊂ 1-FrA ⊂ τ1 cl τ1 int(X\A) ⊂ τ1 cl τ2 int(X\A) =⇒ A ∈
(1, 2)-OD(X).

A ∈ (2, 1)-OD(X) =⇒ A ∈ τ2 and (1, 2)-FrA ⊂ τ2 cl τ1 int(X\A) =⇒
A ∈ τ2 and 2-FrA ⊂ (1, 2)-FrA ⊂ τ2 cl τ1 int(X\A) ⊂ τ2 cl τ2 int(X\A) =⇒
A ∈ 2-OD(X).

Further, by (1), A ∈ τ1 ∩ (2, 1)-OD(X) =⇒ A ∈ τ2 and 1-FrA =
(1, 2)-FrA ⊂ τ2 cl τ1 int(X\A) ⊂ τ1 cl τ1 int(X\A) =⇒ A ∈ 1-OD(X). Sim-
ilarly, A ∈ τ1 ∩ 2-OD(X) =⇒ A ∈ τ2 and (2, 1)-FrA = 2-FrA ⊂ τ2 cl τ2
int(X\A) ⊂ τ1 cl τ2 int(X\A) =⇒ A ∈ (1, 2)-OD(X). Hence, taking into
account the inclusion 1-OD(X) ⊂ (1, 2)-OD(X) ⊂ τ1, we find that τ1 ∩
(2, 1)-OD(X) = (1, 2)-OD(X) ∩ (2, 1)-OD(X) = 1-OD(X) ∩ (2, 1)-OD(X)
and τ1 ∩ 2-OD(X) = (1, 2)-OD(X) ∩ 2-OD(X). The rest is obvious.
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Finally, note that such a simple argument as τ1 ⊂ τ2 is helpful in es-
tablishing in a different way the inclusions 1-OD(X) ⊂ (1, 2)-OD(X) and
(2, 1)-OD(X) ⊂ 2-OD(X). Indeed, A ∈ 1-OD(X) =⇒ A = τ1 int τ1 clA =⇒
A = τ1 intA =⇒ A ⊂ τ1 int τ2 clA ⊂ τ1 int τ1 clA = A, i.e, A = τ1 int τ2 clA;
A ∈ (2, 1)-OD(X) =⇒ A = τ2 int τ1 clA =⇒ A ⊂ τ2 int τ2 clA ⊂ τ2 int τ1
clA = A, i.e, A ∈ 2-OD(X).

The inverse inclusions in the foregoing corollary are not, generally speak-
ing, correct in a BS (X, τ1 < τ2).

Example 2.1. Let X = {a, b, c, d}, τ1 = {∅, {a}, {c}, {a, c},X}, τ2 =
{∅, {a}, {c}, {a, c}, {a, b}, {a, b, c},X}. Then {a} ∈ 1-OD(X) ⊂ (1, 2)-OD(X),
{a}∈ 2-OD(X) so that {a}∈ (2, 1)-OD(X). Also, {a, b} ∈ (2, 1)-OD(X) ⊂
2-OD(X), but {a, b}∈ (1, 2)-OD(X) and therefore {a, b}∈ 1-OD(X).

Example 2.2. Let X be as in Example 2.1, τ1 = {∅, {a}, {a, b, c},X},
τ2 = {∅, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d},X}. Then {a} ∈ (1, 2)-
OD(X)\ 1-OD(X), {a, d} ∈ 2-OD(X)\(2, 1)-OD(X).

Proposition 2.3. In a BS (X, τ1 < τ2) we have U ∈ τ2 ⇐⇒ U =
V \τ2 clA, where V ∈ (2, 1)-OD(X) and A ∈ (1, 2)-ND(X) so that F ∈
co τ2 ⇐⇒ F = B ∪ τ2 clA, where B ∈ (2, 1)-CD(X) and A ∈ (1, 2)-ND(X).

Proof. Let U ∈ τ2 and V = τ2 int τ1 clU . By (1) of Proposition 2.3.1 in
[11] the difference τ1 clU\U ∈ co τ2∩1-Bd(X) ⊂ (1, 2)-ND(X) and hence A =
V \U ∈ (1, 2)-ND(X). Clearly, U = V \A and τ2 clA = τ2 cl(V \U) ⊂ τ2 clV ∩
τ2 cl(X\U) = τ2 clV \U . Thus U = V ∩ U = V \(τ2 clV \U) ⊂ V \τ2 clA ⊂
V \A = U , i.e., U = V \τ2 clA.

The converse implication is obvious.
If F ∈ co τ2, then X\F = V \τ2 clA, where V ∈ (2, 1)-OD(X) and

A ∈ (1, 2)-ND(X). Hence F = (X\V ) ∪ τ2 clA = B ∪ τ2 clA with B ∈
(2, 1)-CD(X).

Below we will define and study important modifications of the notions
of a set dense in itself, a perfect set and a scattered set.

Definition 2.7. A subset A of a BS (X, τ1, τ2) is (i, j)-dense in itself
if Ai

i⊂Ad
j [9].

The family of all subsets of X, (i, j)-dense in themselves, (i-discrete) is
denoted by (i, j)-DI(X) (i-I(X )).

Theorem 2.5. Let (X, τ1, τ2) be a BS. Then
(1) 1-DI(X) ∪ 2-DI(X) ⊂ (1, 2)-DI(X) = (2, 1)-DI(X) and

in a BS (X, τ1 < τ2) we also have
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(2) 2-DI(X) ⊂ 1-DI(X) = (1, 2)-DI(X) = (2, 1)-DI(X), 1-I(X) ⊂ 2-I(X).

Proof. It is clear that the inclusion in (1) follows from the equality in
(1) and thus it suffices to prove only the equality.

Let A ∈ (i, j)-DI(X). Then Ai
i ⊂ Ad

j so that X\Ad
j ⊂ X\Ai

i. Hence
A ∩ (X\Ad

j ) ⊂ A ∩ (X\Ai
i), i.e., A\Ad

j ⊂ A\Ai
i and Ai

j ⊂ A\Ai
i ⊂ Ad

i . Thus
A ∈ (j, i)-DI(X).

(2) τ1 ⊂ τ2 implies that Ad
2 ⊂ Ad

1 and Ai
1 ⊂ Ai

2 for every subset A ⊂ X,
i.e., 2-DI(X) ⊂ 1-DI(X) and 1-I(X) ⊂ 2-I(X). By Definition 2.7, A ∈
(1, 2)-DI(X) ⇐⇒ Ai

1 ⊂ Ad
2. Hence Ai

1 ⊂ Ad
1 =⇒ Ai

1 = ∅ =⇒ A ⊂ Ad
1 ⇐⇒

A ∈ 1-DI(X).

From this theorem we conclude that if in a BS (X, τ1 < τ2) a set A ⊂
X has at least one 1-isolated point, then A∈ 1-DI(X) = (1, 2)-DI(X) =
(2, 1)-DI(X).

By the first equality in (1) of Theorem 2.5 it suffices to consider only
the family (1, 2)-DI(X).

Example 2.3. Suppose we are given the BS (R, τ1, τ2), where τ1 =
ω is the natural topology on R, τ2 is the discrete topology on R and A =
{1, 1

2 ,
1
3 ,

1
4 . . . } ⊂ R. Then Ad

1 = {0} and therefore Ai
1 = A\Ad

1 = A, Ai
2 = A

and Ad
2 = ∅. Hence A∈ (1, 2)-DI(R).

The converse of the first inclusion in Theorem 2.5 does hold in general.

Example 2.4. Suppose τ1 is the antidiscrete topology on R, τ2 = ω is
the natural topology on R and a subset A ⊂ R is the same as in Example 2.3.
Then Ai

1 = ∅, Ad
1 = R, Ai

2 = A and Ad
2 = {0}. Hence Ai

1 = ∅ implies that
A ∈ 1-DI(R) = (1, 2)-DI(R), but A∈ 2-DI(R) since Ai

2 �= ∅.

Theorem 2.6. In a BS (X, τ1, τ2) any union of sets (1, 2)-dense in
themselves is (1, 2)-dense in itself.

Proof. Let {As}s∈S be any family of sets (1, 2)-dense in themselves so
that (As)i1 = (As\(As)d1) ⊂ (As)d2 for every s ∈ S. It is well known that
∪

s∈S
(As)d1 ⊂ ( ∪

s∈S
As)d1 and hence ( ∪

s∈S
As)\( ∪

s∈S
As)d1 ⊂ ∪

s∈S
As\ ∪

s∈S
(As)d1 ⊂

∪
s∈S

(As\(As)d1) ⊂ ∪
s∈S

(As)d2 ⊂ ( ∪
s∈S

As)d2.

If there exists a set A ∈ i-D(X) ∩ i-Bd(X), then by virtue of Theorem
4 from [17, p. 83], X ∈ i-DI(X) ⊂ (1, 2)-DI(X). Based on this fact, our next
theorem gives examples of new members of the family (1, 2)-DI(X).

Theorem 2.7. For every subset A of a BS (X, τ1 < τ2) we have
τ1 int(1, 2)-FrA, A ∩ τ1 int(1, 2)-FrA ∈ (1, 2)-DI(X).
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Proof. As is well-known, if U ∈ τ1 and A ⊂ X is any set, then τ1 cl(U∩
τ1 clA) = τ1 cl(U ∩A). Therefore τ1 cl(U ∩A) = τ1 cl(U ∩ τ2 clA).

Let U = τ1 int(1, 2)-FrA = τ1 int(2, 1)-Fr(X\A). Then it is obvious that
τ1 clU = τ1 cl(U ∩τ1 clA) = τ1 cl(U ∩A) and τ1 clU = τ1 cl(U ∩τ2 cl(X\A)) =
τ1 cl(U ∩ (X\A)) = τ1 cl(U\A), i.e.,

τ1 cl τ1 int(1, 2)-FrA =

= τ1 cl(A ∩ τ1 int(1, 2)-FrA) = τ1 cl(τ1 int(1, 2)-FrA\A).(1)

The first equality in (1) shows that the set A ∩ τ1 int(1, 2)-FrA is 1-
dense in τ1 int(1, 2)-FrA. Moreover, (1) also implies that τ1 int(1, 2)-FrA ⊂
τ1 cl(τ1 int(1, 2)-FrA\A) ⊂ τ1 cl(τ1 int(1, 2)-FrA\(A∩τ1 int(1, 2)-FrA)) so that
A ∩ τ1 int(1, 2)-FrA is the 1-boundary in τ1 int(1, 2)FrA [17, p. 76]. Hence
by virtue of the remark preceding this theorem and Theorem 2.5 we obtain
τ1 int(1, 2)-FrA ∈ 1-DI(X) = (1, 2)-DI(X). Since A ∩ τ1 int(1, 2)-FrA is 1-
dense in τ1 int(1, 2)-FrA, where τ1 int(1, 2)-FrA ∈ 1-DI(X) = (1, 2)-DI(X),
by virtue of Theorem 3 from [17, p. 83] we obtain A ∩ τ1 int(1, 2)-FrA ∈
1-DI(X) = (1, 2)-DI(X).

Definition 2.8. A subset A of a BS (X, τ1, τ2) is (i, j)-perfect if Ai
j ⊂

Ad
i ⊂ A [9].

The family of all (i, j)-perfect subsets of X is denoted by (i, j)-P(X).
Hence (i, j)-P(X) = co τi ∩ (1, 2)-DI(X).

Theorem 2.8. In a BS (X, τ1, τ2) we have i-P(X) ⊂ (i, j)-P(X) and in
a BS (X, τ1 < τ2) we have (1, 2)-P(X) = 1-P(X) ⊂ (2, 1)-P(X) ⊃ 2-P(X) ⊂
1-DI(X).

Proof. By (1) of Theorem 2.5, i-P(X) = co τi ∩ i-DI(X) ⊂ co τi ∩
(1, 2)-DI(X) = (i, j)-P(X). Further, if τ1 ⊂ τ2, then by (2) of Theorem 2.5,
(1, 2)-P(X) = co τ1 ∩ (1, 2)-DI(X) = co τ1 ∩ 1-DI(X) = 1-P(X) ⊂ co τ2 ∩
(1, 2)-DI(X)=(2, 1)-P(X). Finally, 2-P(X) = co τ2 ∩ 2-DI(X) ⊂ 2-DI(X) ⊂
1-DI(X) and 2-P(X) = co τ2 ∩ 2-DI(X) ⊂ co τ2 ∩ (2, 1)-DI(X) = co τ2 ∩
(1, 2)-DI(X) = (2, 1)-P(X).

The inverse inclusions in the latter theorem are not, generally speaking,
correct.

Example 2.5. Let (R, τ1, τ2) be the BS from the previous example. If
A = {1, 1

2 ,
1
3 ,

1
4 , . . . , 0}, then Ai

1 = ∅, Ad
2 = {0} and hence Ai

1 ⊂ Ad
2 ⊂ A

so that A ∈ (2, 1)-P(R). But A∈ 2-P(R) since A �= Ad
2. It is likewise easy to

observe that for the set Z we have Zi
1 = ∅, Zd

1 = R, Zi
2 = Z and Zd

2 = ∅.
Hence Z ∈ (2, 1)-P(R) but Z∈ (1, 2)-P(R) since R = Zd

1 is not contained in Z.
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Theorem 2.9. For a j-T1 BS (X, τ1, τ2) we have j-Cl(1, 2)-DI(X)⊂
(j, i)-P(X).

Proof. We will show that Ai
i ⊂ Ad

j =⇒ (τj clA)ii ⊂ (τj clA)dj ⊂ τj clA.
Clearly, (τj clA)dj ⊂ τj cl(τj clA) = τj clA. Further, (τj clA)ii = τj clA\

(τj clA)di = (A ∪Ad
j )\(A ∪Ad

j )
d
i = (A ∪Ad

j )\(Ad
i ∪ (Ad

j )
d
i ) = ((A ∪Ad

j )\Ad
i ) ∩

((A ∪ Ad
j )\(Ad

j )
d
i ) = ((A\Ad

i ) ∪ (Ad
j\Ad

i )) ∩ ((A\(Ad
j )

d
i ) ∪ (Ad

j\(Ad
j )

d
i )). Since

Ad
j\Ad

i ⊂ Ad
j and A\Ad

i = Ai
i ⊂ Ad

j , we conclude that the union in the first
brackets above is contained in Ad

j . Hence the set (τj clA)ii, being the meet,
is completely contained in Ad

j . But Ad
j = (τj clA)dj and therefore (τj clA)ii ⊂

(τj clA)dj ⊂ τj clA.

Using the equality (1, 2)-DI(X) = (2, 1)-DI(X), we introduce

Definition 2.9. A subset A of a BS (X, τ1, τ2) is (i, j)-scattered if A
is nonempty and contains no nonempty (i, j)-dense in itself subset [9].

The family of all (i, j)-scattered subsets ofX is denoted by (i, j)-ST (X).
It is clear that (1, 2)-DI(X) = (2, 1)-DI(X) =⇒ (1, 2)-ST (X) = (2, 1)-
ST (X).

The latter definition and Theorem 2.5 readily yield

Theorem 2.10. The following conditions are satisfied in a BS (X, τ1, τ2):
(1) (1, 2)-ST (X) ⊂ 1-ST (X) ∩ 2-ST (X).
(2) A ∈ (1, 2)-ST (X) and B ⊂ A, B �= ∅ =⇒ B ∈ (1, 2)-ST (X).

In a BS (X, τ1 < τ2) we also have
(3) 1-ST (X) = (1, 2)-ST (X).

Remark 2.1. Let (R, τ1, τ2) be the BS from Example 2.4, where A=
{1, 1

2 ,
1
3 ,

1
4 , . . . } ∈ 1-DI(R) = (1, 2)-DI(R). If ∅ �= B ⊂ A is any subset,

then B ∈ 1-DI(R) = (1, 2)-DI(R) so that A∈ 1-ST (R) = (1, 2)-ST (R). But
B ⊂ A =⇒ Bd

2 ⊂ Ad
2 = {0} and therefore B ∩ Bd

2 = ∅. Hence B ∈ 2-DI(R)
and, since B ⊂ A is arbitrary, we obtain A ∈ 2-ST (R).

Note further that following Example 2.4 and the above remark we have
A = {1, 1

2 ,
1
3 ,

1
4 , . . . } ∈ 2-I(R) and A∈ (1, 2)-ST (R) and thus, generally speak-

ing, the family i-I(X ) is not contained in (1, 2)-ST (R). However we have

Theorem 2.11. If in a BS (X, τ1, τ2) a set A ∈ i-I(X) and for every
subset B ⊂ A we have B ∈ j-DI(X), then A ∈ (1, 2)-ST (X).

Proof. Assume that A ∈ i-I(X) and B ⊂ A is an arbitrary subset.
Then B ∈ i-I(X), and B ∈ j-DI(X) implies that Bi

j �= ∅. Since B ∩Bd
i = ∅

and Bi
j ⊂ B, we obtain Bi

j ∩Bd
i = ∅ so that B ∈ (1, 2)-DI(X). Therefore we

have A ∈ (1, 2)-ST (X) since B ⊂ A is arbitrary.
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Theorem 2.12. Let (X, τ1, τ2) be a R-p -T1(⇐⇒ d-T1) BS [20]. Then
X = A∪(X\A), where A ∈ (1, 2)-P(X)∩(2, 1)-P(X) and X\A ∈ (1, 2)-ST (X)
(it stands to reason that one of these subsets may turn out empty).

Proof. Assume that A = ∪{E : E ∈ (1, 2)-DI(X)}. Then by The-
orem 2.6, A ∈ (1, 2)-DI(X). It follows from Definition 2.8 and Theorem 2.9
that τj clA ∈ (j, i)-P(X) ⊂ (1, 2)-DI(X). Recalling that A is maximal, we
obtain A ∈ co τ1 ∩ co τ2 and therefore A = τ1 clA = τ2 clA ∈ (1, 2)-P(X) ∩
(2, 1)-P(X). It is likewise clear that X\A contains no nonempty (1, 2)-dense
in itself subset and thus X\A ∈ (1, 2)-ST (X).

The latter theorem shows that the maximal (1, 2)-dense in itself subset
of a BS (X, τ1, τ2) is both 1- and 2-closed.

Theorem 2.13. In a BS (X, τ1 < τ2) for every set A ∈ (1, 2)-ST (X)
we have (1, 2)-FrA ∈ (1, 2)-ND(X).

Proof. By Theorem 2.7 the set A ∩ τ1 int(1, 2)-FrA ∈ (1, 2)-DI(X)
and therefore it is empty sinceA ∈ (1, 2)-ST (X). Moreover, sinceA∩τ1 int(1, 2)
-FrA is 1-dense in τ1 int(1, 2)-FrA, the latter set is also empty, i.e., (1, 2)-FrA ∈
co τ2 ∩ 1-Bd(X) ⊂ (1, 2)-ND(X).

By virtue of Theorems 2.5 and 2.10, in a BS (X, τ1 < τ2) all results
that hold for the families 1-DI(X) and 1-ST (X) also hold for the families
(1, 2)-DI(X) and (1, 2)-ST (X), respectively.

Now we will show when the inverse of the last inclusion in Theorem 2.8
is fair.

The coupling of topologies, i.e., the C-relation was defined by J. Weston
in [26] to generalize some well-known theorems on topological groups and
linear spaces and to connect the same properties of the coupled topologies.

Definition 2.10. A topology τ1 is coupled to a topology τ2 on a set X
(briefly, τ1Cτ2) if τ1 clU ⊂ τ2 clU for every set U ∈ τ1.

From this definition we immediately find that if τ1 = co τ1, then τ1 is
coupled to every topology on X so that the antidiscrete topology on X as
well as the discrete topology on X is coupled to every topology on X. In
our notations τ1Cτ2 ∧ τ1 ⊂ τ2 ⇐⇒ τ1 <C τ2 and a set X together with the
topologies τ1Cτ2 (τ1 <C τ2) is denoted by (X, τ1Cτ2) ((X, τ1 <C τ2)).

Theorem 2.14. The following conditions are equivalent in a
BS (X, τ1, τ2):
(1) τ1 is coupled to τ2.
(2) τ1 cl τ1 intA ⊂ τ2 cl τ1 intA so that τ2 int τ1 clA ⊂ τ1 int τ1 clA for every

subset A ⊂ X.
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(3) τ1 cl τ1 intA ⊂ τ2 clA so that τ2 intA ⊂ τ1 int τ1 clA for every subset
A ⊂ X.

(4) τ1 <C sup(τ1, τ2).
(5) For every point x ∈ X the 1-closure of any 2-neighborhood of x is a

1-neighborhood of x.

Proof. The equivalences (1) ⇐⇒ (4) ⇐⇒ (5) are proved in Theorems
2 and 5 of [26]. (1) ⇐⇒ (2) is obvious by Definition 2.10. If (3) is satisfied,
then τ1 clA ⊂ τ2 clA for every 1-open set A so that (3) =⇒ (1) ⇐⇒ (2). Since
(2) =⇒ (3) is evident, we obtain (2) ⇐⇒ (3).

Corollary. The following conditions are equivalent in a BS (X, τ1 <
τ2):
(1) τ1 <C τ2.
(2) τ1 cl τ1 intA = τ2 cl τ1 intA so that τ1 int τ1 clA = τ2 int τ1 clA for every

subset A ⊂ X.

Proof. (1) and (2) are immediate consequences of Definition 2.10 and
(2) of Theorem 2.14.

Example 2.6. Let X = {a, b, c, d}, τ1 = {∅, {a, b}, {a, b, c},X} and
τ2 = {∅, {a, b}, {a, b, c}, {a, b, d},X}. Then τ1 <C τ2. Let us consider the set
F = {c, d} ∈ co τ1 ⊂ co τ2. Then for the subset {d} of a BS (Y, τ ′1, τ

′
2) we have

τ ′1 int τ ′1 cl{d} = ∅ and τ ′2 int{d} = {d}, i.e., τ ′1 is not coupled to τ ′2.

Definition 2.11. A topology τ1 is i-strongly coupled to a topology τ2
on a set X (briefly, τ1C(i)τ2) if the C-relation is hereditary with respect to
i-closed subsets of X [9].

Example 2.7. Let X = {a, b, c, d}, τ1 = {∅, {a, b, c},X} and τ2 =
{∅, {a, b}, {a, b, c},X}. Then τ1 <C(i) τ2.

Theorem 2.15. If (X, τ1 <C(2) τ2) is a 1-T1 BS, then co τ2∩1-DI(X) =
2-P(X).

Proof. Let F ∈ co τ2 ∩ 1-DI(X). Following the condition, τ ′1 <C τ ′2 in
(F, τ ′1, τ

′
2) and, by (5) of Corollary 2 of Theorem 2.2.1 in [11], F i

1 = F i
2 = ∅

since F ∈ 1-DI(X). Hence F ⊂ F d
2 , i.e., F ∈ 2-DI(X) so that F ∈ co τ2 ∩

2-DI(X) = 2-P(X) and thus co τ2∩1-DI(X) ⊂ 2-P(X). The inverse inclusion
follows from (2) of Theorem 2.5.

Theorem 2.16. Let (X, τ1, τ2) be a BS and X ∈ (1, 2)-DI(X). Then
A ∈ (τ1 ∩ τ2) ∪ (1-D(X) ∩ 2-D(X)) implies that A ∈ (1, 2)-DI(X).
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Proof. Assume that A ∈ τ1∩τ2 so that F = X\A ∈ co τ1∩co τ2. Then
F d

i ⊂ F and thus (X\F )\(X\F )d1 ⊂ (X\F )\(Xd
1 \F d

1 ) ⊂ (X\F )\(Xd
1 \F ) =

((X\F )\Xd
1 )∪ F = ((X\F ) ∪ F )\Xd

1 = X\Xd
1 . On the other hand, ((X\F )\

(X\F )d1)∩F = ∅ and thus (X\F )\(X\F )d1 ⊂ (X\Xd
1 )\F . But the inclusions

X\Xd
1 ⊂ Xd

2 and F d
2 ⊂ F imply that (X\F )\(X\F )d1 ⊂ Xd

2\F d
2 ⊂ (X\F )d2 so

that A\Ad
1 ⊂ Ad

2, i.e., A ∈ (1, 2)-DI(X).
Now let A ∈ 1-D(X)∩2-D(X). ThenAd

i = Xd
i andX ∈ (1, 2)-DI(X) ⇐⇒

X\Xd
1 ⊂ Xd

2 implies that X\Ad
2 ⊂ Ad

1. Therefore A\Ad
2 ⊂ Ad

1, i.e., A ∈
(1, 2)-DI(X).

Corollary. Let (X, τ1 < τ2) be a BS and X ∈ (1, 2)-DI(X). Then
A ∈ τ1 ∪ 2-D(X) implies A ∈ (1, 2)-DI(X).

We finish the discussion of (i, j)-perfect sets with the proof of the bitopo-
logical modification of Cantor–Bendixson’s theorem. In this context recall that
in a BS (X, τ1 < τ2) a set A ∈ (1, 2)-DI(X) if and only if U ∈ τ1 and U∩A �= ∅

implies U ∩ A is infinite, and a point x ∈ X is an i-condensation point of a
set A ∈ 2X if each i-open neighborhood U(x) meets A in an uncountable set.
The set of all i-condensation points of A is denoted by A0

i .

Theorem 2.17. Let (X, τ1 < τ2) be a 1-T1 and 1-second countable BS.
Then any uncountable 2-closed set F contains a set A ∈ co τ2∩(1, 2)-DI(X) =
(2, 1)-P(X). Moreover, F 0

1 = F 0
2 = τ1 clA.

Proof. Let F ∈ co τ2 be an uncountable set and U1, U2, . . . be a
countable base of 1-open sets. Suppose that V1, V2, . . . are those of the sets
U1, U2, . . . which meet F in a countable set. Clearly, the sequence V1, V2, . . .
may be finite or infinite. If A = F\ ∪

k
Vk, then τ1 ⊂ τ2 implies A ∈ co τ2 and

F = (A\ ∪
k
Vk) ∪ (∪

k
Vk ∩ F ) = A ∪ (∪

k
Vk ∩ F ). Since F is uncountable and

∪
k
Vk ∩ F is countable, A = F\ ∪

k
Vk is uncountable and therefore non-empty.

It remains to prove only that A ∈ (1, 2)-DI(X). But But we would
rather prove that A ⊂ A0

1, i.e., each point x ∈ A is a 1-condensation point
of A so that U(x) ∈ τ1 gives |U(x) ∩ A| > ℵ0. Indeed, let U(x) ∈ τ1 be any
neighborhood. Then there is a set Un from the 1-countable base U1, U2, . . .
such that x ∈ Un ⊂ U(x). It is evident that Un �= Vk for each k since the
contrary implies x∈F\ ∪

k
Vk = A. This means that |F ∩ Un| > ℵ0. Since A

differs from F in merely a countable set, it follows that |A ∩ Un| > ℵ0. But
A ∩ Un ⊂ A ∩ U(x) so that |A ∩ U(x)| > ℵ0, and hence A ⊂ A0

1. Therefore
A ⊂ Ad

1 and thus A ∈ co τ2 ∩ (1, 2)-DI(X) = (2, 1)-P(X). Now we have A ⊂
A0

1 ⊂ Ad
1 so that τ1 clA ⊂ τ1 clA0

1 = A0
1 ⊂ τ1 clAd

1 = Ad
1 ⊂ τ1 clA. Therefore

A0
1 = τ1 clA. Finally, F 0

1 = (A∪ (∪
k
Vk ∩F )01 = A0

1∪ (∪
k
Vk ∩F )01 = A0

1 = τ1 clA.
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Corollary. Under the hypotheses of Theorem 2.17 for any uncountable
set B ∈ 2X there is an uncountable subset A ⊂ B such that A ∈ (1, 2)-DI(X).

Proof. Let B ∈ 2X be any uncountable set. Then the result follows
directly from the proof of Theorem 2.18 omitting the remark that A is 2-
closed.

Definition 2.12. A family B of subsets of a TS (X, τ) is a pseudobase
of the topology τ if the following conditions are satisfied:
(1) B ∈ B =⇒ intB �= ∅.
(2) For every subset U ∈ τ\{∅} there exists a set B ∈ B such that B ⊂ U .

By [25] this definition leads to the equivalence relation on the family of
all topologies on a set X.

Definition 2.13. Topologies τ1 and τ2 on a set X are S-related (briefly,
τ1Sτ2) if τ1\{∅} is a pseudobase for τ2.

A set X together with the S-related topologies τ1 and τ2 is denoted by
(X, τ1Sτ2).

Remark 2.2. The S-relation between two topologies on a set X is es-
pecially important by Proposition 3.4 from [25], following which if one term of
the S-equivalence class is Baire, then all members of this class are also Baire.

Example 2.8. Let (R, s, τ) be a BS, where s is the half-open interval
topology, i.e., the Sorgenfrey topology on R so that basic open sets for s are
of the form [a, b) and τ is the topology with basic open sets of the form (a, b].
It is clear that neither topology is finer than the other, inf(s, τ) = s∩ τ = ω is
the natural topology on R, sup(s, τ) is the discrete topology on R. Moreover,
sSτ , sS inf(s, τ) and τS inf(s, τ). Hence, by Remark 2.2, the Sorgenfrey line,
i.e., R with the Sorgenfrey topology is a Baire space since sS inf(s, τ), and the
natural topology is Baire [25].

Theorem 2.18. The following conditions are equivalent in a BS
(X, τ1, τ2):

(1) τ1 is S-related to τ2.
(2) 1-Bd(X) = 2-Bd(X) = (1, 2)-Bd(X) = (2, 1)-Bd(X) so that

1-D(X) = 2-D(X) = (1, 2)-D(X) = (2, 1)-D(X).
(3) τ1 intA ⊂ τ1 cl τ2 intA ∧ τ2 intA ⊂ τ2 cl τ1 intA so that

τ1 int τ2 clA ⊂ τ1 clA ∧ τ2 int τ1 clA ⊂ τ2 clA for every subset A ⊂ X.
(4) τ1 ⊂ (2, 1)-SO(X) ∧ τ2 ⊂ (1, 2)-SO(X) so that

co τ1 ⊂ (2, 1)-SC(X) ∧ co τ2 ⊂ (1, 2)-SC(X).
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Proof. It is clear that (1-Bd(X) = 2-Bd(X)) ⇐⇒ (τ1 intA �= ∅ ⇐⇒
τ2 intA �= ∅ for every subset A ⊂ X). Thus, by Proposition 1.1.2 in [11], for
the equivalence (1) ⇐⇒ (2) it is enough to show that (1)⇐⇒ (τ1 intA �=
∅ ⇐⇒ τ2 intA �= ∅ for every subset A ⊂ X).

We assume that τ1Sτ2, i.e., τ1\{∅} is a pseudobase for τ2, and A ⊂ X is
any subset. If τ1 intA �= ∅, then, by (1) of Definition 2.12, τ2 int τ1 intA �= ∅

and hence τ2 intA �= ∅. When τ2 intA �= ∅, by (2) of Definition 2.12 there
exists a set V ∈ τ1\{∅} such that V ⊂ τ2 intA. Thus τ1 int τ2 intA �= ∅ so
that τ1 intA �= ∅.

On the other hand, let U ∈ τ1\{∅}. Then τ2 intU �= ∅. If U ∈ τ2\{∅},
we have ∅ �= V = τ1 intU ⊂ U and consequently τ1\{∅} is a pseudobase for
τ2.

Therefore (1) ⇐⇒ (2).
The implication (1) =⇒ (3) is exactly Proposition 3.3 from [25] and

(3) =⇒ (2) ⇐⇒ (1) is obvious.
(3) ⇐⇒ (4) is an immediate consequence of Theorem 1.3.3 in [11].

It is likewise easy to see that if τ1 = ω is the natural topology on R and
τ2 is the discrete topology on R, then τ1 is not S-related to τ2.

Note that in the sequel it will be assumed that τ1Sτ2∧τ1⊂τ2⇐⇒τ1<S τ2
and the coresponding BS will be denoted by (X, τ1<S τ2).

Remark 2.3. It is not difficult to see that τ1 <S τ2 ⇐⇒ τ1 ⊂ τ2 ⊂
(1, 2)-SO(X) ⊂ (2, 1)-SO(X) since τ1 ⊂ τ2 =⇒ (1, 2)-SO(X) ⊂ (2, 1)-SO(X).

Definition 2.14. A topology τ1 is near a topology τ2 on a set X (briefly,
τ1Nτ2) if τ1 clU ⊂ τ2 clU for every set U ∈ τ2 [9].

Example 2.9. Let (R, ω1, ω2) be the natural BS [11]. Then ωi is neither
S-related to ωj nor coupled to ωj; however ωi is near ωj.

In contrast to the S-relation, the N -relation, like the C-relation, is not
symmetric.

Example 2.10. Let X = {a, b, c}, τ1 = {∅, {a, b},X} and τ2 =
{
∅, {a},

{b}, {a, b}, {b, c},X
}
. Then τ2Nτ1 since τ1 ⊂ τ2, but τ1 is not near τ2 since

for the set {b, c} ∈ τ2 we have τ1 cl{b, c} = X and τ2 cl{b, c} = {b, c}.
It is evident that τ1 <N τ2 ⇐⇒ τ1Nτ2 ∧ τ1 ⊂ τ2.

Example 2.11. Let X be any set such that a, b ∈ X, a �= b, implies
that X\{a, b} �= ∅. If τ1 = {∅, {a},X\{a},X}, τ2 = {∅, {a},X\{a}, {b},
{a, b},X}, then τ1 <N τ2.

Theorem 2.19. The following conditions are equivalent in a BS
(X, τ1, τ2):
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(1) τ1 is near τ2.
(2) τ1 cl τ2 intA ⊂ τ2 cl τ2 intA so that τ2 int τ2 clA ⊂ τ1 int τ2 clA for every

subset A ⊂ X.
(3) τ1 cl τ2 intA ⊂ τ2 clA so that τ2 intA ⊂ τ1 int τ2 clA for every subset

A ⊂ X.
(4) For every point x ∈ X the 2-closure of any 2-neighborhood of x is a

1-neighborhood of x.

Proof. It is obvious that (1) ⇐⇒ (2) =⇒ (3). If (3) is satisfied, then
τ1 clU ⊂ τ2 clU for every set U ∈ τ2, i.e., (3) =⇒ (1).

(1) =⇒ (4) Let x ∈ X be any point and U(x) be its any 2-neighborhood.
It can be assumed without loss of generality that U(x) ∈ τ2. Then V =
X\τ2 clU(x) ∈ τ2 and, by (1), τ1 clV ⊂ τ2 clV . If V1 = X\τ1 clV , then
V1 =X\τ1 cl(X\τ2 clU(x)) = τ1 int τ2 clU(x) ⊂ τ2 clU(x). Furthermore, x ∈
τ2 clU(x) =⇒ x∈X\τ2 clU(x) = τ2 int(X\U(x)). Since τ2 int(X\U(x)) ∩
U(x) = ∅, we obtain τ2 cl τ2 int(X\U(x)) ∩ U(x) = ∅. Hence x∈
τ2 cl(X\τ2 clU(x)) = τ2 clV and τ1 clV ⊂ τ2 clV implies x∈ τ1 clV so that
x ∈ V1 = X\τ1 clV . Thus V1 is a 1-open neighborhood of x such that
V1 ⊂ τ2 clU(x).

(4) =⇒ (1) Suppose that U ∈ τ2 is any set and x ∈ τ1 clU is an arbitrary
point. If U(x) is any 2-open neighborhood of x, then by (4) there exists a set
V ∈ τ1 such that x ∈ V ⊂ τ2 clU(x). It is clear that V ∩ U �= ∅ so that
τ2 clU(x) ∩ U �= ∅. Hence U(x) ∩ U �= ∅ and U(x) ∈ τ2 being arbitrary
implies that x ∈ τ2 clU .

Corollary. For a BS (X, τ1, τ2) we have
τ1 clU = τ2 clU for every set U ∈ τ2 ⇐⇒ τ1 <N τ2 =⇒ τ1 clV = τ2 clV
for every set V ∈ τ1 ⇐⇒ τ1 <C τ2.

A nontrivial example of the near topologies is given in [3]: if (X, τ1) is
a compact space with the first axiom of countability, where |U | > ℵ0 for each
U ∈ τ1\{∅} and τ2 = {U\A : U ∈ τ1, A ⊂ X, |A| ≤ ℵ0}, then τ1 ⊂ τ2 and
the BS (X, τ1 < τ2) is (X, τ1 <N τ2).

At the end of this paragraph we will consider three operators on 2X ,
characterizing not only the degrees of nearness of the four boundaries of a
set and the S-, C- and N -relations, but also interrelations of the dimension
functions in §2.

Definition 2.15. In a BS (X, τ1 < τ2) the indicators of near”ess of the
boundaries are the”following three operators: n1, n2, n : 2X → (2, 1)-LC(X)
defined as follows: n1(A) = τ1 clA\τ2 clA, n2(A) = τ2 intA\τ1 intA and
n(A) = n1(A) ∪ n2(A) for each set A ∈ 2X .
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It is evident that ni(A) = nj(X\A) so that n(A) = n(X\A) for each
set A ∈ 2X , n1/co τ1 = n2/τ1 = n/τ1∩co τ1 = ∅ and therefore n/τ1 = n1,
n/co τ1 = n2.

Theorem 2.20. In a BS (X, τ1 < τ2) the operators n1, n2 and n satisfy
the following conditions:

(1) (1, 2)-FrA = 2-FrA ∪ n1(A) = 2-FrA�n1(A), (2, 1)-FrA = 2-FrA ∪
n2(A) = 2-FrA�n2(A), 1-FrA = (1, 2)-FrA ∪ n2(A) = (1, 2)-Fr
A�n2(A) = (2, 1)-FrA∪n1(A) = (2, 1)-FrA�n1(A) = 2-FrA∪n(A) =
2-FrA�n(A) for each set A ∈ 2X .

(2) A ∈ τ1 ∩ (co τ2\ co τ1) =⇒ n(A) = n1(A) = 1-FrA = (1, 2)-FrA,
(2, 1)-FrA = 2-FrA = ∅.
A∈(τ2\τ1)∩co τ1=⇒n(A) = n2(A) = 1-FrA = (2, 1)-FrA, (1, 2)-FrA =
2-FrA = ∅.
A ∈ (τ2\τ1)∩(co τ2\ co τ1) =⇒ n1(A) = (1, 2)-FrA, n2(A) = (2, 1)-FrA,
n(A) = 1-FrA, 2-FrA = ∅.

(3) A ∈ 2-OD(X) =⇒ n1(A) ∈ (1, 2)-ND(X), A ∈ (1, 2)-OD(X) =⇒
n1(A) ∈ 1-ND(X), A ∈ (2, 1)-OD(X) =⇒ n1(A) ∈ 2-ND(X), A ∈
(1, 2)-OD(X) ∩ (1, 2)-SC(X) =⇒ n1(A) ∈ (2, 1)-ND(X) so that
A ∈ 2- CD(X) =⇒ n2(A) ∈ (1, 2)-ND(X), A ∈ (1, 2)- CD(X) =⇒
n2(A) ∈ 1-ND(X), A ∈ (2, 1)- CD(X) =⇒ n2(A) ∈ 2-ND(X), A ∈
(1, 2)-CD(X) ∩ (1, 2)-SO(X) =⇒ n2(A) ∈ (2, 1)-ND(X).

(4) τ1Cτ2 ⇐⇒ n1(U) = ∅ for each set U ∈ τ1 ⇐⇒ n2(F ) = ∅ for each set
F ∈ co τ1.
τ1Nτ2 ⇐⇒ n1(U) = ∅ for each set U ∈ τ2 ⇐⇒ n2(F ) = ∅ for each set
F ∈ co τ2.
τ1Sτ2 ⇐⇒ n1(A) ∈ 2-Bd(X) for each set A ∈ 2X ⇐⇒ n2(A) ∈ 2-Bd(X)
for each set A ∈ 2X ⇐⇒ n(A) ∈ 2-Bd(X) for each set A ∈ 2X .

(5) A ∈ (2, 1)-DI(X) = (1, 2)-DI(X) = 1-DI(X) ⇐⇒ Ai
2 ⊂ n1(A).

Proof. (1) (1, 2)-FrA = τ1 clA ∩ τ2 cl(X\A) = (n1(A) ∪ τ2 clA) ∩
τ2 cl(X\A) = 2-FrA ∪ n1(A) = 2-FrA�n1(A). By (4) of Theorem 1.3.1
in [11], (2, 1)-FrA = (1, 2)-Fr(X\A) = 2-Fr(X\A) ∪ n1(X\A) = 2-FrA ∪
n2(A) = 2-FrA�n2(A). 1-FrA = τ1 clA∩ τ1 cl(X\A) = τ1 clA∩ (n1(X\A) ∪
τ2 cl(X\A)) = (1, 2)-FrA ∪ n2(A) = (1, 2)-FrA�n2(A) = (n1(A) ∪ τ2 clA) ∩
τ1 cl(X\A) = (2, 1)-FrA ∪ n1(A) = (2, 1)-FrA�n1(A) = (n1(A) ∪ τ2 clA) ∩
(n1(X\A) ∪ τ2 cl(X\A)) = 2-FrA ∪ n(A) = 2-FrA�n(A).

(2) A ∈ τ1 ∩ (co τ2\ co τ1) =⇒ n(A) = n1(A) = τ1 clA ∩ (X\A) =
τ1 clA∩τ1 cl(X\A) = 1-FrA = τ1 clA∩τ2 cl(X\A) = (1, 2)-FrA, (2, 1)-FrA =
2-FrA = ∅ is evident.
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A ∈ (τ2\τ1) ∩ co τ1 =⇒ n(A) = n2(A) = A ∩ τ1 cl(X\A) = τ1 clA ∩
τ1 cl(X\A) = 1-FrA = τ2 clA∩τ1 cl(X\A) = (2, 1)-FrA, (1, 2)-FrA = 2-FrA =
∅ is evident.

A ∈ (τ2\τ1) ∩ (co τ2\ co τ1) =⇒ n1(A) = τ1 clA ∩ (X\A) = τ1 clA ∩
τ2 cl(X\A) = (1, 2)-FrA, n2(A) = A ∩ τ1 cl(X\A) = τ2 clA ∩ τ1 cl(X\A) =
(2, 1)-FrA, n(A) = (1, 2)-FrA∪(2, 1)-FrA = (1, 2)-FrA�(2, 1)-FrA = 1-FrA,
2-FrA = ∅ is evident.

(3) The proof consists of elementary calculations taking into account
the equality n1(A) = n2(X\A) for each set A ∈ 2X .

(4) The equivalences for τ1Cτ2 and τ1Nτ2 are immediate consequences
of the corresponding Definitions 2.10 and 1.14.

If τ1Sτ2, then, by (b) of 4.A.2 in [18], n1(A) ∈ 2-ND(X) and n2(A) ∈
2-ND(X) for each set A ∈ 2X . Therefore n1(A) ∈ 2-Bd(X), n2(A) ∈ 2-Bd(X)
for each set A ∈ 2X and thus n(A) ∈ 2-Bd(X) for each set A ∈ 2X .

Conversely, n(A) ∈ 2-Bd(X) for each set A ∈ 2X =⇒ n1(A) ∈ 2-Bd(X)
and n2(A) ∈ 2-Bd(X) for each set A ∈ 2X =⇒ τ2 int(τ2 intA\τ1 intA) = ∅

for each set A ∈ 2X =⇒ τ2 intA ⊂ τ2 cl τ1 intA for each set A ∈ 2X =⇒ τ2 ⊂
(1, 2)-SO(X) and by Remark 2.3, τ1Sτ2.

(5) A ∈ (2, 1)-DI(X) =⇒ Ai
2 ⊂ Ad

1 = (Ad
1\Ad

2) ∪ Ad
2 =⇒ Ai

2 ⊂
(Ad

1\Ad
2) = (A ∪ Ad

1)\(A ∪ Ad
2) = n1(A). Conversely, Ai

2 ⊂ n1(A) =⇒ Ai
2 ⊂

Ad
1\Ad

2 ⊂ Ad
1 so that A ∈ (2, 1)-DI(X).

3. Dimension of Bitopological Spaces

In this paragraph, generalizing the notions of topological dimension, we
will assign a nonnegative integer to certain BS’s. Unlike the topological case,
the following six numbers will be assigned to a BS (X, τ1, τ2): (i, j)-indX,
p -indX, (i, j)-IndX and p -IndX.

We give in two distinct ways the equivalent definitions of the pairwise
small inductive dimension p -indX for every nonnegative integer n.

Definition 3.1. Let (x,A) be a pair in a BS (X, τ1, τ2) such that A ∈
co τi and x∈A. Then a partition corresponding to the pair (x,A) is a p-closed
set T for which X\T is not p-connected so that X\T = H, where H = H1∪H2,
Hi ∈ τi\{∅}, H1 ∩H2 = ∅ and x ∈ Hi, A ⊂ Hj.

Remark 3.1. It is easy to verify that in a BS (X, τ1, τ2) the following
conditions are satisfied for a pair (x,A), where A ∈ co τi, x∈A:
(1) If there exists an i-open neighborhood U(x) (a j-open neighborhood U(A))

such that τj clU(x) ⊂ X\A (τi clU(A) ⊂ X\{x}), then the set (j, i)-
FrU(x) ((i, j)-FrU(A)) is the partition corresponding to (x,A) in the
sense of Definition 2.1.
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(2) If T is a partition corresponding to (x,A) in the sense of Definition 2.1,
then (j, i)-FrHi ⊂ T .

Indeed, (1) X\(j, i)-FrU(x) = X\(τj clU(x) ∩ (X\U(x)) = (X\τj cl
U(x)) ∪ U(x), where x ∈ U(x) ∈ τi, A ⊂ X\τj clU(x) ∈ τj and U(x) ∩
(X\τj clU(x) = ∅. The case in the brackets can be proved in a similar manner.

(2) Since (X\T, τ ′1, τ ′2) is not p-connected we have Hi ∈ τ ′i ∩ co τ ′j and
hence (j, i)-FrHi∩(X\T ) = (τj clHi∩(X\T ))∩((X\Hi)∩(X\T )) = τ ′j clHi∩
Hj = Hi ∩Hj = ∅ so that (j, i)-FrHi ⊂ T .

Definition 3.2. Let (X, τ1, τ2) be a BS and n denote a nonnegative
integer. We say that
(1) (i, j)-indX = −1 ⇐⇒ X = ∅.
(2) (i, j)-indX ≤ n if to every pair (x,A), where A ∈ co τi, x∈A, there

corresponds a partition T such that (i, j)-indT ≤ n− 1.
(3) (i, j)-indX = n if (i, j)-indX ≤ n and the inequality (i, j)-indX ≤ n−1

does not hold.
(4) (i, j)-indX = ∞ if the inequality (i, j)-indX ≤ n does not hold for any

n.
As a rule, p -indX ≤ n⇐⇒ (1, 2)-indX ≤ n ∧ (2, 1)-indX ≤ n.

This definition immediately yields some simple properties of the intro-
duced functions.

Proposition 3.1. The following statements hold in a BS (X, τ1, τ2):
(1) If (i, j)-indX is finite, then (X, τ1, τ2) is (i, j)-regular. Therefore (τ1 <C

τ2 ∧ (2, 1)-indX <∞) or (τ1 <N τ2 ∧ 2-indX <∞) =⇒ τ1 = τ2.
(2) If (Y, τ ′1, τ

′
2) is any BsS of (X, τ1, τ2), then (i, j)-indY ≤ (i, j))-indX.

Proof. (1) Let (i, j)-indX = n < ∞. If x ∈ X, F ∈ co τi and x∈F ,
then by (2) of Definition 2.2 there exists a partition T , i.e., X\T = H1 ∪H2,
Hi ∈ τi\{∅}, x ∈ Hi, A ⊂ Hj and Hi ∩Hj = ∅. Therefore (X, τ1, τ2) is (i, j)-
regular. For the rest of the proof it remains to use Corollary 3 of Theorem
2.2.1 in [11] and Theorem 1 in [26], respectively.

(2) It suffices to prove that (i, j)-indX = k implies (i, j)-indY ≤ k. For
k = −1, k = ∞, the statement is correct. Let it be also correct for k ≤ n− 1.
We will prove the statement for k = n. If x ∈ Y , A′ ∈ co τ ′i and x∈A′, then
there exists a set A ∈ co τi such that A′ = A∩Y . Since (i, j)-indX = n, to the
pair (x,A) there corresponds a partition T such that (i, j)-indT ≤ n−1. It is
obvious that T ′ = T ∩Y is the partition corresponding to (x,A′) in (Y, τ ′1, τ

′
2).

Hence by the inductive assumption (i�j)-indT ′ ≤ n− 1 as T ′ ⊂ T .

Corollary 3.1. The following statements hold in BS (X, τ1, τ2):
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(1) If p -indX is finite, then (X, τ1, τ2) is p-regular.
(2) If (Y, τ ′1, τ

′
2) is any BsS of (X, τ1, τ2), then p -indY ≤ p -indX.

Corollary 3.2. Let (X, τ1, τ2) be a BS and n denote a nonnegative
integer. Then
(1) (i, j)-indX ≤ n⇐⇒ for every point x ∈ X and any i-neighborhood U(x)

there exists an i-open neighborhood V (x) such that τj clV (x) ⊂ U(x)
and (i, j)-ind(j, i)-FrV (x) ≤ n− 1 ⇐⇒ (X, τ1, τ2) has an i-base B〉 such
that (i, j)-ind(j, i)-FrV ≤ n− 1 for every V ∈ B〉.

(2) If (X, τ1, τ2) is i-second countable, then (i, j)-indX ≤ n ⇐⇒ (X, τ1, τ2)
has a countable i-base Bi such that (i, j)-ind(j, i)-FrV ≤ n−1 for every
V ∈ Bi.

Proof. It sufficessto prove only the first equivalence in (1). Let (i, j)-
indX ≤ n, x ∈ X and U(x) be any i-neighborhood. It can be assumed
without loss of generality that U(x) ∈ τi. Then for the pair (x,A = X\U(x))
there exists a partition T such that (i, j)-indT ≤ n − 1, X\T = H1 ∪ H2,
Hi ∈ τi\{∅}, x ∈ Hi, A ⊂ Hj and H1 ∩H2 = ∅. It is evident that τj clHi ∩
Hj = ∅ so that τj clHi ⊂ X\A = U(x). Let Hi = V (x). Then x ∈ V (x) ⊂
τj clV (x) ⊂ U(x) and, by (2) of Remark 2.1 and (2) of Proposition 2.1,
(i, j)-ind(j, i)-Fr V (x) ≤ n− 1.

Conversely, let the condition in the right-hand part of the equivalence
be satisfied and (x,A), where A ∈ co τi, x∈A behany pair. Then U(x) = X\A
is an i-open neighborhood of x and, by condition, there exists an i-open neigh-
borhood V (x) such that τj clV (x) ⊂ U(x) and (i, j)-ind(j, i)-Fr V (x) ≤ n−1.
But following (1) of Remark 2.1, (j, i)-Fr V (x) is the partition corresponding
to (x,A) and thus it remains to apply (2) of Definition 2.2.

Proposition 3.2. If for a BS (X, τ1, τ2) we have (i, j)-indX = n, n ≥
1, then for each k = 0, n− 1 the BS (X, τ1, τ2) contains a p-closed subset Y
such that (i, j)-indY = k.

Proof. It is enough to show that X contains a p-closed subset Y such
that (i, j)-indY = n−1 since it is not difficult to see that p -Cl(Y ) ⊂ p -Cl(X)
for every set Y ∈ p -Cl(X). Since (i, j)-indX > n − 1, there exist a point
x ∈ X and an i-neighborhood U(x) such that for every i-open neighbor-
hood V (x) satisfying the condition τj clV (x) ⊂ U(x) we have (i, j)-ind(j, i)-
Fr V (x) > n − 2. On the other hand, since (i, j)-indX ≤ n, for the same
U(x) there exists an i-open neighborhood V ′(x) such that τj clV ′(x) ⊂ U(x)
and (i, j)-ind(j, i)-Fr V ′(x) ≤ n − 1. By the above arguments we also ob-
tain (i, j)-ind(j, i)-FrV ′(x) > n − 2. Therefore for the p-closed subset Y =
(j, i)-FrV ′(x) of (X, τ1, τ2) we have (i, j)-indY = n− 1.
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Corollary. If for a BS (X, τ1 < τ2) we have (i, j)-indX = n, n ≥ 1,
then for each k = 0, n − 1 the BS (X, τ1 < τ2) contains a 2-closed subset Y
such that (i, j)-indY = k.

Recall that a BS (X, τ1, τ2) is p-normal if for every pair of disjoint sets
A, B in X, where A is 1-closed and B is 2-closed, there exist a 2-open set
U ⊂ X and a 1-open V ⊂ X such that A ⊂ U , B ⊂ V and U ∩ V = ∅ [15].

By analogy with the topological case, BS (X, τ1, τ2) is hereditarily p-
normal if its every BsS is p-normal [6].

Theorem 3.1. If a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of two BsS’s Y and Z such that
(i, j)-indY ≤ n and (i, j)-indZ ≤ 0, then (i, j)-indX ≤ n+ 1.

Proof. Let x ∈ X be any point and U(x) ∈ τi its any neighborhood.
Then by Theorem 2.10 below there exist disjoint sets U ∈ τi and V ∈ τj such
that x ∈ U , X\U(x) ⊂ V and (X\(U ∪ V )) ∩ Z = ∅. Clearly, x ∈ U ⊂ U(x).
But (j, i)-FrU = τj clU∩(X\U) ⊂ (X\V )∩(X\U) = X\(V ∪U) ⊂ X\Z ⊂ Y
and, by (2) of Proposition 2.1, (i, j)-ind(j, i)-FrU ≤ n. Thus (i, j)-indX ≤
n+ 1.

Corollary. If a R-p -T1, d-second countable and p-normal BS (X, τ1, τ2)
can be represented as the union of two BsS’s Y and Z such that p -indY ≤ n
and p -indZ ≤ 0, then p -indX ≤ n+ 1.

Theorem 3.2. If a 1-T1, d-second countable and p-normal BS (X, τ1 <
τ2) can be represented as the union of two BsS’s Y and Z, where p -indY =
p -indZ = 0 and one of them is 1-closed, then p -indX = 0.

Proof. Let, for example Y ∈ co τ1 ⊂ p -Cl(X). Then X\Y ⊂ Z and,
by (2) of Corollary 1 of Proposition 2.1, p -ind(X\Y ) = 0, where X\Y ∈ τ1.
By Corollary of Proposition 0.1.3 in [11], the BS (X, τ1 < τ2) is p-perfectly
normal, i.e., τi ⊂ j-Fσ(X) and hence X\Y ∈ 2-Fσ(X), i.e., X\Y =

∞
∪

k=1
Fk,

where Fk ∈ co τ2 ⊂ p -Cl(X) and p -indFk = 0 for every k = 1,∞. On the
other hand, Y ∈ p -Cl(X) and therefore X = Y ∪ (X\Y ) = Y ∪

∞
∪

k=1
Fk. Thus

it remains to use Corollary 2 of Theorem 2.11 below since (X, τ1 < τ2) is 1-T1

implies (X, τ1 < τ2) is R-p -T1.

It is not difficult for one to verify that Theorem 2.2 remains valid if one
of sets Y and Z is 1-open.

Theorem 3.3. Let a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . of p-closed
BsS’s such that (i, j)-indFk ≤ n for each k = 1,∞. Then (i, j)-indX ≤ n.
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Proof. We will apply induction with respect to the number n. For n =
0 the theorem has already been proved in Corollary 2 of Theorem 2.11 below.
Assume that the theorem holds for n− 1 and prove it for n. Let X =

∞
∪

k=1
Fk,

where Fk = τ1 clFk ∩ τ2 clFk and (i, j)-indFk ≤ n for each k = 1,∞. By (2)
of Corollary 2 of Proposition 2.1, choose for k = 1,∞ a countable i-base Bk

i

for the BsS Fk such that (i, j)-ind(j, i)-FrU ≤ n − 1 for every U ∈ Bk
i . By

the inductive assumption the BsS Y = {∪(j, i)-FrU : U ∈
∞
∪

k=1
Bk

i } of the BS

(X, τ1, τ2) satisfies the inequality (i, j)-indY ≤ n−1. Now, by the second part
of Corollary of Lemma 3.1.1 in [11], for each k = 1,∞ the BsS Zk = Fk\Y
of a BS (Fk, τ

′
1, τ

′
2) satisfies the inequality (i, j)-indZk ≤ 0. Therefore, by Co-

rollary 2 of Theorem 2.11 below, the BsS Z =
∞
∪

k=1
Zk = X\Y of (X, τ1, τ2)

satisfies the inequality (i, j)-indZ ≤ 0 because it follows from the equalities
Zk = Fk\Y = Fk ∩Z = (τ1 clFk ∩ τ2 clFk)∩Z = (τ1 clFk ∩Z)∩ (τ2 clFk ∩Z)
that all the Zk’s are p-closed in Z. Thus, by virtue of Theorem 2.1, we have
(i, j)-indX ≤ n.

Corollary 3.1. Let a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . of p-closed
BsS’s such that p -indFk ≤ n for each k = 1,∞. Then p -indX ≤ n.

Corollary 3.2. Let a 1-T1, d-second countable and p-normal BS (X, τ1 <
τ2) can be represented as the union of a sequence F1, F2, . . . of i-closed sets,
where p -indFk ≤ n for each k = 1,∞, then p -indX ≤ n.

Proof. Follows directly from the inclusions co τ1 ⊂ co τ2 ⊂ p -Cl(X).

Corollary 3.3. If a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . , where ev-
ery Fk is a countable union of p-closed sets, i.e., Fk =

∞
∪

p=1
F k

p and p -indFk ≤ n

for each k = 1,∞, then p -indX ≤ n.

Proof. By (2) of Proposition 2.1, p -indF k
p ≤ n for every k = 1,∞,

p = 1,∞ and X =
∞
∪

k=1

∞
∪

p=1
F k

p .

Corollary 3.4. If a 1-T1, d-second countable and p-normal BS (X, τ1 <
τ2) can be represented as the union of two BsS’s Y and Z, where p -indY ≤ n,
p -indZ ≤ n and one of them is 1-closed or 1-open, then p -indX ≤ n.

Proof. Let Y ∈ τ1. Then Y ∈ 2-Fσ(X), so that Y =
∞
∪

k=1
Fk, where

Fk ∈ co τ2 ⊂ p -Cl(X) for each k = 1,∞. SinceX\Y ⊂ Z, we have p -ind(X\Y )
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≤ n. Clearly, p -indFk ≤ n for each k = 1,∞ and therefore p -indX ≤ n since
X = Y ∪ (X\Y ) =

∞
∪

k=1
Fk ∪ (X\Y ). The proof for the 1-closed set is similar.

Theorem 3.4. For a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) we have: (i, j)-indX ≤ n ⇐⇒ X can be represented as the union
of two BsS’s Y and Z such that (i, j)-indY ≤ n− 1 and (i, j)-indZ ≤ 0.

Proof. Let (i, j)-indX ≤ n. Then by (2) of Corollary 2 of Propositi-
on 2.1, X has a countable i-base Bi such that (i, j)-ind(j, i)-FrU ≤ n− 1 for
every U ∈ Bi. By Theorem 2.3, the BsS Y = ∪{(j, i)-FrU : U ∈ Bi} has
(i, j)-indY ≤ n − 1 and, by the second part of Corollary of Lemma 3.1.1 in
[11], (i, j)-indZ ≤ 0, where Z = X\Y .

To complete the proof it suffices to apply Theorem 2.1.

Corollary. For a R-p -T1, d-second countable and p-normal BS (X, τ1, τ2)
we have p -indX ≤ n ⇐⇒ X can be represented as the union of two BsS’s Y
and Z such that p -indY ≤ n− 1 and p -indZ ≤ 0.

Theorem 3.5. If (X, τ1, τ2) is a R-p -T1, d-second countable and p-
normal BS such that p -indX ≤ n, then for every pair A ∈ co τ1, B ∈ co τ2
and A∩B = ∅ there exists a partition T between A and B such that p -indT ≤
n− 1.

Proof. By Theorem 2.4, X = Y ∪ Z, where p -indY ≤ n − 1 and
p -indZ ≤ 0. Following Theorem 2.10 below, for A and B there exists a
partition T such that T ∩ Z = ∅. Since T ⊂ X\Z ⊂ Y , we have p -indT ≤
n− 1.

Theorem 3.6. Let (X, τ1, τ2) be a R-p -T1, hereditarily p-normal BS
and Y ⊂ X, Y be d-second countable and p-closed BsS such that p -indY ≤ n.
Then for every pair A ∈ co τ1, B ∈ co τ2 and A∩B = ∅ there exists a partition
T between A and B such that p -ind(T ∩ Y ) ≤ n− 1.

Proof. Since p -indY ≤ n, by Corollary of Theorem 2.4, Y = P ∪Q,
where p -indP ≤ n− 1, p -indQ ≤ 0. Let A ∈ coτ1, B ∈ co τ2 and A∩B = ∅.
Then A ∩ Y ∈ co τ ′1, B ∩ Y ∈ co τ ′2 in (Y, τ ′1, τ ′2) and hence, there exists
a partition T ′ between A ∩ Y and B ∩ Y such that T ′ ⊂ P and therefore
p -indT ′ ≤ n − 1. By the second part of Lemma 2.3 below there exists a
partition T between A and B such that T∩Y ⊂ T ′. Thus p -ind(T∩Y ) ≤ n−1.

Theorem 3.7. For a d-second countable and p-normal BS (X, τ1, τ2)
we have: (i, j)-indX ≤ n ⇐⇒ X has a countable i-network N i such that
(i, j)-ind(j, i)-FrN ≤ n− 1 for each N ∈ N i.
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Proof. Since any i-base is an i-network, by (2) of Corollary 2 of Pro-
position 2.1 it suffices to prove only that if an i-second countable BS has an
i-network N = {Nk}∞k=1 such that (i, j)-ind(j, i)-FrNk ≤ n− 1 for every k =

1,∞, then (i, j)-indX ≤ n. Let Y =
∞
∪

k=1
(j, i)-FrNk and Z = X\Y . It follows

from Theorem 2.3 that (i, j)-indY ≤ n−1. We will show that (i, j)-indZ ≤ 0.
For an arbitrary point x ∈ Z and an i-neighborhood U(x) there is Nk ∈ N i

such that x ∈ Nk ⊂ U(x). Since x ∈ X\Y ⊂ X\(j, i)-FrNk = X\(τj clNk ∩
τi cl(X\Nk)) = τj int(X\Nk) ∪ τi intNk, we have x ∈ Vk(x) = τi intNk ⊂
U(x). But (j, i)-FrVk(x) ⊂ (j, i)-FrNk and hence Z ∩ (j, i)-Fr Vk(x) = ∅.
Thus, by the second part of Corollary of Lemma 3.1.1 in [11], (i, j)-indZ ≤ 0.
Therefore it remains to use Theorem 2.1.

Corollary. For a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) we have: p -indX ≤ n ⇐⇒ X has a countable 1-network N 1 and
a countable 2-network N 2 such that (1, 2)-ind(2, 1)-FrN ≤ n − 1 for each
N ∈ N 1 and (2, 1)-ind(1, 2)-FrM ≤ n− 1 for each M ∈ N 2.

Recall that a point x0 in a BS (X, τ1, τ2) is a point of tangency of topolo-
gies τ1 and τ2 if τ1 and τ2 coincide at x0, i.e., if for each 1-open neighborhood
U(x0) and each 2-open neighborhood V (x0) there exist a 2-open neighbor-
hood V ′(x0) and a 1-open neighborhood U ′(x0) such that V ′(x0) ⊂ U(x0)
and U ′(x0) ⊂ V (x0) [2].

Theorem 3.8. The following conditions are satisfied in a BS (X, τ1, τ2):
(1) If τ1 ⊂ τ2, then (1, 2)-indX ≤ 1-indX ∧ 2-indX ≤ (2, 1)-indX.
(2) If τ1Cτ2, then 1-indX ≤ (1, 2)-indX.
(3) If τ1Nτ2, then (2, 1)-indX ≤ 2-indX.
(4) x0 ∈n1(A) for each A ∈ 2X ⇐⇒ x0 is a point of tangency of τ1 and

τ2 =⇒ 2-indx0 X ≤ (1, 2)-indx0 X ≤ 1-indx0 X ∧ 2-indx0 X ≤ (2, 1)-
indx0 X ≤ 1-indx0 X.

Proof. (1) It is clear that the inequality (1, 2)-indX ≤ 1-indX holds
for 1-indX = ∞. Thus, assuming that 1-indX = k < ∞, we will show that
(1, 2)-indX ≤ k. For k = −1 the required inequality is obvious. Let us assume
that this inequality is also correct for k ≤ n− 1 and prove it for k = n. Since
1-indX = n, for every point x ∈ X and its any 1-open neigbourhood U(x)
there exists an 1-open neighborhood V (x) such that τ1 clV (x) ⊂ U(x) and
1-ind(1-Fr V (x)) ≤ n− 1. Clearly, τ1 ⊂ τ2 implies that τ2 clV (x) ⊂ τ1 clV (x)
so that (2, 1)-Fr V (x) ⊂ 1-FrV (x). Hence by the monotonicity of the small
1-inductive dimension function we find that 1-ind(2, 1)-Fr V (x) ≤ n − 1 and
by the inductive assumption (1, 2)-ind(2, 1)-Fr V (x) ≤ n − 1. Thus for every
point x ∈ X and its any 1-open neighborhood U(x) there exists a 1-open
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neighborhood V (x) such that τ2 clV (x) ⊂ U(x) and (1, 2)-ind(2, 1)-Fr V (x) ≤
n− 1 so that (1, 2)-indX ≤ n.

Furthermore, by analogy with the above reasoning we will prove that
2-indX ≤ (2, 1)-indX. Let us assume that this inequality holds for (2, 1)-indX
= k ≤ n−1 and prove it for k = n. Since (2, 1)-indX = n, for every point x ∈
X and its any 2-open neighborhood U(x) there exists a 2-open neighborhood
V (x) such that τ1 clV (x) ⊂ U(x) and (2, 1)-ind(1, 2)-Fr V (x) ≤ n − 1. But
τ1 ⊂ τ2 implies that τ2 clV (x) ⊂ τ1 clV (x) so that 2-FrV (x) ⊂ (1, 2)-FrV (x).
Hence by the monotonicity of the small (2, 1)-inductive dimension function
we find that (2, 1)-ind(2-FrV (x)) ≤ n − 1 and, by the inductive assump-
tion, 2-ind(2-FrV (x)) ≤ n − 1. Thus for every point x ∈ X and its any 2-
open neighborhood U(x) there exists a 2-open neighborhood V (x) such that
τ2 clV (x) ⊂ U(x) and 2-ind(2-Fr V (x)) ≤ n− 1. Therefore 2-indX≤ n.

(2) By analogy with (1) let us suppose that the required inequality is
correct for (1, 2)-indX = k ≤ n−1 and prove it for k = n. If (1, 2)-indX = n,
then for every point x ∈ X and its any 1-open neighborhood U(x) there exists
an 1-open neighborhood V (x) such that τ2 clV (x) ⊂ U(x) and (1, 2)-ind(2, 1)-
Fr V (x) ≤ n− 1. But, by Definition 1.10, τ1 clV (x) ⊂ τ2 clV (x) and therefore
1-Fr V (x) ⊂ (2, 1)-FrV (x). Hence by the monotonicity of the small (1, 2)-
inductive dimension function we have (1, 2)-ind(1-Fr V (x) ≤ n− 1 and by the
inductive assumption 1-ind(1-FrV (x) ≤ n − 1. Thus for every point x ∈ X
and its any 1-open neighborhood U(x) there exists an 1-open neighborhood
V (x) such that τ1 clV (x) ⊂ U(x) and 1-ind(1-Fr V (x)) ≤ n − 1. Therefore
1-indX ≤ n.

(3) Let us assume that the required inequality holds for 2-indX = k≤
n − 1 and prove it for k = n. Since 2-indX = n, for every point x ∈ X and
its any 2-open neighborhood U(x) there exists a 2-open neighborhood V (x)
such that τ2 clV (x) ⊂ U(x) and 2-ind(2-Fr V (x)) ≤ n − 1. But, by Defini-
tion 1.14, τ1 clV (x) ⊂ τ2 clV (x) and thus (1, 2)-FrV (x) ⊂ 2-FrV (x). Hence
because the small 2-inductive dimension function has the property of being
monotone we find that 2-ind(1, 2)-Fr V (x)) ≤ n − 1 and by the inductive
assumption (2, 1)-ind(1, 2)-Fr V (x) ≤ n − 1. Thus for every point x ∈ X and
its any 2-open neighborhood U(x) there exists a 2-open neighborhood V (x)
such that τ1 clV (x) ⊂ U(x) and (2, 1)-ind(1, 2)-Fr V (x) ≤ n − 1. Therefore
(2, 1)-indX ≤ n.

(4) First let us prove the equivalence. If x0 ∈ X is a tangency point
of τ1 and τ2, then x0 ∈ τ1 clA =⇒ x0 ∈ τ2 clA for each A ∈ 2X so that
x0 ∈n1(A) for each A ∈ 2X . Conversely, let x0 ∈n1(A) for each A ∈ 2X . If x0

is not a tangency point of τ1 and τ2, then there is a neighborhood U(x0) ∈ τ2
such that for each neighborhood V (x0) ∈ τ1 we have V (x0)∩ (X\U(x0)) �= ∅.
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Therefore x0 ∈ τ1 cl(X\U(x0)). But x0 ∈ (X\U(x0)) = τ2 cl(X\U(x0))), i.e.,
x0 ∈ n1(X\U(x0)), which is impossible.

Now let x0 ∈ X be a tangency point of τ1 and τ2. By (1) above it suffices
to prove only that 2-indx0 X ≤ (1, 2)-indx0 X ∧ (2, 1)-indx0 X ≤ 1-indx0 X.

It is evident that the inequality 2-indx0 X ≤ (1, 2)-indx0 X holds for
(1, 2)-indx0 X = ∞. Thus, assuming that (1, 2)-indx0 X = k < ∞, we will
show that 2-indx0 X ≤ k. For k = −1 the required inequality is obvious. Let
us suppose that this inequality is also correct for k ≤ n − 1 and prove it for
k = n. Let U(x0) ∈ τ2 be any neighborhood. Since x0 is a tangency point of τ1
and τ2, there is a neighborhood W (x0) ∈ τ2 such that W (x0) ⊂ U(x0) and, by
(1, 2)-indx0 X = n, there is a neighborhood V (x0) ∈ τ1 such that τ2 clV (x0) ⊂
W (x0) and (1, 2)-ind(2, 1)-FrV (x0) ≤ n−1. By (2) of Proposition 2.1 we have
(1, 2)-ind 2-FrV (x0) ≤ (1, 2)-ind(2, 1)-FrV (x0) ≤ n− 1 and, by the inductive
assumption, 2-ind 2-FrV (x0) ≤ n − 1. Thus for each U(x0) ∈ τ2 there is
V (x0) ∈ τ1 ⊂ τ2 such that τ2 clV (x0) ⊂ U(x0) and 2-ind 2-FrV (x0) ≤ n − 1.
Hence 2-indx0 X ≤ n, i.e., 2-indx0 X ≤ (1, 2)-indx0 X.

By analogy with the first case let us suppose that the required in-
equality is correct for 1-indx0 X = k ≤ n − 1 and prove it for k = n.
Let U(x0) ∈ τ2 be any neighborhood. Since x0 is a tangency point of τ1
and τ2, there is a neighborhood W (x0) ∈ τ1 such that W (x0) ⊂ U(x0).
But 1-indx0 X = n and therefore there is a neighborhood V (x0) ∈ τ1 such
that τ1 clV (x0) ⊂ W (x0) and 1-ind 1-FrV (x0) ≤ n − 1. By the monotonic-
ity we have 1-ind(1, 2)-Fr V (x0) ≤ 1-ind 1-FrV (x0) ≤ n − 1. On the other
hand, by the inductive assumption, (2, 1)-ind(1, 2)-Fr V (x0) ≤ n − 1. Thus
for each U(x0) ∈ τ2 there is V (x0) ∈ τ1 ⊂ τ2 such that τ1 clV (x0) ⊂
U(x0) and (2, 1)-ind(1, 2)-FrV (x0) ≤ n − 1. Hence (2, 1)-indx0 X ≤ n, i.e.,
(2, 1)-indx0 X ≤ 1-indx0 X.

Definition 3.3. Let (A,B) be a pair of subsets of a BS (X, τ1, τ2),
where A ∈ co τj, B ∈ co τi and A∩B = ∅. Then the partition corresponding to
(A,B) is a p-closed set T for which X\T = H1∪H2, Hi ∈ τi\{∅}, H1∩H2 =
∅ and A ⊂ Hi, B ⊂ Hj.

Remark 3.2. In the sequel, without loss of generality, we will some-
times consider a pair (A,B), where A ∈ co τ1, B ∈ co τ2 and A ∩ B = ∅.
As in Remark 2.1, it is easy to verify that in a BS (X, τ1, τ2) the following
conditions are satisfied for such a pair (A,B):
(1) If there exists a 2-open neighborhood U(A) (a 1-open neighborhood U(B))

such that τ1 clU(A) ⊂ X\B (τ2 clU(B) ⊂ X\A), then (1, 2)-FrU(A)
((2, 1)-FrU(B)) is the partition corresponding to (A,B) in the sense of
Definition 2.3.



50 B. Dvalishvili

(2) If T is the partition corresponding to (A,B) in the sense of Definiti-
on 2.3, then (j, i)-FrHi ⊂ T .

Definition 3.4. Let (X, τ1, τ2) be a BS and n denote a nonnegative
integer. We say that:
(1) (i, j)-IndX = −1 ⇐⇒ X = ∅.
(2) (i, j)-IndX ≤ n if to every pair (A,B), where A ∈ co τj, B ∈ co τi and

A∩B = ∅, there corresponds a partition T such that (i, j)-IndT ≤ n−1.
(3) (i, j)-IndX = n if (i, j)-IndX ≤ n and the inequality (i, j)-IndX ≤

n− 1 does not hold.
(4) (i, j)-IndX = ∞ if the inequality (i, j)-IndX ≤ n does not hold for any

n.

Naturally, p -IndX ≤ n⇐⇒ (1, 2)-IndX ≤ n ∧ (2, 1)-IndX ≤ n.

Lemma 3.1. Let T be a partition in a BS (X, τ1, τ2) which corresponds
to a pair of disjoint sets (A,B), where A ∈ co τ1, B ∈ co τ2. If Y ⊂ X is a p-
closed set such that A∩Y �= ∅ �= B∩Y , then the set T ′ = T∩Y is the partition
in a BsS (Y, τ ′1, τ ′2) corresponding to the pair (A′ = A ∩ Y , B′ = B ∩ Y ).

Proof. By condition X\T = H1 ∪H2, where Hi ∈ τi\{∅}, H1 ∩H2 =
∅, A ⊂ H2, B ⊂ H1. Hence T = X\(H1 ∪H2).

Let us consider the set Y \T ′ = Y \(X\(H1 ∪ H2)) = (Y \(X\H1)) ∪
(Y \(X\H2))= (Y ∩H1)∪ (Y ∩H2) = H ′

1 ∪H ′
2, where H ′

i ∈ τ ′i\{∅}, A′ ⊂ H ′
2,

B′ ⊂ H ′
1 and H ′

1 ∩H ′
2 = ∅.

Lemma 3.2. If (A′, B′) is a pair of disjoint sets in a p-closed BsS
(Y, τ ′1, τ ′2) of a BS (X, τ1, τ2) such that A′ ∈ co τ ′1 and B′ ∈ co τ ′2, then there
exists a pair of disjoint sets (A,B) in (X, τ1, τ2) such that A ∈ co τ1, B ∈ co τ2,
A ∩ Y = A′ and B ∩ Y = B′.

Proof. The fact that Y is p-closed in (X, τ1, τ2) implies Y = τ1 clY ∩
τ2 clY . Let A′ ∈ co τ ′1, B ∈ co τ ′2 in (Y, τ ′1, τ ′2) and A′ ∩ B′ = ∅. Then there
are A ∈ co τ ′′1 in (τ1 clY, τ ′′1 , τ

′′
2 ) and B ∈ co τ ′′′2 in (τ2 clY, τ ′′′1 , τ

′′′
2 ) such that

A ∩ Y = A′ and B ∩ Y = B′. It is evident that A ∈ co τ1, B ∈ co τ2 and
A ∩B = ∅.

Corollary. A p-closed BsS of a p-normal BS is also p-normal.

Proposition 3.3. The following statements hold in a BS (X, τ1, τ2):
(1) If (1, 2)-IndX or (2, 1)-IndX is finite, then (X, τ1, τ2) is p-normal.
(2) For every p-closed BsS (Y, τ ′1, τ

′
2) of (X, τ1, τ2) we have (i, j)-IndY ≤

(i, j)-IndX.
(3) If (X, τ1, τ2) is a j-T1 BS, then (i, j)-indX ≤ (i, j)-IndX.
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Proof. (1) Is obvious.
(2) It suffices to prove that (i, j)-IndX=k implies (i, j)-IndY ≤ k. This

inequality is correct for k = −1, k = ∞. Let us assume that it is correct for
k ≤ n− 1 and prove it for k = n. If (A′, B′) is a pair of disjoint sets such that
A′ ∈ co τ ′j and B′ ∈ co τ ′i , then by Lemma 2.2 there exists a pair of disjoint
sets (A,B), where A ∈ co τj, B ∈ co τi and A ∩ Y = A′, B ∩ Y = B′. Since
(i, j)-IndX = n, there exists a partition T for (A,B) such that (i, j)-IndT ≤
n−1. But by Lemma 2.1, T ′ = T∩Y is the partition in (Y, τ ′1, τ ′2) corresponding
to the pair (A′, B′). Hence, by the inductive assumption, (i, j)-IndT ′ ≤ n− 1
since T ′ is p-closed in T so that (i, j)-IndY ≤ n.

(3) Is clear.

Corollary 3.1. We have p -IndY ≤ p -IndX for every p-closed BsS
(Y, τ ′1, τ

′
2) of a BS (X, τ1, τ2) and therefore if Y ∈ co τ1∪co τ2, then p -IndY ≤

p -IndX. Moreover, if (X, τ1, τ2) is R-p -T1, then p -indX ≤ p -IndX.

Corollary 3.2. Let (X, τ1, τ2) be a BS and n denote a nonnegative inte-
ger. Then (i, j)-IndX ≤ n⇐⇒ for any j-closed set F and any i-neighborhood
U(F ) there exists an i-open neighborhood V (F ) such that τj clV (F ) ⊂ U(F )
and (i, j)-Ind(j, i)-FrV (F ) ≤ n− 1.

The proof of this corollary repeats in the main that of Corollary 2 of
Proposition 2.1, taking into account (2) of Remark 2.2 and (2) of Propositi-
on 2.3.

Corollary 3.3. If for a BS (X, τ1, τ2) we have (i, j)-IndX = n (p -Ind
X = n), n ≥ 1, then for each k = 0, n − 1, the BS (X, τ1, τ2) contains a
p-closed BsS (Y, τ ′1, τ ′2) such that (i, j)-IndY = k (p -IndY = k).

Proof. Is similar to the proof of Proposition 2.2 with Corollary 2 taken
into account.

Proposition 3.4. The following equivalences hold for every BS
(X, τ1, τ2):

(1, 2)-IndX = 0 ⇐⇒ (2, 1)-IndX = 0 ⇐⇒ p -IndX = 0.

Proof. Let (1, 2)-IndX = 0, F ∈ co τ1 be any set and U(F ) be its any
2-open neighborhood. Then X\U(F ) ⊂ X\F . Hence there exists a set V ∈
τ1 ∩ co τ2 such that X\U(F ) ⊂ V ⊂ X\F and therefore F ⊂ X\V ⊂ U(F ),
where X\V ∈ τ2 ∩ co τ1. Thus (2, 1)-IndX = 0.

The inverse implication can be proved in a similar manner.
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Theorem 3.9. If for a d-second countable BS (X, τ1, τ2) the equality
p -indX = 0 holds, then for every pair of disjoint sets A ∈ co τ1 and B ∈ co τ2
the empty set is a partition between them, i.e., there exists a set V ∈ τ2∩co τ1
such that A ⊂ V and B ⊂ X\V and therefore p -IndX = 0.

Proof. Since p -indX = 0, for each point x ∈ X there exists a set
U(x) ∈ τ1 ∩ co τ2 or a set V (x) ∈ τ2 ∩ co τ1 such that(

A ∩ U(x) = ∅
)

or
(
B ∩ V (x) = ∅

)
.(1)

It is evident that for the p-open cover U = {{U(x)}, {V (x)}}x∈X of
X there is a countable subfamily U ′ = {{U(xk) : k = 1,∞}, {V (xp) : p =
1,∞}} which is also a p-open cover ofX. The sets Uk = U(xk)\ ∪

p<k
V (xp) are 1-

open and 2-closed for each k = 1,∞ and the sets Vp = V (xp)\ ∪
k<p

U(xk) are 2-

open and 1-closed for each p = 1,∞. Moreover, U ′′ = {{Uk : k = 1,∞}, {Vp :
p = 1,∞}} is also a p-open cover of X. It is obvious that Uk ∩A = ∅ for each
k = 1,∞ and Vp ∩ B = ∅ for each p = 1,∞. Let V = ∪{Vp : A ∩ Vp �= ∅}.
Then A ⊂ V . Since B ∩ Vp = ∅ for each p = 1,∞, we have B ∩ (

∞
∪

p=1
Vp) = ∅

and therefore B ⊂ X\
∞
∪

p=1
Vp ⊂ X\ ∪ {Vp : A ∩ Vp �= ∅} = X\V .

Corollary. If (X, τ1, τ2) is R-p -T1 and d-second countable, then p -Ind
X = 0 ⇐⇒ p -indX = 0.

Proof. By (3) of Proposition 2.3, p -IndX = 0 =⇒ p -indX = 0. The
inverse implication is an immediate consequence of Theorem 2.9 and Defini-
tion 2.4.

Lemma 3.3. Let (Y, τ ′1, τ
′
2) be a BsS of a hereditarily p-normal BS

(X, τ1, τ2) and A ∈ co τ1, B ∈ co τ2, A ∩ B = ∅. Then for every partition
T ′ in the BsS (Y, τ ′1, τ

′
2) between Y ∩ τ1 clV1 and Y ∩ τ2 clV2, where V1 and

V2 are 2-open and 1-open subsets of X respectively such that A ⊂ V1, B ⊂ V2

and τ1 clV1 ∩ τ2 clV2 = ∅, there exists a partition T in X between A and B
which satisfies the inclusion T ∩ Y ⊂ T ′.

If (Y, τ ′1, τ
′
2) is a p-closed BsS of a hereditarily p-normal BS (X, τ1, τ2)

and A ∈ co τ1, B ∈ co τ2, A∩B = ∅, then for every partition T ′ in (Y, τ ′1, τ
′
2)

between A ∩ Y and B ∩ Y there exists a partition T in X between A and B
such that T ∩ Y ⊂ T ′.

Proof. By Corollary of Theorem 0.2.1 and the Corollary of Proposi-
tion 0.1.2 in [11] there exist V1 ∈ τ2, V2 ∈ τ1 such that A ⊂ V1, B ⊂ V2

and τ1 clV1 ∩ τ2 clV2 = ∅. On the other hand, since (Y, τ ′1, τ ′2) is p-normal,
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there are V ′
1 ∈ τ ′2, V ′

2 ∈ τ ′1 such that Y ∩ τ1 clV1 ⊂ V ′
1 , Y ∩ τ2 clV2 ⊂ V ′

2 and
V ′

1 ∩ V ′
2 = ∅. Let T ′ = Y \(V ′

1 ∪ V ′
2). It is evident that

A ∩ τ2 clV ′
2 = ∅ = B ∩ τ1 clV ′

1 .(1)

Let us consider the BsS (V ′
1 ∪ V ′

2 , τ
′′
1 , τ

′′
2 ), where V ′

1 ∈ τ ′′2 , V ′
2 ∈ τ ′′1 . It is

also clear that

V ′
1 ∩ τ ′′2 clV ′

2 = ∅ = V ′
2 ∩ τ ′′1 clV ′

1 .(2)

Thus by (1) and (2) we have τ1 cl(A∪V ′
1)∩τ2 cl(B∪V ′

2) = (A∪τ1 clV ′
1)∩

(B ∪ τ2 clV ′
2) = ∅ and by Theorem 0.2.1 in [11] there exist H1 ∈ τ2, H2 ∈ τ1

such that A∪V ′
1 ⊂ H1, B∪V ′

2 ⊂ H2 and H1∩H2 = ∅. The set T = X\(H1 ∪
H2) is a partition in X between A and B such that T ∩ Y = Y \(H1 ∪H2) ⊂
Y \(V ′

1 ∪ V ′
2) = T ′, i.e., the first part is proved.

Now let (Y = τ1 clY ∩ τ2 clY, τ ′1, τ ′2) be a p-closed BsS of (X, τ1, τ2) and
T ′ = Y \(V ′

1 ∪ V ′
2) any partition between A ∩ Y ∈ co τ ′1 and B ∩ Y ∈ co τ ′2 so

that A ∩ Y ⊂ V ′
1 ∈ τ ′2, B ∩ Y ⊂ V ′

2 ∈ τ ′1 and V ′
1 ∩ V ′

2 = ∅. Let V ′′
1 ∈ τ ′′2 in

(τ2 clY, τ ′′1 , τ
′′
2 ) and V ′′′

2 ∈ τ ′′′1 in (τ1 clY, τ ′′′1 , τ
′′′
2 ) such that A ∩ τ2 clY ⊂ V ′′

1 ,
B∩τ1 clY ⊂ V ′′′

2 . If V1 ∈ τ2 and V2 ∈ τ1 are the sets for which V1∩τ2 clY = V ′′
1

and V2 ∩ τ1 clY = V ′′′
2 , then

A ∩ (τ2 clY \V1) = A ∩ (τ2 clY \V ′′
1 ) = ∅

and
B ∩ (τ1 clY \V2) = B ∩ (τ1 clY \V ′′′

2 ) = ∅.

Thus A ⊂ X\(τ2 clY \V1) = U ∈ τ2, B ⊂ X\(τ1 clY \V2) = V ∈ τ1.
Since A ∩ B = ∅, there exist G ∈ τ2, H ∈ τ1 such that A ⊂ G, B ⊂ H and
G ∩H = ∅. Let M = U ∩ G ∈ τ2, N = V ∩H ∈ τ1. Then A ⊂ M , B ⊂ N
and, by (4) of Proposition 0.1.2 in [11], there exist Q ∈ τ2, P ∈ τ1 such that
A ⊂ Q ⊂ τ1 clQ ⊂ U , B ⊂ P ⊂ τ2 clP ⊂ V and τ1 clQ ∩ τ2 clP = ∅. It
is evident that τ1 clQ ∩ Y ⊂ U ∩ Y = Y \(τ2 clY \V1) = V ′

1 , τ2 clP ∩ Y ⊂
V ∩Y = Y \(τ1 clY \V2) = V ′

2 so that T ′ = Y \(V ′
1 ∪V ′

2) is a partition between
τ1 clQ∩Y and τ2 clP ∩Y . Hence, by the first part, there exists a partition T
between A and B in X such that T ∩ Y ⊂ T ′.

Theorem 3.10. Let (X, τ1, τ2) be a R-p -T1, d-second countable and p-
normal BS, and Y ⊂ X, p -IndY = 0 (⇐⇒ p -indY = 0). Then for every pair
of disjoint sets A ∈ co τ1 and B ∈ co τ2 there exists a partition T between A
and B such that T ∩ Y = ∅.

Proof. Let us consider V1 ∈ τ2, V2 ∈ τ1 such that A ⊂ V1, B ⊂ V2 and
τ1 clV1 ∩ τ2 clV1 = ∅. Then by Theorem 2.9 the empty set is a partition in Y
between Y ∩ τ1 clV1 and Y ∩ τ2 clV2. Thus it remains to use Lemma 2.3, since
by Corollary of Proposition 0.1.3 in [11], (X, τ1, τ2) is p-perfectly normal and
hence hereditarily p-normal.
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Theorem 3.11. If a d-second countable and hereditarily p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . of p-closed
sets, where (1, 2)-IndFn = 0 (⇐⇒ (2, 1)-IndFn = 0 ⇐⇒ p -IndFn = 0) for
each n = 1,∞, then (1, 2)-IndX = 0 (⇐⇒ (2, 1)-IndX = 0 ⇐⇒ p -IndX =
0).

Proof. Let A ∈ co τ1, B ∈ co τ2 and A ∩ B = ∅. We will prove that
there exist G ∈ τ2, H ∈ τ1 such that

A ⊂ G, B ⊂ H, G ∩H = ∅ and G ∪H = X,(1)

i.e., the empty set is a partition between A and B.
Since (X, τ1, τ2) is hereditarily p-normal and hence p-normal, by Corol-

lary of Proposition 0.1.2 in [11], there exist U0 ∈ τ2, V0 ∈ τ1 such that

A ⊂ U0, B ⊂ V0 and τ1 clU0 ∩ τ2 clV0 = ∅.(2)

We will define inductively two sequences of 2-open and 1-open sets
U0, U1, . . . and V0, V1, . . . , respectively, satisfying the following conditions for
each k = 0,∞:

Uk−1 ⊂ Uk, Vk−1 ⊂ Vk if k ≥ 1, and τ1 clUk ∩ τ2 clVk = ∅,(3)
Fk ⊂ Uk ∪ Vk, where F0 = ∅.(4)

Clearly, the sets U0 and V0 defined above satisfy both conditions for
k = 0. Assume that the sets Uk and Vk, satisfying (3) and (4), are defined
for k < p. If Fp = τ1 clFp ∩ τ2 clFp, then the sets τ1 clVp−1 ∩ Fp ∈ co τ ′1 and
τ2 clVp−1 ∩ Fp ∈ co τ ′2 in (Fp, τ

′
1, τ

′
2) are disjoint. Since (1, 2)-IndFp = 0, by

virtue of Theorem 2.9 there exists a subset V ∈ τ ′2∩co τ ′1 such that τ1 clUp−1∩
Fp ⊂ V and τ2 clVp−1 ∩ Fp ⊂ Fp\V . Since τ1 clV ⊂ τ1 clFp, τ2 cl(Fp\V ) ⊂
τ2 clFp and Fp = τ1 clFp ∩ τ2 clFp, we have τ1 clV ∩ τ2 cl(Fp\V ) = ∅.

Let C = τ1 clV \τ2 clVp−1 and D = τ2 cl(Fp\V )\τ1 clUp−1. Then (τ1 cl
C ∩ D) ∪ (C ∩ τ2 clD) = ∅. Therefore by Theorem 0.2.1 in [11] there exist
U ∈ τ2, W ∈ τ1 such that C ⊂ U , D ⊂W and U ∩W = ∅.

It is evident that V ∩ W = ∅, (Fp\V ) ∩ U = ∅ and consequently
τ1 clV ∩ W = ∅, τ2 cl(Fp\V ) ∩ U = ∅. Let Φ1 = τ1 clUp−1 ∪ (τ1 clV \W ),
Φ2 = τ2 clVp−1 ∪ (τ2 cl(Fp\V )\U). Then Φi ∈ co τi and Φ1 ∩ Φ2 = ∅. Since
(X, τ1, τ2) is p-normal, there exist Up ∈ τ2, Vp ∈ τ1 such that Φ1 ⊂ Up,
Φ2 ⊂ Vp and τ1 clUp ∩ τ2 clVp = ∅. The sets (Up) and (Vp) satisfy (3) and (4)
for k = p. Thus the construction of the sequences U0, U1, . . . and V0, V1, . . .

is completed. It follows from (2), (3) and (4) that the unions G =
∞
∪

p=1
Up and

H =
∞
∪

p=1
Vp satisfy (1).
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Corollary 3.1. If a d-second countable and hereditarily p-normal BS
(X, τ1 < τ2) can be represented as the union of a sequence F1, F2, . . . of i-
closed sets, where p -IndFn = 0 for every n = 1,∞, then p -IndX = 0.

Proof. Is evident since co τ1 ⊂ co τ2 ⊂ p -Cl(X).

Corollary 3.2. If a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . of p-closed
sets, where p -indFn = 0 for every n = 1,∞, then p -indX = 0.

Proof. Follows directly from Corollary of Theorem 2.9 and the fact
that by Proposition 0.1.3 in [11], (X, τ1, τ2) is p-perfectly normal since it is
p-regular and hence hereditarily p-normal.

Corollary 3.3. If a (R-p -T1) d-second countable and hereditarily p-
normal (p-normal) BS (X, τ1, τ2) can be represented as the union of a sequence
F1, F2, . . . , where every Fk is a countable union of p-closed sets, i.e., Fk =
∞
∪

n=1
F k

n , and p -IndFk = 0 (p -indFk = 0) for each k = 1,∞, then p -IndX = 0

(p -indX = 0).

Proof. By Corollary 1 of Proposition 2.3, p -IndF k
n = 0 for every

k = 1,∞, n = 1,∞, and X =
∞
∪

k=1

∞
∪

n=1
F k

n . For p-indX it remains to use (2) of

Proposition 2.1 and Corollary of Theorem 2.9.

Corollary 3.4. If a R -p -T1, d-second countable and p-normal BS
(X, τ1 < τ2) can be represented as the union of two BsS’s Y and Z, where
p -IndY = p -IndZ = 0 and one of them is 1-open, then p -IndX = 0.

Proof. Let, for example, Y ∈ τ1. Then X\Y ∈ co τ1 ⊂ co τ2 ⊂
p -Cl(X), X\Y ⊂ Z and by Corollary 1 of Proposition 2.3, p -Ind(X\Y ) = 0.
Moreover, (X, τ1 < τ2) is p-perfectly normal so that Y ∈ 2-Fσ(X), i.e.,
Y =

∞
∪

k=1
Fk, where Fk ∈ co τ2 ⊂ p -Cl(X) and, by (2) of Proposition 2.3,

p -IndFk = 0 for every k = 1,∞. Therefore X = Y ∪ (X\Y ) =
∞
∪

k=1
Fk ∪ (X\Y )

and it remains to use Corollary 1.

Theorem 3.12. for every R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) we have p -indX = p -IndX.

Proof. By Corollary 1 of Proposition 2.3 it suffices to prove only that
p -IndX ≤ p -indX. It is evident that one can assume that p -indX < ∞.
We will apply induction with respect to p -indX. Let p -indX = 1. Then by
Theorem 2.5, for every disjoint pair of sets A ∈ co τ1 and B ∈ co τ2 there exists
a partition T between A and B such that p -indT ≤ 0. Hence by Corollary
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of Theorem 2.9, p -IndT ≤ 0, so that p -IndX ≤ p -indX. Let us assume
that the inequality is also correct for k ≤ n − 1 and prove it for k = n. Let
A ∈ co τ1, B ∈ co τ2 and A ∩ B = ∅. Then by Theorem 2.5 there exists
a partition T between A and B such that p -indT ≤ n − 1. It follows from
the inductive assumption that p -IndT ≤ n − 1. Therefore p -IndX ≤ n, i.e.,
p -IndX ≤ p -indX.

Corollary 3.1. Let a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . of p-closed
BsS’s such that p -IndFk ≤ n for each k = 1,∞. Then p -IndX ≤ n.

Proof. It is evident that p -indFk ≤ n for each k = 1,∞ and by
Corollary 1 of Theorem 2.3, p -indX ≤ n. Thus p -IndX ≤ n.

Corollary 3.2. Let 1-T1, d-second countable and p-normal BS (X, τ1 <
τ2) can be represented as the union of a sequence F1, F2, . . . of i-closed sets,
where p -IndFk ≤ n for each k = 1,∞. Then p -IndX ≤ n.

Corollary 3.3. If a R-p -T1, d-second countable and p-normal BS
(X, τ1, τ2) can be represented as the union of a sequence F1, F2, . . . , where ev-
ery Fk is a countable union of p-closed sets, i.e., Fk =

∞
∪

p=1
F k

p and p -IndFk ≤ n

for each k = 1,∞, then p -IndX ≤ n.

Proof. Since p -IndFk ≤ n and F k
p ∈ p -Cl(X) for each p = 1,∞, by

(2) of Proposition 2.3, p -IndF k
p ≤ n for each k = 1,∞ and p = 1,∞. Thus,

it remains to use Corollary 1.

Corollary 3.4. If a 1-T1, d-second countable and p-normal BS (X, τ1 <
τ2) can be represented as the union of two BsS’s Y and Z, where p -IndY ≤ n,
p -IndZ ≤ n, and one of them is 1-open, then p -IndX ≤ n.

Proof. Since (X, τ1, τ2) is p-perfectly normal, it can be assumed that
Y ∈ τ1 ⊂ 2-Fσ(X). Then Y =

∞
∪

k=1
Fk, where Fk ∈ co τ2 ⊂ p -Cl(X) for each

k = 1,∞ and by (2) of Proposition 2.3, p -IndFk ≤ n for each k = 1,∞.
On the other hand, X\Y ⊂ Z, X\Y ∈ co τ1 ⊂ p -Cl(X) and, by the same
reasoning, p -Ind(X\Y ) ≤ n. But X = Y ∪ (X\Y ) =

∞
∪

k=1
Fk ∪ (X\Y ) and it

remains to use Corollary 1.

Theorem 3.13. The following conditions are satisfied in a BS (X, τ1, τ2):
(1) If τ1 <C τ2, then 1-IndX ≤ (1, 2)-IndX.
(2) If τ1 <N τ2, then 1-IndX ≤ (1, 2)-IndX ∧ (2, 1)-IndX ≤ 2-IndX.
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Proof. (1) It is clear that the inequality 1-IndX ≤ (1, 2)-IndX holds
for (1, 2)-IndX = ∞. Let us assume that (1, 2)-IndX = k < ∞ and show
that 1-IndX ≤ k. For k = −1 the required inequality is obvious. Now let us
assume that the inequality is correct for k ≤ n − 1 and prove it for k = n.
Since (1, 2)-IndX = n, for every 2-closed set, in particular for every 1-closed
set F and its any 1-open neighborhood U(F ) there exists a 1-open neigh-
borhood V (F ) such that τ2 clV (F ) ⊂ U(F ) and (1, 2)-Ind(2, 1)-FrV (F ) ≤
n − 1. Since τ1 <C τ2 and V (F ) ∈ τ1, by (2) of Corollary of Theorem 1.14,
τ2 clV (F ) = τ1 clV (F ) and thus (2, 1)-FrV (F ) = 1-FrV (F ). Hence (1, 2)-
Ind(1-Fr V (F )) ≤ n− 1 and by the inductive assumption 1-Ind(1-FrV (F )) ≤
n − 1, i.e., for every 1-closed set F and its any 1-open neighborhood U(F )
there exists a 1-open neighborhood V (F ) such that τ1 clV (F ) ⊂ U(F ) and
1-Ind(1-Fr V (F )) ≤ n− 1. Therefore 1-IndX ≤ n.

(2) The first inequality is obvious by (1) and Corollary of Theorem 1.19.
Furthermore, by analogy with the above reasoning we can prove that (2, 1)-
IndX ≤ 2-IndX. Let us assume that the inequality holds for 2-IndX =
k ≤ n − 1 and prove it for k = n. Since 2-IndX = n, for every 2-closed
set, in particular for every 1-closed set F and its any 2-open neighborhood
U(F ) there exists a 2-open neighborhood V (F ) such that τ2 clV (F ) ⊂ U(F )
and 2-Ind(2-FrV (F )) ≤ n − 1. Since τ1 <N τ2 and V (F ) ∈ τ2, by Corol-
lary of Theorem 1.19, τ2 clV (F ) = τ1 clV (F ) and therefore 2-Fr V (F ) =
(1, 2)-FrV (F ). Hence 2-Ind(1, 2)-Fr V (F ) ≤ n − 1 and by the inductive as-
sumption (2, 1)-Ind(1, 2)-Fr V (F ) ≤ n− 1. Thus for every 1-closed set F and
its any 2-open neighborhood U(F ) there exists a 2-open neighborhood V (F )
such that τ1 clV (F ) ⊂ U(F ) and (2, 1)-Ind(1, 2)-Fr V (F ) ≤ n − 1. Therefore
(2, 1)-IndX ≤ n.

4. Dynamics of Baire-Like Properties and Dimensions

The objects of our final investigation are category notions, Baire-like
properties and pairwise inductive dimensions in the context of d-continuous,
d-closed, (i, j)-feebly continuous and (i, j)-feebly open functions.

In [9]–[11], the (i, j)-category requirements on i-open subsets with re-
spect to (X, τ1, τ2) and in itself as a BsS of (X, τ1, τ2) form the basis of the
determination of (i, j)-Baire spaces . Generally speaking, as distinct from the
topological case, these arguments, are not the same. This distinction leads
us to the definition of six different Baire-like properties which coincide when
topologies are S-related in the sense of A. Todd [25]. It is necessary to note
here that the pairwise Baire BS’s introduced by C. Alegre, J. Ferer and
V. Gregori in [1] are just the pairwise Baire BS’s from [8] and are in fact
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the simplified modifications of the notions from [9]–[11] because they demand
the (i, j)-category requirement of i-open subsets with respect to the whole
BS. These pairwise Baire BS’s called almost (i, j)-Baire spaces in [9]–[11] are
studied in detail in [9], where an overwhelming majority of the results from
[1] are obtained. Moreover, the notion of a pairwise fine BS in [1] is none
other than a BS with the above-mentioned S-related topologies also studied
and used for various purposes in [9]–[11].

Definition 4.1. An (i, j)-Baire space (briefly, an (i, j)-BrS) is a BS
(X, τ1, τ2) such that every nonempty i-open subset U of X is of (i, j)-second
category [11].

This definition immediately implies that if (X, τ1, τ2) is an (i, j)-BrS,
then X is of (i, j)-Catg II.

Example 4.1. The natural BS (R, ω1, ω2) is (i, j)-BrS since for every
set U ∈ ωi\{∅} the BsS (U,ω′

1, ω
′
2) contains no nonempty (i, j)-nowhere dense

sets. It is also clear that (R, ω1, ω2) is i-BrS.

Therefore, in counterbalance to Remark 1.2, the BS’s (R, ω1) and (R, ω2)
are both BrS’s but ω1Sω2 is not correct.

Theorem 4.1. The following conditions are equivalent in a BS (X, τ1, τ2):
(1) U ∈ τi\{∅} =⇒ U ∈ (i, j)-Catg

II
(X).

(2) If {Un}∞n=1 is any countable family of subsets in X, where Un ∈ τj ∩
i-D(X) for each n = 1,∞, then

∞
∩

n=1
Un ∈ i-D(X).

(3) A ∈ (i, j)-Catg
I
(X) =⇒ X\A ∈ i-D(X).

(4) If {Fn}∞n=1 is any countable family of subsets in X, where Fn ∈ co τj ∩
i-Bd(X) for each n = 1,∞, then

∞
∪

n=1
Fn ∈ i-Bd(X).

Definition 4.2. An almost (i, j)-Baire space (briefly, A-(i, j)-BrS) is
a BS (X, τ1, τ2) for which one of the equivalent conditions (1)–(4) of Theorem
3.1 is satisfied [9].

The relations between Baire and almost Baire spaces are given in

Theorem 4.2. The following statements hold in BS (X, τ1, τ2):
(1) (X, τ1, τ2) is i-BrS ⇐⇒ (X, τ1, τ2) is A-i-BrS.
(2) (X, τ1, τ2) is (i, j)-BrS =⇒ (X, τ1, τ2) is A-(i, j)-BrS.

In a BS (X, τ1 < τ2)
(3) (X, τ1, τ2) is (1, 2)-BrS ⇐⇒ (X, τ1, τ2) is A-(1, 2)-BrS =⇒ (X, τ1, τ2) is

1-BrS.
(4) (X, τ1, τ2) is 2-BrS =⇒ (X, τ1, τ2) is A-(2, 1)-BrS [9].
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Definition 4.3. Let (X, τ1, τ2) and (Y, γ1, γ2) be BS’s. Then a function
f : (X, τ1, τ2) → (Y, γ1, γ2) is said to be i-continuous (i-open, i-closed) if the
induced functions f : (X, τi) → (Y, γi) are continuous (open, closed) [19],
[22].

Theorem 4.3. Let a function onto f : (X, τ1 < τ2) → (Y, γ1 < γ2) be
1-continous and d-open, where X has a countable 1-pseudobase and Y is of
(1, 2)-Catg II. If there is a subset Z ⊂ Y such that Y \Z ∈ (1, 2)-Catg

I
(Y ) and

f−1(z) is of (1, 2)-Catg II for each point z ∈ Z, then X is of (1, 2)-Catg II.

Proof. Contrary, let X is of (1, 2)- Catg I. Then there is a sequence
{Fn : Fn ∈ co τ2 ∩ (1, 2)-ND(X), n = 1,∞} such that X =

∞
∪

n=1
Fn. For

each n ∈ N let M(Fn) = {y ∈ Y : τ ′1 int(f−1(y),τ ′
1,τ ′

2)(f−1(y) ∩ Fn) �= ∅}.
Let {Uk}∞k=1 be a countable 1-pseudobase for X, and for each n and k let
Mn

k = {y ∈ Y : ∅ �= f−1(y) ∩ Uk ⊂ Fn}. Since f is d-open, we have
f(Uk) ∈ γ1, Uk ∩ (X\Fn) ∈ τ2 since τ1 ⊂ τ2, f(Uk ∩ (X\Fn)) ∈ γ2 and
therefore Mn

k = f(Uk)\f(Uk ∩ (X\Fn)) is 2-closed in f(Uk). If γ1 intMn
k �= ∅,

then ∅ �= f−1(γ1 intMn
k ) ∩ Uk ⊂ Fn. For the set f−1(γ1 intMn

k ) ∩ Uk ∈ τ1
there does not exist a set V ∈ τ2\{∅} such that V ⊂ f−1(γ1 intMn

k ) ∩ Uk

and V ∩ Fn = ∅. Hence, by Corollary 1 of Theorem 1.1.1 in [11], we have
Fn ∈ (1, 2)-ND(X). Thus γ1 intMn

k = ∅. Since Mn
k ∈ co γ′2 in (f(Uk, γ

′
1, γ

′
2),

we have γ1 int γ′2 clMn
k = ∅ and f(Uk) ∈ γ1 implies γ′1 int γ′2 clMn

k = ∅

i.e., Mn
k ∈ (1, 2)-ND(f(Uk)) and, by (1) of Theorem 1.5.2 in [11], Mn

k ∈
(1, 2)-ND(Y ). It is evident that M(Fn) =

∞
∪

k=1
Mn

k for each n ∈ N so that

M(Fn) ∈ (1, 2)- Catg
I
(Y ) for each n ∈ N and therefore, by (1) of Theo-

rem 1.1.3 in [11], M =
∞
∪

n=1
M(Fn) ∈ (1, 2)-Catg

I
(Y ).

By condition, Y is of (1, 2)- Catg II and there is a subset Z ⊂ Y such
that Y \Z ∈ (1, 2)-Catg

I
(Y ). It is obvious that Y \M ∈ (1, 2)-Catg

II
(Y ) since,

by (1) of Theorem 1.1.3 in [11], the contrary means that Y ∈ (1, 2)- Catg I.
Moreover, if Y \M ⊂ Y \Z, then by (1) of Theorem 1.1.3 in [11], Y \M ∈
(1, 2)-Catg

I
(Y ), which is impossible. Hence (Y \M)∩Z �= ∅. Let z ∈ (Y \M)∩

Z be any point. It is evident that {Fn ∩ f−1(z)}∞n=1 is a 2-closed cover of
f−1(z). Since f−1(z) is of (1, 2)-Catg II, there is k ∈ N such τ ′′1 int(f−1(z),τ ′′

1 ,τ ′′
2 )

(Fk ∩ f−1(z)) �= ∅}. Thus z ∈M . This contradiction completes the proof.

Corollary. Let a function onto f : (X, τ1 < τ2) → (Y, γ1 < γ2) be
1-continuous and d-open, where X has a countable 1-pseudobase and Y is
(1, 2)-BrS. If there is a subset Z ⊂ Y such that Y \Z ∈ (1, 2)- Catg

I
(Y ) and

f−1(z) is (1, 2)-BrS for each point z ∈ Z, then X is (1, 2)-BrS.
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Proof. Let U ∈ τ1\{∅} be any set. Then if {Uk}∞k=1 is a countable
1-pseudobase of X, then {Uk ∩ U}∞k=1 is a countable 1-pseudobase of U .
Moreover, f |U : U → f(U) is 1-continuous and d-open. Since (Y, γ1, γ2) is
(1, 2)-BrS and f(U) ∈ γ1\{∅}, we have f(U) ∈ (1, 2)- Catg

II
(Y ). Hence, by

Corollary of Theorem 1.5.2 in [11], f(U) is of (1, 2)- Catg II. Suppose that
Z ′ = Z ∩ f(U). Then f(U)\Z ′ ⊂ Y \Z and by (1) of Theorem 1.1.3 in
[11], f(U)slZ ′ ∈ (1, 2)- Catg

I
(Y ). On the other hand, Corollary (2) of Theo-

rem 1.5.1 in [11] implies that f(U)\Z ′ ∈ (1, 2)-Catg
I
f(U) because f(U) ∈ γ1.

Now, let z ∈ Z ′ be any point. Then (f |U )−1(z) = f−1(z) ∩ U and since
f−1(z) is (1, 2)-BrS, f−1(z) ∩ U ∈ τ ′1 in (f−1(z), τ ′1, τ

′
2), by Corollary 1 of

Theorem 4.1.3 in [11], f−1(z) ∩ U is also (1, 2)-BrS. Hence f−1(z) ∩ U is
(1, 2)-Catg II and the applying of Theorem 3.3 for f |U : U → f(U) gives that
U is of (1, 2)-Catg II. Thus (X, τ1, τ2) is (1, 2)-BrS.

Finally, consider the following special modifications of feebly continuous
and feebly open mappings.

Definition 4.4. A function f : (X, τ1, τ2) → (Y, γ1, γ2) is said to be
(i, j)-feebly continuous ((i, j)-feebly open) if V ∈ γi \ {∅} (V ∈ τi\{∅}) and
f−1(V ) �= ∅ imply that τj int f−1(V ) �= ∅ (γj int f(V ) �= ∅).

The classes of all (i, j)-feebly continuous ((i, j)-feebly open) functions
of X to Y are denoted by (i, j)-FC(X,Y ) ((i, j)-FO(X,Y )).

It is easy to verify that the inclusions

(2, 1)-FC(X,Y )⊂1-FC(X,Y )
∩ ∩

2-FC(X,Y )⊂(1, 2)-FC(X,Y )
and

(2, 1)-FO(X,Y )⊂1-FO(X,Y )
∩ ∩

2-FO(X,Y )⊂(1, 2)-FO(X,Y )

hold for BS’s (X, τ1 < τ2) and (Y, γ1 < γ2).
The statements below are the immediate consequences of the corre-

sponding definitions.

Proposition 4.1. For a function f : (X, τ1, τ2) → (Y, γ1, γ2) the fol-
lowing conditions are satisfied:
(1) If f is onto, then f ∈ (i, j)-FO(X,Y ) ⇐⇒ f−1(j-D(Y )) ⊂ i-D(X).
(2) f ∈ (i, j)-FC(X,Y ) ⇐⇒ f(j-D(X)) ⊂ i-D(Y ).

Corollary. For a function f : (X, τ1, τ2) → (Y, γ1, γ2) the following
conditions are satisfied:
(1) If f is onto, then f ∈ p -FO(X,Y ) ⇐⇒ (f−1(1-D(Y )) ⊂ 2-D(X) ∧

f−1(2-D(Y )) ⊂ 1-D(X)).
(2) f ∈ p -FC(X,Y ) ⇐⇒ (f(1-D(X)) ⊂ 2-D(Y ) ∧ f(2-D(X)) ⊂ 1-D(Y )).
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Theorem 4.4. If a function f : (X, τ1 < τ2) → (Y, γ1 < γ2) is one-
to-one onto and f ∈ (1, 2)-FC(X,Y ) ∩ (2, 1)-FO(X,Y ), then (X, τ1, τ2) is
A-(2, 1)-BrS =⇒ (Y, γ1, γ2) is (1, 2)-BrS and (Y, γ1, γ2) is A-(2, 1)-BrS =⇒
(X, τ1, τ2) is (1, 2)-BrS.

Proof. Let {Un}∞n=1 be a sequence, where Un ∈ γ2 ∩ 1-D(Y ) for each
n = 1,∞. We will prove that the sets τ1 int f−1(Un) ∈ 2-D(X) for each
n = 1,∞. Let x0 ∈ X, n ∈ N be arbitrarily fixed and U(x0) ∈ τ2 any neighbor-
hood. Since f ∈ (2, 1)-FO(X,Y ), we have γ1 int f(U(x0)) �= ∅ so that there
exists V ∈ γ1\{∅} such that V ⊂ f(U(x0)). The set V ∩ Un ∈ γ2\{∅} since
Un ∈ 1-D(Y ) and γ1 ⊂ γ2. But also f ∈ (2, 1)-FC(X, y) and hence ∅ �= W =
τ1 int f−1(V ∩ Un). Therefore W ⊂ f−1(V ∩ Un) ⊂ f−1(f(U(x0)) = U(x0).
It is clear that W ⊂ τ1 int f−1(Un) and therefore x0 ∈ τ2 cl τ1 int f−1(Un)
since U(x0) ∈ τ2 is an arbitrary neighborhood. Let Bn = τ1 int f−1(Un). If
x0 ∈ X and n ∈ N are arbitrary fixed, then Bn ∈ τ1 ∩ 2-D(X) for each
n = 1,∞. On the other hand, (X, τ1, τ2) is A-(2, 1)-BrS =⇒

∞
∩

n=1
Bn ∈ 2-D(X)

and hence, by Proposition 5.1.5 from [9], f(
∞
∩

n=1
Bn) ∈ 1-D(Y ) since f ∈

(2, 1)-FC(X,Y ) ⊂ (1, 2)-FC(X,Y ). Since f(
∞
∩

n=1
Bn) ⊂

∞
∩

n=1
f(Bn) ⊂

∞
∩

n=1
Un,

the set
∞
∩

n=1
Un ∈ 1-D(Y ) and thus (Y, γ1, γ2) is (1, 2)-BrS.

Finally, it is evident that f ∈ (2, 1)-FC(X,Y ) ⇐⇒ f−1(2, 1)-FO(Y,X),
f ∈ (2, 1)-FO(X,Y ) ⇐⇒ f−1(2, 1)-FC(Y,X) and therefore the rest is clear.

If a function f : (X, τ1, τ2) → (Y, γ1, γ2) is d-closed, d-continuous and
A ⊂ X, A ∈ co τ1 ∩ co τ2, then f |A is also d-closed and d-continuous. But in
contrast to this fact, f |A is not, generally speaking, d-closed, if A ∈ p -Cl(X).

Example 4.2. Let X={a, b, c, d, e}, τ1 ={∅, {a},X}, τ2 ={∅, {b},X},
Y = {0, 1}, γ1 = {∅, {0}, Y } and γ2 = {∅, {1}, Y }. If A = {c, d, e} and
f : (X, τ1, τ2) → (Y, γ1, γ2) is defined as f(a) = f(b) = 0 and f(c) = f(d) =
f(e) = 1, then f is d-closed but the restriction f |A, where A ∈ p -Cl(X), is
not d-closed.

Theorem 4.5. Let f : (X, τ1, τ2) → (Y, γ1, γ2) be a d-closed and d-
continuous function of a R -p -T1, d-second countable and p-normal BS X

onto a R -p -T1, d-second countable and p-normal BS Y such that for every
set A ∈ p -Cl(X) the restriction f |A : A → f(A) is also d-closed and d-
continuous. If there is an integer k ≥ 1 such that |f−1(y)| ≤ k for every y ∈ Y ,
then (i, j)-indY ≤ (i, j)-indX + (k − 1), (i, j)-IndY ≤ (i, j)-IndX + (k − 1)
and therefore p -indY ≤ p -indX + (k − 1), p -IndY ≤ p -indX + (k − 1).
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Proof. By Theorem 2.13 it suffices to prove only the first inequality.
We can suppose that 0 ≤ (i, j)-indX < ∞ and we will apply induction with
respect to the number n+k, where n = (i, j)-indX. If n+k = 1, then k = 1 as
f is onto and hence f is a d-homeomorphism and the theorem holds. Assume
that the theorem holds whenever n + k < m, where m ≥ 2 and consider a
d-closed and d-continuous function f : X → Y such that f(X) = Y and
n+ k = m.

Let Bi be a countable i-base of (X, τ1, τ2) such that (i, j)-ind(j, i)-FrU ≤
n − 1 for every U ∈ Bi. If U ∈ Bi is an arbitrary set, then f ∈ d-Cl(X,Y ) ∩
d-C(X,Y ) implies that

(j, i)-Fr f(U) = γj cl f(U) ∩ γi cl(Y \f(U)) ⊂ f(τj clU) ∩ f(X\U) =
= f(U ∪ (j, i)-FrU) ∩ f(X\U) =

=
(
f(U) ∪ f((j, i)-FrU)

)
∩ f(X\U) ⊂ f((j, i)-FrU) ∪A,(1)

where A = f(U) ∩ f(X\U). Since the restriction f |(j,i)-Fr U : (j, i)-FrU →
f((j, i)-FrU) is d-closed and d-continuous, by the inductive assumption we
have

(i, j)-ind f((j, i)-FrU) ≤ (n− 1) + (k − 1) = n+ (k − 2).
Assume that A �= ∅ and consider the restriction f |f−1(A) = fA :

f−1(A) → A. It is well known that fA is d-closed and d-continuous. Moreover,
the restriction fA|(X\U) = f1 : (X\U)∩f−1(A) → A if also onto, d-closed and
d-continuous.

The fibres of f1 for each y ∈ A have cardinality |(f−1(y)| ≤ k − 1
since, by condition, |f−1(y)| ≤ k and y ∈ A implies that f−1

1 (y) ∩ U =
f−1(y) ∩ U �= ∅. Therefore, it follows from the inductive assumption, that
(i, j)-indA ≤ n+(k−1)−1 = n+(k−2), where (i, j)-ind((X\U)∩f−1(A)) ≤
(i, j)-indX ≤ n.

Since X is p-perfectly normal, i.e., τi ⊂ j-Fσ(X), we have U =
∞
∪

k=1
Fk,

where Fk ∈ co τj for each k = 1,∞. Hence f(U) =
∞
∪

k=1
f(Fk) ∈ j-Fσ(Y ),

f(X\U) ∈ co γi so that A = f(U)∩f(X\U) =
∞
∪

k=1
f(Fk)∩f(X\U)) =

∞
∪

k=1
Φk,

where each Φk = f(Fk) ∩ f(X\U) is p-closed. Hence by Corollary 3 of Theo-
rem 2.3, (i, j)-ind(f(j, i)-FrU ∪A) ≤ n+ (k− 2). ¿From the latter inequality
and (1) we obtain that (i, j)-ind(j, i)-Fr f(U) ≤ n+ (k − 2) for every U ∈ Bi.
The same inequality holds if A = ∅. It is not difficult to see that the family
N i = {f(U) : U ∈ Bi} is an i-network for Y so that, by Theorem 2.7,
(i, j)-indY ≤ n+ k − 1 = (i, j)-indX + (k − 1).

Corollary. Let f : (X, τ1 < τ2) → (Y, γ1 < γ2) be a d-closed and d-
continuous function of a 1-T1, d-second countable and p-normal BS X onto
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a 1-T1, d-second countable and p-normal BS Y such that for every set A ∈
co τ2 the restriction f |A : A → f(A) is 1-closed and 1-continuous. If there
is an integer k ≥ 1 such that |f−1(y)| ≤ k for every y ∈ Y , then p-indY ≤
p-indX + (k − 1) and p-IndY ≤ p-IndX + (k − 1).
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