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THE STRENGTHENING AND WEAKENING
INSTRUMENT: COMPARABILITY OF
TOPOLOGIES SPACES

B. Dvalishvili

Abstract. Along with noncomparable topologies, the paper con-
centrates on situations, where in a bitopological space one topology is
finer than the other, which is frequently encountered in applications. In
this context, different families of sets are considered and the bitopological
modification of the Cantor-Bendixson theorem is proved. The three op-
erators are defined, which characterize the degrees of nearness of the four
boundaries of any set, tangency of topologies, S-, C- and N-relations,
and thus make it possible to compare small inductive dimensions at
some special point. Furthermore, different properties of pairwise small
and pairwise large inductive dimensions are studied. In the final part,
the conditions are given, under which a bitopological space preserves the
property to be an (7, j)-Baire space to the image and preimage. Relations
between pairwise small and large inductive dimensions of the domain and
the range of a d-closed and d-continuous function are investigated.

1. Introduction

J. C. Kelly defined a bitopological space (X, 71,72) to be a set X with
two topologies 71 and 72 on it [15].

In studying various kinds of bitopologies, i.e., ordered pairs of topologies
on a set, this paper concentrates on situations, where one of the topologies is
finer than the other, which is typical of applications of the theory of bitopo-
logical spaces.

Throughout the paper the following abbreviations are used: BS for a
bitopological space, BsS for a bitopological subspace (the plural form for
all abbreviated nouns is ’s) and the symbols N, Z, Q and R for sets of all
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natural numbers (excluding zero), all integers, all rational numbers and all
real numbers, respectively. Always i,j € {1,2} and ¢ # j. Given a family
A = {As}ses C 2%, where 2% is the power set of X, let co.A denote the
conjugate family co A = {X\As; : As € A}. Further, the cardinal number
| X|, called the cardinality of X, is assigned to each set X and the cardinal
number assigned to the set of all natural numbers is denoted by Nj.

If (X,71,72) is a BS and P is some topological property, then (i, j)-P
denotes the analogue of this property for 7; with respect to 7;, and p-P denotes
the conjunction (1,2)-PA(2,1)-P, i.e., p-P denotes the “absolute” bitopological
analogue of P, where p is the abbreviation for “pairwise”. As we will see
below, sometimes (1,2)-P <= (2,1)-P (and thus <= p-P) so that it suffices
to consider one of these three bitopological analogues. Also note that (X, 7;)
has a property P <= (X, 71, 72) has a property i-P and d-P <= 1-P A 2-P,
where d is the abbreviation for “double”. By a BS (X, 7 < 72) is always be
meant a BS (X, 7y, 7) with 7 C 7».

Let (X, 71, 7) be any BS and A € 2% be its any subset. Then 7; cl A and
7; int A denote respectively the closure and the interior of A in the topology ;.
If A= {A}ses C 2% is any family, then i-C1 A = {7; cl A;}4es. Furthermore,
p-Cl(X)={Aec2X: A=rcdAnncA}, i-Bd(X)={Ac2X: r-int A=
o}, iD(X) = {A € 2¥ : 1cddA = X} and (4,5)-ND(X) = {A € 2X .
Tiint7jcl A = @} are the families of all p-closed, i-boundary, i-dense and
(i, j)-nowhere dense subsets of X, respectively.

Also note that here i-F,(X) = {A € 2X : A is an i-F, set}, (i,7)-
SO(X) = {A € 2% : thereis aset U € 7; such that U C A C 7jclU} and

Catg,(X) = {A € 2% : A= U Ay, Ay € (i,j)ND(X), n = T},

(2, 5)-
(i,7)- Catg, (X) = 2%\(4, §)- Catg,(X) and X € (i,5)- Catg,(X) <= X is of
(i,7)-Catgl, X € (i,j)-Catg,(X) <= X is of (i, j)-CatgIL

In a BS (X, 7, 72) the following double indexation is used: A¢ = {z €
X : z is an i-accumulation point of A} and A;- ={z € X : zis a j-isolated
point of A}, i.e., the lower indices i and j denote the belonging to the topology
and therefore always i, j € {1,2}, while the upper indices d and i are fixed as
the accumulation and isolation symbols, respectively. Thus in a BS (X, 71, 72)
we have: A; = A\A;-l, Ais a j-discrete set <= A = A;, A is a j-dense in itself
set <= A C A? and A is a j-perfect set < A = A?.

The paper consists of three paragraphs, of which §1 deals with the
bitopological modifications of open and closed domains [16], and locally closed,
dense in themslves, perfect and scattered sets (see, for example [17]). It
contains the proof of the bitopological analogue of the well-known Cantor-
Bendixson theorem. Moreover, in a BS (X, 71 < 73) a special subfamily of the
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family (2,1)-N'D(X) is chosen, the union of whose elements also belongs to
(2,1)-N'D(X). At the end of the paragraph, three special operators are intro-
duced and studied on 2%, which are used to determine exactly the degrees of
nearness of the four boundaries of any set and give a simple characterization
of the <g-, <¢- and < y-relations.

It should be mentioned that one of these operators also defines the
tangency of topologies at a certain point of a BS (X, 71 < 72) in the sense
of [2], which thus makes it possible, in addition to the results from [9], [10],
to compare at this point the small inductive dimension functions 2-ind X
and (1,2)-ind X, aas well as (2,1)-ind X and 1-ind X. In our opinion, it is
interesting to apply the introduced operators in considering initial and fine
topologies in the potential theory especially when a fine topology is compatible
with a quasi topology in the sense of B. Fuglede [12] (see also [9], [11]).

The notion of a zero dimensional BS was introduced by I. L. Reilly
[21] on the basis of the idea of bitopological disconnectedness considered by
J. Swart [23]. A systematic study of bitopological dimension functions was
undertaken by M. Jeli¢ [13], [14], M. D. Ciri¢ [4] and by us [5]-[7]. As different
from [4], [13], [14], the ideas set forth in [5]-[7] were essentially based on the
notion of a bitopological boundary.

In §2, pairwise small and large inductive dimensions are formulated in
terms of both bitopological partitions and neighbourhoods in a manner such
that for n = 0 a pairwise small inductive dimension leads to the notion of
I. L. Reilly. Moreover, the analogues of the well-known sum theorem and
the first decomposition theorem are proved for a pairwise small inductive
dimension.

Furthermore, interrelations of pairwise inductive dimensions and their
topological versions are considered when topologies are comparable by inclu-
sion or are coupled, <¢-related, near and <py-related. The sum theorem is
also proved for a large inductive dimension and the conditions, under which
pairwise small and large inductive dimensions coincide, are established.

In §3, the conditions are given, under which a BS preserves the property
to be an (1, 2)-Baire space to the image and preimage, and relations between
pairwise small and large inductive dimensions of the domain and the range of
a d-closed and d-continuous function are studied.

2. Some Special Operators and Families of Sets in Bitopological
Spaces

The family (i, 7)-ND(X) plays an important role not only in the defini-
tion of Baire-like properties, but also has interest of its own, especially when
dealing with BS’s of the type (X, 1< 7).
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Definition 2.1. A subset A of a BS (X, 71,72) is (i,7)-nowhere dense
((7,7)-boundary) at a point x € X if there exists an i-open neighborhood U (x)
such that ;int 7 cl(ANU(x)) = @ (rint 7jint(ANU(x)) = @) [9].

For every point 2 € X the family of all sets, which are (i, j)-nowhere
dense ((4,j)-boundary) at the point z, is denoted by (i,5)-ND(X,z) ((i,7)-
Bd(X,x)).

In a BS (X, 7y < 72) the following inclusions and equality hold for every
point z € X :

I-ND(X,z) C (1,2)-ND(X,z) and (2,1)-ND(X,z) C 2-ND(X, x),
(1,2)-Bd(X,z) = 1-Bd(X,z) C (2,1)-Bd(X,z) D 2-Bd(X, ).
Proposition 2.1. Let (X, 7 < 12) be a BS and x € X any point. Then
A€ (1,2)-ND(X,x) <= mocl A € 1-Bd(X, x).

Proof. If A€ (1,2)-ND(X,z), then 7 int 75 cl(ANU (z)) # & for every
1-open neighborhood U (z). Therefore there exists a set V' € 71\{@} such that
V C mcl(ANU(z)). The inclusion 71 C 7 implies V =V N cl(ANU(x)) C
T c(VNANU(x)), where VNU(z) C 7o cl(ANU(x))NU (x) C T2 cl(ANU(x)).
Thus 71 int(mocl AN U(x)) # @ so that 7ocl AN U(x) € 1-Bd(X) and, since
U(z) € 1 is an arbitrary neighborhood, we obtain 75 cl A€ 1-Bd(X, x).

Conversely, let 7o cl A€ 1-Bd(X, x). Then 7y int(roclANU(x)) # @ for
every l-open neighborhood U(x). Hence there is a set V € 71\{@} such that
V CmcdAnU(x) C macl(ANU(z)). Therefore 11 int o cl(ANU (x)) # @ and,
since U(x) € 71 is an arbitrary neighborhood, we obtain A€ (1,2)-ND(X, ).

At this point it should additionally be said that in a BS (X, 71 < 72)
the inclusion U N1y el A C 71 cl(U N A) is not correct for any sets U € 19 and
A C X as is demonstrated by the following simple example: X = {a,b, ¢, d},
71 = {9,{a,b}, X}, 1o is the discrete topology on X, U = {c} € 71 and
A= {b,d}.

Thus we find that the analogue of the latter proposition does not, gen-
erally speaking, hold for the (2, 1)-case.

Corollary. In a BS (X, 7 < 19) the following conditions are satisfied:
(1) {reX: A€(1,2)-ND(X,z)} = 7y cly int 72 cl A.
(2) {reA: Ae (1,2)-ND(X,z)} € (1,2)-ND(X).
Proof. (1) Using Theorem 2 from [17, p. 78], we obtain {z € X :
Tocl A€1-Bd(X,x)} = 7 clm int 75 cl A. It remains to use Proposition 2.1.
(2) It is clear that {x € A: A € (1,2)-ND(X,z)} = A\my clm int o cl
A C mpcl A\ryint 75 cl A and 71 int(7 cl A\ 7y int 79 cl A) = 71 int 75 cl AN(X\ 71
clm int 9 cl A) = &. Therefore 7o cl A\ int 7o cl A € cora N 1-Bd(X) C (1,2)-
ND(X).
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In particular, if A is (1,2)-nowhere dense at each of its points, then
A=A\riclmint ocl A so that myint o cl A = @ <= A € (1,2)-ND(X).

Definition 2.2. A family A = {As}ses of subsets in a BS (X, 11, 72)
is i-locally finite at a j-dense set of points of X if for every set U € 7,\{@}
there exists a set V € 7;\{@} such that V. C U and {s€ S: VNA; # D} is
finite.

Clearly, if A = {A;}ses is i-locally finite at a j-dense set of points of X,
then the family j-Cl A is also i-locally finite at a j-dense set of points of X.

Theorem 2.1. If a family A = {As}ses C (2,1)-ND(X) is 2-locally fi-
nite at a 1-dense set of points of a BS (X, 71 < 1), then USAS € (2,1)-ND(X).
se

Proof. Let A = {As}scs be 2-locally finite at a 1-dense set of points
of X. Then 1-Cl A = {7cl A;}scs must also be 2-locally finite at a 1-dense set
of points of X so that for every set U € m\{@} there exists aset V € 7\{@}
such that V C U and {s € S: VN7 clA,, # @} is finite. Let {m cl Ay, }}
be the corresponding finite family. Since 71 cl A5, € (2,1)-N'D(X) for every
k =1,n, we have X\1 cl A, € 71 N2D(X) for every k = 1,n. One can easily

verify that W=V N (lﬁl(x\r1 cl A, ))# @. Contrary, let W = & so that V C

X\(lf?l(X\Tl clAg,)) = k[ZJlTl clA,,. In that case @ # 7 int kGIﬁ clA,, =
71 int 1 cl k[LJlASk C moint 7y cl k[LJlASk, which is impossible since, by Corollary

2 of Proposition 2.1.3 in [11], k@1Ask € (2,1)-ND(X). Hence W € 7 \{2}.
On the other hand, V N mclAs = @ for s # si so that V' C X\ cl A
for every s # s, and consequently the set W C V satisfies the inclusion
W C ﬁS(X\Tl clA;) = X\ USTl clAs. Hence W € 1 \{@} implies W C
s€ se
T int(X\ U mclds) = X\l UTclds C X\l UA,, Bt W CV CcU
s€S s€S s€S

and therefore U N (X\ 7 cl USAS) # @ so that 79 cl(X\ 71y cl USAS) = X since

se s€
U € o\{@} is an arbitrary set. Thus USAS € (2,1)-ND(X).

se

Definition 2.3. A subset A of a BS (X, 71, 72) is (i,7)-locally closed at
its point x if there exists a set U € 7; such that t € U and UNA=UNT;clA
[9]-

For every point € X the family of all sets that are (4, j)-locally closed
at the their common point z is denoted by (i, 7)-LC(X, x).

A subset A of a BS (X, 7y, 79) is (4, j)-locally closed if it is (4, j)-locally
closed at each of its points. The family of all such subsets of X is denoted by
(2, J)-LC(X).
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In a BS (X, 71 < 72) the following inclusions hold for every point z € X:

1-LC(X, x) C (2,1)-LC(X,x)
N N
(1,2)-LC(X,xz) C  2-LC(X,x)
and therefore
1-LC(X) C (2,1)-LC(X)
N N
(1,2)-£C(X) <  2-LC(X).

Theorem 2.2. Let A be a subset of a BS (X, 71 < 72). Then the set
{z € A: A s not (2,1)-locally closed at a point x} coincides with the set
AN T2 Cl(Tl CIA\A)

Proof. First assume that x € A and z€A N mcl(micl A\A), ie.,
x€mcl(mi clA\A). If U = X\ o cl(11 cl A\A), thenz € U and UN(r cl A\A) =
@ and so (UNT7clA)\A = @. Hence (UNT7clA)N(X\A) = @ and conse-
quently UNTiclAC Asothat UNTiclACUNA. ThusUNmiclA=UNA,
i.e., the set A is (2,1)-locally closed at the point x.

Conversely, let A be a (2,1)-locally closed set at a point z € A. Then
thereis aset U € 79 such that x € U and UNA = UN7y cl A. Moreover, U €
implies UNTac(UNA) =UNmclACUNTclA=UNA. Hence 7y cl A\A C
71l A\(UNA) C 11 1 A\(UNma cl(UNA)) = (11 L A\U)U(71 cl A\ 2 cl(UNA)),
ie.,

(1) 71l A\A C (11l A\U) U (11 cl A\2 cl(U N A)).

Since (11 cl A\m2 cl(UNA))NU = (11 LANU)\(r2 (UNA)NTU) = (AN

U)\(m2 cl ANU) = &, we have 11 cl A\ cl(UNA) C X\U. Clearly, 7, cl A\U C

X\U. Thus by inclusion (1), 71 cl A\A C X\U and therefore 7 cl(71clA\A) C
X\U because U € 1. But x € U and hence z € AN mcl(m cl A\A).

Proposition 2.2. Let A be a subset of a BS (X, 71,72). Then the con-
ditions below are equivalent:
(1) A€ (i,7)-LC(X).
(2) Aer]in aBsS (15cl A, 11, 75).
(3) A=UNF, where U € 7; and F € coTj.

Proof. (1) = (2). If A € (4,j)-LC(X), then for every point x € A
there is an i-open neighborhood U(z) such that U(z) N A = U(x) N 7jcl A.
But A = ng(U(:c) NA = ng(U(:c) N 7;clA) and for every point z € A
the set U(xz) N 7jclA is i-open in (7;cl A, 7{,75). Therefore A is i-open in
(15 clA, 7, 75).
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(2) = (1). Let € A be any point. Then there is an i-open set U such
that A=UNTjclA Hence x ¢ U and UNA=UnNT;clA.

(2) <= (3) is obvious.

Corollary. In a BS (X, 11, 2) we have 1;UcoT; C (4,5)-LC(X). More-
over, in a BS (X, 7 < 72) for every subset A C X we have the equivalence

Ae (2, 1)—[,C(X) < T2 01(7'1 CIA\A) =1 cl A\A
and the inclusions
ToUcomy C 2—£C(X) D (2,1)—£C(X) D mUcom

U U
(1,2)-LC(X) > 1-LC(X)
U U
71 UcoTy 71 UcoTy

Proof. Indeed, the first inclusion is correct by (3) of Proposition 2.2,
while the others are immediate consequences of the inclusions given after
Definition 2.3.

If 71 cl A\A = 19 cl(71 cl A\ A), then the equality A = 71 cl A\(m cl A\A)
implies that A is a difference of the 1-closed set and the 2-closed set and
therefore A is the meet of the 1-closed set with the 2-open set.

On the other hand, if A = FNU, where F' € cory and U € 79, then
A = F\B, where B = X\U € comy. Hence A = 1y clAN (F\B) = (r1clAN
F)\(r1clAN B). From A C F and F € cor; we obtain 73clA C F and
therefore Ty clANF =711 clA. Thus A =7 clA\(r1clANB) and 71 cl A\A =
TiclANB € cory as 11 C To.

Definition 2.4. A BS (X, 1, 12) is (i, j)-regular if for each point x € X
and each i-closed set F C X, v €F, there exist an i-open set U C X and a
j-open set V.C X suchthat x € U, FCV and UNV =@ [15].

It is not difficult to see that (X,71,72) is (i,7)-reqular <= for each
point x € X and each i-open set U C X, x € U, there exists an i-open set V.
such that x € V C 1;clV CU.

Theorem 2.3. A subset A of an (i,j)-reqular BS (X, 11,72) is (i,])-
locally closed at a point x € A if and only if there exists an i-neighborhood
U(x) such that U(z) N A= 1;cl(U(z) N A).

Proof. If A C X is (4,7)-locally closed at a point x € A, then there
isaset U € 7; such that x € U and UNA =UnNTtjclA. Hence UNA C
Tic(UNTjclA) sothat UNA CUnNjcl(UNT;clA). On the other hand,
Ticl(UNTjclA) C 15l Aimplies UNTjc(UNTjclA) CUNTjclA=UNA.
Thus UNA = UNT;cl(UNTjcl A) = UNTjcl(UNA). Since z € U and (X, 11, 72)
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is (7,j)-regular, there is a set V' € 7; such that x € V and 7;clV C U, i.e,
7;clVAU =1jclVand 15l VNA = 7l VNUNA = 75l VNUNT; c(UNA) =
(rjelVNU)N7ijc(UNA) =71jclVNric(UNA). If 751V = U(z), then
U(zx) is an i-neighborhood of x such that U(z) N A € coy, i.e.,, U(x) N A =
7 cl(U(z) N A).

Conversely, assume that © € A and U(z) is its i-neighborhood such that
U)NA=r1jcl(Ux)NA). IfU =rintU(z), then U # @ and UN A =
UNnU)NnA)=Unmc(U(x) N A) so that UN A is j-closed in U. Hence
UNA=UnNtjclA, ie., Ais (i,j)-locally closed at the point x.

Note that the requirement that a BS (X, 71, 72) in Theorem 2.3 be (¢, j)-
regular is essential. Indeed, if (X, 71, 72) is not (4, j)-regular, then there are a
point z € X and a neighborhood U(x) € 7; such that 7; cl V(z) N (X\U(z)) #
@ for every i-open neighborhood V(z). From Corollary of Proposition 2.2
it follows that U(x) € (i,7)-LC(X) and thus U(z) € (i,7)-LC(X, z). If the
condition of Theorem 2.3 is fulfilled, then there exists an i-neighborhood W (z)
such that W(z) N U(z) = 7jc(W(z) NU(x)). Let H = 7;int W (). Then
HNU(z) = E(x) € ; and 75cl E(x) = 15 cl(HNU(x)) = 7jcl(mint W(z) N
U(x)) C mjcl(W(x)NU(zx)) C U(x), which contradicts the assumption.

Definition 2.5. In a BS (X, 7,7) an (i,7)-boundary is an operator
(i,7)-Fr : 2% — p-Cl(X) defined as follows: (i, j)-Fr A = 1;cl AN 7;cl(X\A)
for each set A € 2% [6].

The most important properties of this operator are listed in Theo-
rem 1.3.1 [11].

Definition 2.6. A subset A of a BS (X, 11, 7) is an (i, j)-open domain
in X if A = mint1jcl A. The complement in X of an (i,j)-open domain is
an (i,j)-closed domain in X, i.e., a subset B of X is an (i,j)-closed domain
in X if B=ryclTjint B [22].

The family of all (7,j)-open domains ((7,j)-closed domains) of X is
denoted by (i,7)-OD(X) ((4,5)-CD(X)).

Note that the i-interior (i-closure) of every intersection (union) of (i, j)-
open domains ((, j)-closed domains) of a BS (X, 7y, 72) is an (i, j)-open do-
main (an (i, j)-closed domain) [23].

Theorem 2.4. The following statements are satisfied in a BS (X, 71, 72):
A€ (i,))-OD(X) <= A€ 7; and

(4,1)-Fr A = (j,i)-Frrjcl A = (4,7)-Fr7jint(X\A) C 7clrjint(X\A)
so that

A€ (i,j)-CD(X) <= A€cor; and

(i,7)-Fr A= (i,75)-Frrjint A = (j,4)-Fr7j cl(X\A) C 7y cl7jint A.
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Proof. A = 7inttjclA clearly implies (j,i)-FrrjclA = 75c1AN
7; cl(X\7j cl A) = 75 L AN(X\A) = 7 cl ANT; cl(X\A) = (4,7)-Fr A and by (4)
of Theorem 2.3.1 in [11] we also have (j,i)-Fr7;cl A = (i, j)-Fr 7; int(X\ A).
Furthermore, if A = 7;int7jcl A, then A € 7 and (j,i)-FrA = 7;c1AN
T cl(X\A) C 7 cl(X\A) = 7;cl 75 int(X\ A).

Conversely, if (j,i)-FrA C 7ycl7;int(X\A), then (j,7)-FrA U 7;cl7;
int(X\A)=r; cl 7j int(X\ A). On the other hand, (j,7)-Fr AUT; cl 7 int(X\A)=
(15 cl AN cl(X\A))UT;cl7jint(X\A) = X N7 cl(X\A) = 7 cl(X\A). Hence
Ticl(X\A) = 1ycl7;int(X\A) and A € 7; implies A = 7;int A = 7 int 75 cl A,
ie, A€ (i,j)-OD(X).

For the second equivalence it suffices to replace the set A € (7, 5)-CD(X)
by the set X\ A € (i,7)-OD(X) and to apply (4) of Theorem 1.3.1 in [11].

Corollary. The following conditions are satisfied in a BS (X, 11 < 79) :

(1) A e 1N ((21)-0DX) = (1,2)-FrA = 1-FrA and A € mN
2-OD(X) = 2-Fr A= (2,1)-Fr A.

(2) 1-OD(X) C (1,2)-OD(X), (2,1)-OD(X) C 2-OD(X) and 11 N (2,1)-
OD(X) = (1,2-0D(X) 1 (2,1)-0D(X) = 1-0D(X) N (2,1)-0D(X)
C 1-OD(X) N 2-OD(X )CﬁﬂQ OD(X) = ( 2)-OD(X) N 2-OD(X)
so that 1- CD(X) C (1,2)- CD(X), (2,1)-C (X) C 2-CD(X) and
cor; N(2,1)-CD(X) = (1,2)-CD(X) N (2,1)-CD(X) = 1-CD(X) N
(2,1)-CD(X) C 1-CD(X)N2-CD(X) C com1N2-CD(X) = (1,2)-CD(X)N
2-CD(X).

Proof. (1) By virtue of Theorem 2.4, A € 71 N (2,1)-OD(X) =
(1,2)-FrA = (1,2)-FrmiclA = AN mc(X\1A) = ncdAn (X\A) =
miclANTcl(X\A) =1-FrA4; Ae mN2-0D(X) = 2FrA =2FrmclA =
ToclANTec(X\12A) = Tocl AN (X\A) = ol ANTcl(X\A) = (2,1)-Fr A.

(2)A€1-OD(X) = Acmnand I-FrAC nclmint(X\A) = Aen
and (2,1)-FrA C 1I-FrA C mclmint(X\A) C mclnint(X\4) = A €
(1,2)-0D(X).

A€ (2,)1)-OD(X) = A € 7p and (1,2)-Fr A C mclmint(X\A) =
A€ mand 2-FrA C (1,2)-FrA C mpelmint(X\A) C mpclmint(X\A) =
A € 220D(X).

Further, by (1), A € 71 N (2,1)-OD(X) = A € 7 and 1-FrA =
(1,2)-FrA C mclmint(X\A) C mpclmint(X\4) = A € 1-OD(X). Sim-
ilarly, A € m N2-OD(X) = A € TQ and (2,1)-FrA = 2-FrA C mclm
D(X). Hence, taking into

int(X\A4) C mclmint(X\4) = € (1,2)-0

account the inclusion 1-OD(X) C (1,2) D(X) C 11, we find that 71 N
(2.1-0D(X) = (1.2-0D(X) 1 (2,1-OD(X) = LOD(X) 1 (2.1-0D(X)
and 71 N 2-OD(X) = (1,2)-OD(X) N 2-OD(X). The rest is obvious.
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Finally, note that such a simple argument as 7, C 7o is helpful in es-
tablishing in a different way the inclusions 1-OD(X) C (1,2)-OD(X) and
(2,1)-OD(X) C 2-OD(X). Indeed, A € 1-OD(X) = A = 7y int 7 cl A =
A=mimtA=— ACmintpclAC mpintrclA = A4, ie, A= 71 int7mclA;
A€ (2,1)-0OD(X) = A = nintyclAd = A C mintmcl A C mpintny
clA=A, ie, A€ 2-0D(X).

The inverse inclusions in the foregoing corollary are not, generally speak-
ing, correct in a BS (X, 71 < 7).

Example 2.1. Let X = {a,b,c,d}, 11 = {@,{a},{c}, {a,c}, X}, o =
{@,{a},{c},{a,c}, {a,b},{a,b,c}, X}. Then {a} € 1-OD(X) C (1,2)-OD(X),
{a} €2-OD(X) so that {a}€(2,1)-OD(X). Also, {a,b} € (2,1)-OD(X) C
2-OD(X), but {a,b} € (1,2)-OD(X) and therefore {a,b} € 1-OD(X).

Example 2.2. Let X be as in Example 2.1, 1 = {&,{a}, {a,b,c}, X},

7 = {9,{a},{d},{a,d},{b,c},{a,b,c},{b,c,d}, X}. Then {a} € (1,2)-
OD(X)\ 1-OD(X), {a,d} € 2-OD(X)\(2,1)-OD(X).

Proposition 2.3. In a BS (X, 71 < ™) we have U € 7 <= U =
V\rocl A, where V € (2,1)-OD(X) and A € (1,2)-ND(X) so that F €
comy <= F =BUmyclA, where B € (2,1)-CD(X) and A € (1,2)-ND(X).

Proof. LetU € mpand V = mpint 7y clU. By (1) of Proposition 2.3.1 in
[11] the difference 71 clU\U € comN1-Bd(X) C (1,2)-ND(X) and hence A =
V\U € (1,2)-ND(X). Clearly, U = V\A and 7o cl A = o cl(V\U) C ol V' N
T c(X\U) = mclV\U. Thus U = VNU = V\(reclV\U) C V\mclA C
VNA=U,ie,U=V\rpcl A.

The converse implication is obvious.

If F € comy, then X\F = V\1acl A, where V € (2,1)-OD(X) and
A € (1,2)-ND(X). Hence F = (X\V)UclA = BUmclA with B €
(2,1)-CD(X).

Below we will define and study important modifications of the notions
of a set dense in itself, a perfect set and a scattered set.

Definition 2.7. A subset A of a BS (X, 71,72) is (i,j)-dense in itself
if AﬁCA? [9].

The family of all subsets of X, (i, j)-dense in themselves, (i-discrete) is
denoted by (i,7)-DZ(X) (i-Z(X)).

Theorem 2.5. Let (X, 71,72) be a BS. Then

(1) 1-DI(X) U2-DI(X) C (1,2)-DI(X) = (2,1)-DI(X) and
in a BS (X, 71 < 7o) we also have
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(2) 2-DI(X) C 1-DI(X) = (1,2)-DI(X) = (2,1)-DI(X), 1-I(X) C 2-I(X).

Proof. 1t is clear that the inclusion in (1) follows from the equality in
(1) and thus it suffices to prove only the equality.
Let A € (i,5)-DZ(X). Then A} C A so that X\A} C X\Al Hence
N (X\A;-l) C AN (X\A)), ie., A\A;l C A\A! and A; C A\A! C AZ. Thus
A € (j,i)-DI(X).
(2) 71 C 72 implies that AS C A9 and A% C A} for every subset A C X,
e., 2DI(X) C 1-DZ(X) and 1-Z(X) C 2-Z(X). By Definition 2.7, A €
(1,2)-DI(X) <= A% C A4. Hence AY C A = Al = @ = A C A} <=
A € 1-DI(X).
From this theorem we conclude that if in a BS (X, 71 < m2) a set A C
X has at least one l-isolated point, then A€1-DZ(X) = (1,2)-DZ(X) =
(2,1)-DI(X).
By the first equality in (1) of Theorem 2.5 it suffices to consider only
the family (1,2)-DZ(X).

Example 2.3. Suppose we are given the BS (R, 711,72), where 71 =
w is the natural topology on R, o is the discrete topology on R and A =

{1, 5’ éull .} CR. Then Ad = {0} and therefore A} = A\Ad A, AL = A

and A$ = @. Hence A€ (1, 2) DI(R).

The converse of the first inclusion in Theorem 2.5 does hold in general.

Example 2.4. Suppose 1 is the antidiscrete topology on R, 79 = w is
the natural topology on R and a subset A C R is the same as in Example 2.3.
Then A} = @, A} =R, A = A and AY = {0}. Hence A} = @ implies that
A € 1-DI(R) = (1,2)-DI(R), but A€2-DI(R) since A} # @.

Theorem 2.6. In a BS (X, 71,72) any union of sets (1,2)-dense in

themselves is (1,2)-dense in itself.

Proof. Let {As}ses be any family of sets (1, 2)-dense in themselves so

that (A )8 = (A:\(As)9) C (As)d for every s € S. It is well known that
A h A A A A¢

sgS( ) ( U )1 and hence (sgS S)\(sgs 8)1 < sgS S\ sgS ( S)l <

U (As\(4 )) U (403 € (U A3,

If there exists aset A € i-D(X) Ni-Bd(X), then by virtue of Theorem
4 from [17, p. 83], X € i-DZ(X) C (1,2)-DZ(X). Based on this fact, our next
theorem gives examples of new members of the family (1,2)-DZ(X).

Theorem 2.7. For every subset A of a BS (X, 71 < 12) we have
71 int(1,2)-Fr A, AN int(1,2)-Fr A € (1,2)-DI(X).
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Proof. Asis well-known, if U € 71 and A C X is any set, then 7 cl(UN
11 clA) = 7 cl(U N A). Therefore 7 cl(UNA) =7 cl(UNmycl A).

Let U = 11 int(1,2)-Fr A = 71 int(2, 1)-Fr(X\ A). Then it is obvious that
ncU=mncd(UNmcA)=rnc(UNA)and 71 clU =7 cl(UNmcl(X\A)) =
7 c(UN(X\A)) = 11 cl(U\A), ie.,

T1cl7int(1,2)-Fr A =
(1) =7 cl(AN7 int(1,2)-Fr A) = 7y cl(7 int(1, 2)-Fr A\ A).

The first equality in (1) shows that the set A N 71int(1,2)-Fr A is 1-
dense in 7 int(1,2)-Fr A. Moreover, (1) also implies that 71 int(1,2)-Fr A C
71 cl(my int(1, 2)-Fr A\A) C 71 cl(m int(1, 2)-Fr A\ (AN int(1,2)-Fr A)) so that
AN 7 int(1,2)-Fr A is the 1-boundary in 7 int(1,2) Fr A [17, p. 76]. Hence
by virtue of the remark preceding this theorem and Theorem 2.5 we obtain
mint(1,2)-Fr A € 1-DI(X) = (1,2)-DI(X). Since A N 7 int(1,2)-Fr A is 1-
dense in 77 int(1,2)-Fr A, where 71 int(1,2)-Fr A € 1-DZ(X) = (1,2)-DZ(X),
by virtue of Theorem 3 from [17, p. 83] we obtain A N 7yint(1,2)-Fr A €
1-DI(X) = (1,2)-DZ(X).

Definition 2.8. A subset A of a BS (X, 71, 712) is (i, ])-perfect if A; C
Adc A 9]

The family of all (i, j)-perfect subsets of X is denoted by (i,j)P(X).
Hence (i,j)P(X) =cor;N(1,2)-DI(X).

Theorem 2.8. In a BS (X, 11, 72) we have i°P(X) C (i,7)P(X) and in
a BS (X,71 < 72) we have (1,2)P(X) = 1P(X) C (2,1)P(X) D 2P(X) C
1-DI(X).

Proof. By (1) of Theorem 2.5, i-P(X) = cor; Ni-DZ(X) C cor; N
1,2)-DI(X) = (i,7)-P(X). Further, if 71 C 7o, then by (2) of Theorem 2.5,
1,2)-P(X) = cory N (1,2)-DI(X) = cory N 1-DZ(X) = 1-P(X) C coma N
1,2)-DZ(X) = (2,1)P(X). Finally, 2P(X) = cors N 2-DI(X) C 2-DI(X) C
-DZI(X) and 2-P(X) = comm N 2-DZ(X) C com2 N (2,1)-DI(X) = coma N
1,2)-DI(X) = (2,1)P(X).

The inverse inclusions in the latter theorem are not, generally speaking,
correct.

Example 2.5. Let (R,71,72) be the BS from the previous example. If
A = {1,%,%,%,...,0}, then A% = @, A9 = {0} and hence A} C A C A
so that A € (2,1)P(R). But AS2P(R) since A # Al. It is likewise easy to
observe that for the set 7 we have 7\, = @, 7% = R, 7 = 7 and 74 = @.
Hence 7 € (2,1)P(R) but Z€ (1,2)-P(R) since R = Z$ is not contained in Z.
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Theorem 2.9. For a j-T1 BS (X, 71, m) we have j-Cl(1,2)-DI(X)C
(4,1)P(X).

Proof. We will show that A¢ C A? = (15cl A)t C (75l A)? C 7jclA.

Clearly, (7;cl A)? C 1;cl(rjcl A) = 7jcl A. Further, (1jcl A)! = 7 cl A\
(rjcl A) = (AU AP\ (AU AT = (AU AD\(A7 U (AD) = (AU AD)\A%)
(AU AD\(AD)) = ((A\AD) U (A0 AD) 1 ((A\(AD)) U (AN (AD)9)). Since
A?\Ald C A;-l and A\A¢ = Al C A;-l, we conclude that the union in the first
brackets above is contained in A;-l. Hence the set (7;cl A)!, being the meet,
is completely contained in A;-l. But A;l = (15cl A);l and therefore (1jcl A)! C
(Tj CIA)? CTy cl A.

Using the equality (1,2)-DZ(X) = (2,1)-DZ(X), we introduce

Definition 2.9. A subset A of a BS (X, 71,72) is (i,])-scattered if A
is nonempty and contains no nonempty (i,7)-dense in itself subset [9].

The family of all (4, j)-scattered subsets of X is denoted by (i, j)-S7 (X).
It is clear that (1,2)-DZ(X) = (2,1)-DI(X) = (1,2)-ST(X) = (2,1)-
ST(X).

The latter definition and Theorem 2.5 readily yield

Theorem 2.10. The following conditions are satisfied in a BS (X, 71, 72):
(1) (1,2)-ST(X) Cc 1-ST(X)N2-ST(X).
(2) A€ (1,2)-ST(X) and BC A, B# 2 — B e (1,2)-ST(X).

In a BS (X, 71 < 72) we also have
(3) 1-8ST(X) = (1,2)-ST(X).

Remark 2.1. Let (R, 7,72) be the BS from Example 2.4, where A=
{1,1,2,14,...}€ 1-DI(R) = (1,2)-DI(R). If @ # B C A is any subset,
then B € 1-DZ(R) = (1,2)-DZ(R) so that A€1-ST(R) = (1,2)-S7 (R). But
B C A= BY c A} = {0} and therefore BN B = @. Hence B€2-DI(R)
and, since B C A is arbitrary, we obtain A € 2-ST (R).

Note further that following Example 2.4 and the above remark we have
A={1, %, %, i, ...} €2-Z(R) and A€ (1,2)-S7 (R) and thus, generally speak-
ing, the family ¢-Z(X) is not contained in (1,2)-87 (R). However we have

Theorem 2.11. If in a BS (X, 71,72) a set A € i-Z(X) and for every

subset B C A we have B € j-DI(X), then A € (1,2)-8T (X).

Proof. Assume that A € -Z(X) and B C A is an arbitrary subset.
Then B € i-Z(X), and B € j-DZ(X) implies that B; # @. Since BN Bl = @
and B;- C B, we obtain B; N B = @ so that BE (1,2)-DZ(X). Therefore we
have A € (1,2)-S7 (X) since B C A is arbitrary.
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Theorem 2.12. Let (X, 71,72) be a R-p-T(<= d-T1) BS [20]. Then
X = AU(X\A), where A € (1,2)-P(X)N(2,1)-P(X) and X\A € (1,2)-ST (X)
(it stands to reason that one of these subsets may turn out empty).

Proof. Assume that A = U{F : E € (1,2)-DZ(X)}. Then by The-
orem 2.6, A € (1,2)-DZ(X). It follows from Definition 2.8 and Theorem 2.9
that 75clA € (j,9)-P(X) C (1,2)-DZ(X). Recalling that A is maximal, we
obtain A € cor; Ncom and therefore A = 1 clA = pclA € (1,2)P(X) N
(2,1)-P(X). It is likewise clear that X'\ A contains no nonempty (1, 2)-dense
in itself subset and thus X\A4 € (1,2)-S7 (X).

The latter theorem shows that the maximal (1,2)-dense in itself subset
of a BS (X, 71, 7) is both 1- and 2-closed.

Theorem 2.13. In a BS (X, 71 < 1) for every set A € (1,2)-S7(X)
we have (1,2)-Fr A € (1,2)-ND(X).

Proof. By Theorem 2.7 the set AN 7 int(1,2)-Fr A € (1,2)-DZ(X)
and therefore it is empty since A € (1,2)-S7 (X). Moreover, since AN7; int(1,2)
-Fr A is 1-dense in 7 int(1, 2)-Fr A, the latter set is also empty, i.e., (1,2)-Fr A €
cote N1-Bd(X) C (1,2)-ND(X).

By virtue of Theorems 2.5 and 2.10, in a BS (X, 71 < 72) all results
that hold for the families 1-DZ(X) and 1-S7 (X) also hold for the families
(1,2)-DI(X) and (1,2)-S7 (X), respectively.

Now we will show when the inverse of the last inclusion in Theorem 2.8
is fair.

The coupling of topologies, i.e., the C-relation was defined by J. Weston
in [26] to generalize some well-known theorems on topological groups and
linear spaces and to connect the same properties of the coupled topologies.

Definition 2.10. A topology 11 is coupled to a topology 7o on a set X
(briefly, T1C12) if 71 clU C moclU for every set U € 1.

From this definition we immediately find that if m = cory, then 7 is
coupled to every topology on X so that the antidiscrete topology on X as
well as the discrete topology on X is coupled to every topology on X. In
our notations Cme AT C 7o <= 11 <¢ T2 and a set X together with the
topologies 71Cy (11 <¢ T2) is denoted by (X, 71C1m) (X, 71 <¢ m2)).

Theorem 2.14. The following conditions are equivalent in a
BS (X,Tl,TQ).'

(1) 11 is coupled to .
(2) miclmint A C moclmint A so that oint 7y cl A C 7 int 71 cl A for every

subset A C X.
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(8) miclmint A C mpclA so that oint A C 7pint 7y cl A for every subset
AcCX.

(4) 71 <c sup(11, T2).
(5) For every point x € X the 1-closure of any 2-neighborhood of x is a
1-netghborhood of x.

Proof. The equivalences (1) <= (4) <= (5) are proved in Theorems
2 and 5 of [26]. (1) <= (2) is obvious by Definition 2.10. If (3) is satisfied,
then 7 cl A C 7o cl A for every 1-open set A so that (3) = (1) <= (2). Since
(2) = (3) is evident, we obtain (2) <= (3).

Corollary. The following conditions are equivalent in a BS (X, 7 <
To):
(1) 1 <c T2.
(2) miclmint A= moclmint A so that 7 int 1y cl A = 7o int 7y cl A for every
subset A C X.

Proof. (1) and (2) are immediate consequences of Definition 2.10 and
(2) of Theorem 2.14.

Example 2.6. Let X = {a,b,c,d}, 1 = {&,{a,b},{a,b,c}, X} and
7o = {9,{a,b},{a,b,c},{a,b,d}, X}. Then 11 <c T2. Let us consider the set
F ={c,d} € cor; C cora. Then for the subset {d} of a BS (Y, 7], 75) we have
1 int 7 cl{d} = @ and 75 int{d} = {d}, i.e., 7| is not coupled to 4.

Definition 2.11. A topology T is i-strongly coupled to a topology To
on a set X (briefly, mC(i)12) if the C-relation is hereditary with respect to
i-closed subsets of X [9].

Example 2.7. Let X = {a,b,c,d}, 11 = {9,{a,b,c}, X} and 7o =
{2,{a,b},{a,b,c}, X}. Then 11 <cpy T2

Theorem 2.15. If(X,71 <¢(g) 72) is a 1-T1 BS, then co nN1-DI(X) =
2P(X).

Proof. Let F € coroN1-DZ(X). Following the condition, 7{ <¢ 74 in
(F,{,75) and, by (5) of Corollary 2 of Theorem 2.2.1 in [11], F} = Fi = @
since F' € 1-DIZ(X). Hence F C F¢, ie., F € 2DI(X) so that F € cora N
2-DI(X) = 2-P(X) and thus com2N1-DZ(X) C 2P(X). The inverse inclusion
follows from (2) of Theorem 2.5.

Theorem 2.16. Let (X, 71,72) be a BS and X € (1,2)-DZ(X). Then
Ae(nnmn)UDX)N2D(X)) implies that A € (1,2)-DI(X).
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Proof. Assume that A € 71N7y so that F' = X\ A € coriNcoTs. Then
Ff C F and thus (X\F)\(X\F){ ¢ (X\F)\(X{\F{) C (X\F)\(X{\F) =
(X\F\XHUF = ((X\F)U F)\X{ = X\X¢. On the other hand, ((X\F)\
(X\F)YH)NF = @ and thus (X\F)\(X\F){ ¢ (X\X{)\F. But the inclusions
X\X¢ ¢ X§ and F C F imply that (X\F)\(X\F)¢ ¢ X¢\F¢ c (X\F)4 so
that A\A{ C A4, ie., A € (1,2)-DI(X).

Now let A € 1-D(X)N2-D(X). Then A¢ = X¢ and X € (1,2)-DZ(X) <=
X\X¢ c X¢ implies that X\A9 C A¢. Therefore A\AJ C A{, ie., A €
(1,2)-DI(X).

Corollary. Let (X, 71 < 72) be a BS and X € (1,2)-DZ(X). Then
A€ U2D(X) implies A € (1,2)-DI(X).

We finish the discussion of (i, j)-perfect sets with the proof of the bitopo-
logical modification of Cantor—Bendixson’s theorem. In this context recall that
inaBS (X, 71 <me)aset A€ (1,2)-DI(X)ifandonlyif U € 7 and UNA # &
implies U N A is infinite, and a point x € X is an i-condensation point of a
set A € 2% if each i-open neighborhood U(x) meets A in an uncountable set.
The set of all i-condensation points of A is denoted by AY.

Theorem 2.17. Let (X, 71 < 72) be a 1-T1 and 1-second countable BS.
Then any uncountable 2-closed set F' contains a set A € cooN(1,2)-DI(X) =
(2,1):P(X). Moreover, FY = FY = 1 cl A.

Proof. Let ' € com be an uncountable set and U;,Us,... be a
countable base of 1-open sets. Suppose that Vi, V5, ... are those of the sets
Uy,Us, ... which meet F' in a countable set. Clearly, the sequence Vi, Vs, ...
may be finite or infinite. If A = F'\ L]g Vi, then 7 C 75 implies A € com and

F = (A\ %{J Vi) U (%Vk NF)=AU (%Vk N F). Since F' is uncountable and
L]ng N F' is countable, A = F'\ % Vi is uncountable and therefore non-empty.

It remains to prove only that A € (1,2)-DZ(X). But But we would
rather prove that A C AY, i.e., each point x € A is a 1-condensation point
of A so that U(x) € 7 gives |U(x) N A| > Ng. Indeed, let U(z) € 71 be any
neighborhood. Then there is a set U, from the 1-countable base Uy, Us, ...
such that © € U, C U(z). It is evident that U, # Vj for each k since the
contrary implies x € F'\ i) Vi = A. This means that |[F' N U,| > Ny. Since A

differs from F' in merely a countable set, it follows that |A N U, | > Ry. But
ANU, C AnU(x) so that |[ANU(z)| > Ng, and hence A C A. Therefore
A C A¢ and thus A € com N (1,2)-DI(X) = (2,1)-P(X). Now we have A C
AY € A? so that Ty clA C mclAY = AY € 7 cl A9 = A¢ C 71 cl A. Therefore
AY = 71 cl A. Finally, F{ = (AU (L]ng NF)Y =AU (L]ng NF)Y =AY =7 clA.
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Corollary. Under the hypotheses of Theorem 2.17 for any uncountable
set B € 2% there is an uncountable subset A C B such that A € (1,2)-DI(X).

Proof. Let B € 2% be any uncountable set. Then the result follows
directly from the proof of Theorem 2.18 omitting the remark that A is 2-
closed.

Definition 2.12. A family B of subsets of a TS (X, 7) is a pseudobase
of the topology T if the following conditions are satisfied:
(1) Be B= intB # @.
(2) For every subset U € T\{@} there exists a set B € B such that B C U.

By [25] this definition leads to the equivalence relation on the family of
all topologies on a set X.

Definition 2.13. Topologies 11 and 7o on a set X are S-related (briefly,
T1572) if M\{@} is a pseudobase for Ta.

A set X together with the S-related topologies 71 and 7 is denoted by
(X, 1157).

Remark 2.2. The S-relation between two topologies on a set X is es-
pecially important by Proposition 3.4 from [25], following which if one term of
the S-equivalence class is Baire, then all members of this class are also Baire.

Example 2.8. Let (R,s,7) be a BS, where s is the half-open interval
topology, i.e., the Sorgenfrey topology on R so that basic open sets for s are
of the form [a,b) and T is the topology with basic open sets of the form (a,b].
It is clear that neither topology is finer than the other, inf(s,7) = sNT = w is
the natural topology on R, sup(s,T) is the discrete topology on R. Moreover,
sSt, sSinf(s,7) and 7S inf(s, 7). Hence, by Remark 2.2, the Sorgenfrey line,
i.e., R with the Sorgenfrey topology is a Baire space since sSinf(s,T), and the
natural topology is Baire [25].

Theorem 2.18. The following conditions are equivalent in a BS
(X, Tl,TQ).'
(1) 7y is S-related to T2.
(2) 1-Bd(X) =2-Bd(X) = (1,2)-Bd(X) = (2,1)-Bd(X) so that
1D(X)=2D(X)=(1,2)D(X) =(2,1)D(X).
(3) mint AC mclmint AATint A C ol rint A so that
TintaclAC TiclAATintTicl A C ocl A for every subset A C X.
(4) 71 C(2,1)-SO(X) A12 C (1,2)-SO(X) so that
cor C (2,1)-SC(X) ANcom C (1,2)-SC(X).
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Proof. It is clear that (1-Bd(X) = 2-Bd(X)) <= (nint A # @ <=
Toint A # & for every subset A C X). Thus, by Proposition 1.1.2 in [11], for
the equivalence (1) <= (2) it is enough to show that (1)<= (71int A #
@ <= myint A # @ for every subset A C X).

We assume that .57, i.e., 71\{@} is a pseudobase for 79, and A C X is
any subset. If 71 int A # &, then, by (1) of Definition 2.12, 79 int 71 int A # @&
and hence mpint A # @. When mpint A # &, by (2) of Definition 2.12 there
exists a set V € 71\{@} such that V' C 7oint A. Thus 7y int 7oint A # & so
that m int A # @.

On the other hand, let U € 71\{@}. Then nnintU # @. If U € m\{@},
we have @ # V = 1 int U C U and consequently 71\{@} is a pseudobase for
To.

Therefore (1) <= (2).

The implication (1) = (3) is exactly Proposition 3.3 from [25] and
(3) = (2) < (1) is obvious.

(3) <= (4) is an immediate consequence of Theorem 1.3.3 in [11].

It is likewise easy to see that if 7 = w is the natural topology on R and
79 is the discrete topology on R, then 7 is not S-related to 7.

Note that in the sequel it will be assumed that 7 SToAT C o <= 71 <g To
and the coresponding BS will be denoted by (X, 71 <g T2).

Remark 2.3. [t is not difficult to see that 71 <g 70 <= 71 C T C
(1,2)-SO(X) C (2,1)-SO(X) since) C 7o = (1,2)-SO(X) C (2,1)-SO(X).

Definition 2.14. A topology 11 is near a topology T2 on a set X (briefly,
TINT2) if T1clU C 1o clU for every set U € o [9].

Example 2.9. Let (R,w1,w2) be the natural BS [11]. Then w; is neither
S-related to w; nor coupled to w;; however w; is near w;.

In contrast to the S-relation, the N-relation, like the C-relation, is not
symmetric.

Example 2.10. Let X = {a,b,c}, 11 = {@,{a,b},X} and m» = {2, {a},
{b},{a,b},{b,c},X}. Then 75N1 since 71 C T2, but 71 is not near 7> since
for the set {b,c} € T2 we have 1 cl{b,c} = X and T cl{b,c} = {b,c}.

It is evident that m <y 1 <= N AT C 7.

Example 2.11. Let X be any set such that a, b € X, a # b, implies

that X\{a,b} # @. If n = {@,{a}, X\{a}, X}, o = {2,{a}, X\{a},{b},
{a,b}, X'}, then 11 <y To.

Theorem 2.19. The following conditions are equivalent in a BS
(X,Tl,TQ).'
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(1) 1 is near T5.
(2) Ticlmyint A C moclmpint A so that Toint o cl A C 7y int 7o cl A for every
subset A C X.

(8) miclmyint A C moclA so that oint A C 1pint o cl A for every subset
AcCX.

(4) For every point x € X the 2-closure of any 2-neighborhood of x is a
1-netghborhood of x.

Proof. It is obvious that (1) <= (2) = (3). If (3) is satisfied, then
T1clU C 1o clU for every set U € 1o, ie., (3) = (1).

(1) = (4) Let € X be any point and U (z) be its any 2-neighborhood.
It can be assumed without loss of generality that U(xz) € 15. Then V =
X\mpclU(z) € 7 and, by (1), mclV C meclV. If Vi = X\ clV, then
Vi=X\mic(X\meclU(z)) = mint o clU(z) C 1o clU(x). Furthermore, x €
rcdlU(r) = z€X\ncU(r) = nint(X\U(x)). Since mint(X\U(z)) N
U(x) = @, we obtain mclnint(X\U(z)) N U(zx) = &. Hence x€
Tocl(X\mclU(z)) = mpclV and 71 clV C m9clV implies x €71 ¢l V so that
x € Vi3 = X\mclV. Thus Vj is a l-open neighborhood of = such that
Vi C U(:C)

(4) = (1) Suppose that U € 72 is any set and = € 7 clU is an arbitrary
point. If U(x) is any 2-open neighborhood of x, then by (4) there exists a set
V € 11 such that x € V C mclU(x). It is clear that VN U # & so that
TclU(x) NU # @. Hence U(z) NU # @ and U(x) € 7 being arbitrary
implies that © € 5 clU.

Corollary. For a BS (X, 71, m) we have
T clU =1clU for every set U € <= 11 <y o =71 clV =7mclV
for every set V € 11 <= 1 <¢ To.

A nontrivial example of the near topologies is given in [3]: if (X, ) is
a compact space with the first axiom of countability, where |U| > X, for each
Uen\{@}and m ={U\A: U em, ACX, |Al <Ny}, then 71 C 7 and
the BS (X,Tl < 7'2) is (X,Tl <N TQ).

At the end of this paragraph we will consider three operators on 2%,
characterizing not only the degrees of nearness of the four boundaries of a
set and the S-, C- and N-relations, but also interrelations of the dimension
functions in §2.

Definition 2.15. In a BS (X, 7 < 73) the indicators of near”ess of the
boundaries are the”following three operators: ny, ng, n : 2% — (2,1)-LC(X)
defined as follows: n1(A) = 1 clA\mpclA, ny(A) = mint A\ int A and
n(A) =n;(A) Uny(A) for each set A € 2X.
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It is evident that n;(A) = n;(X\A) so that n(4) = n(X\A) for each
set A € 2%, ni/eor, = N2/r, = N/rncor, = @ and therefore n/;, = ny,

n/con = Nj.

Theorem 2.20. In aBS (X, < 72) the operators ny, ny and n satisfy
the following conditions:

(1) (1,2)-Fr A = 2Fr AUn;(A) = 2-Fr AAn(A), (2,1)-Fr A = 2Fr AU
ny(A) = 2-FrAAny(A), 1-FrA = (1,2)-FrA U ny(4) = (1,2)-Fr
AAny(A) = (2,1)-FrAun;(A) = (2,1)-Fr AAn;(A) = 2-Fr AUn(A) =
2-Fr AAn(A) for each set A € 2.

(2) A € mN(com\cor) = n(4) = ni(A) = 1-Fr4 = (1,2)-Fr A,
(2,1)-FrA=2FrA=0.

A€ (m\m)Ncomm=n(A) =ng(A) =1-Fr A= (2,1)-Fr A, (1,2)-FrA =
2-FrA=0.

A€ (m\m)N(com\com) = ni1(A) = (1,2)-Fr A, na(A) = (2,1)-Fr A4,
n(A)=1FrA 2-FrA=0.

(3) A € 220D(X) = ni(4) € (L,2)ND(X), A € (1,2)-OD(X) =
n(4) € 1ND(X), A € (2,1)-OD(X) = n;(A) € 2ND(X), A €
(1,2)-OD(X) N (1,2)-SC(X) = ny(A) € (2, 1) ND(X) so that
A € 2-CD(X) = ny(A) € (1,2)-ND(X), A € (1,2)- CD(X) =
ny(A) € 1-ND(X), A € (2,1)-CD(X) = ny(A) € 2-ND(X), A €

)
(1,2)-CD(X) N (1,2)-SO(X) = ny(A) € (2,1)-ND(X).
(4) 1C1o <= n1(U) = @ for each set U € 11 <= ny(F) = & for each set
F ecor.
TINTy <= n1(U) = & for each set U € 19 <= ny(F) = & for each set
F e com.
1187 <= ny(A) € 2-Bd(X) for each set A € 2% <= ny(A) € 2-Bd(X)
for each set A € 2% <= n(A) € 2-Bd(X) for each set A € 2%.
(5) A€ (2,1)-DI(X) = (1,2)-DI(X) = 1-DI(X) <= Ai C ny(A).

Proof. (1) (1,2)-FrA = mclANmc(X\A) = (n1(A) Umcld) N
T cl(X\A) = 2-FrAuUmn;(4) = 2-Fr AAn;(A). By (4) of Theorem 1.3.1
n [11], (2,1)-FrA = (1,2)-Fr(X\A) = 2-Fr(X\A4) Un;(X\A) = 2-FrA U
ny(A) = 2-Fr AAny(A). I-FrA=mcdAN7mcl(X\A) =71 clAN(n (X\A)U
T cl(X\A)) = (1,2)-Fr AUny(A4) = (1,2)-Fr AAns(A) = (n1(A) Umacl A) N
T cl(X\A) = (2,1)-FrAUun;(4) = (2,1)-FrAAn;(A) = (n1(A) UnaclA) N
(1 (X\A) U cl(X\A)) = 2-Fr Aun(A4) = 2-Fr AAn(A).

(2) A € mmn(com\cor) = n(A) = n1(A) = nclAN(X\A) =
Tl ANt c(X\A) = 1-FrA =1l AN c(X\A) = (1,2)-Fr A, (2,1)-Fr A =
2-Fr A = @ is evident.
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A€ (m\m)Ncorm = n(A) = ny(4) = ANmc(X\A) = rclANn
T cl(X\A) = 1-Fr A = el AN7 cl(X\A) = (2,1)-Fr A, (1,2)-FrA=2-Fr A=
O is evident.

A € (\m) N (com\cor) = n1(A) = ncdAN(X\A) = ryclAN
T cl(X\A) = (1,2)-Fr A4, ny(A) = Anmnc(X\A) = nclANrc(X\A) =
(2,1)-Fr A, n(A) = (1,2)-Fr AU(2,1)-Fr A = (1,2)-Fr AA(2,1)-Fr A = 1-Fr A,
2-Fr A = @ is evident.

(3) The proof consists of elementary calculations taking into account
the equality ni(A4) = ny(X\A) for each set A € 2%,

(4) The equivalences for 71C1y and 71 N1o are immediate consequences
of the corresponding Definitions 2.10 and 1.14.

If 71579, then, by (b) of 4.A.2 in [18], n;(A4) € 2-N'D(X) and ny(4) €
2-N'D(X) for each set A € 2%, Therefore ny(A) € 2-Bd(X), ny(A) € 2-Bd(X)
for each set A € 2% and thus n(A4) € 2-Bd(X) for each set A € 2.

Conversely, n(A) € 2-Bd(X) for each set A € 2% = n;(A) € 2-Bd(X)
and ng(A) € 2-Bd(X) for each set A € 2% = myint(rpint A\ int A) = &
for each set A € 2X =— mint A C 7o cl 7y int A for each set A € 2X — 1, C
(1,2)-SO(X) and by Remark 2.3, 7157.

(5) A € (2,1)-DI(X) = A} c A = (AP\AD) U A = A, C
(ANAD) = (AU AD\(A U A2) = ny(A). Conversely, A5 C ny(A) = A} C
AN AS c Af so that A € (2,1)-DI(X).

3. Dimension of Bitopological Spaces

In this paragraph, generalizing the notions of topological dimension, we
will assign a nonnegative integer to certain BS’s. Unlike the topological case,
the following six numbers will be assigned to a BS (X, 7, 72): (4,7)-ind X,
p-ind X, (4,7)-Ind X and p-Ind X.

We give in two distinct ways the equivalent definitions of the pairwise
small inductive dimension p-ind X for every nonnegative integer n.

Definition 3.1. Let (z, A) be a pair in a BS (X, 71,72) such that A €
cor; and x € A. Then a partition corresponding to the pair (x, A) is a p-closed
set T for which X\T is not p-connected so that X\T = H, where H = H1{UHj,
H; € Ti\{g}, HNHy=9% andx € H;, AC H;.

Remark 3.1. It is easy to verify that in a BS (X, 1, 72) the following
conditions are satisfied for a pair (z,A), where A € cot;, x € A:

(1) If there exists an i-open neighborhood U(x) (a j-open neighborhood U(A))
such that TjclU(x) C X\A (1;clU(A) € X\{z}), then the set (j,i)-
FrU(z) ((i,7)-FrU(A)) is the partition corresponding to (x,A) in the
sense of Definition 2.1.
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(2) If T is a partition corresponding to (z, A) in the sense of Definition 2.1,

then (j,4)-Fr H; C T.

Indeed, (1) X\(j,7)-FrU(z) = X\(rjclU(z) N (X\U(x)) = (X\7;¢cl
U(xz)) UU(x), where x € U(z) € 7, A C X\rjclU(z) € 75 and U(z) N
(X\7j clU(z) = @. The case in the brackets can be proved in a similar manner.

(2) Since (X\T,7{,73) is not p-connected we have H; € 7; Nco7; and
hence (3, 7)-Fr H;N(X\T) = (7 cl H;N(X\T))N((X\H;)N(X\T)) = 7 cl H;N
Hj =H;N Hj = @ so that (j,’L)—FI‘HZ cT.

Definition 3.2. Let (X, 71,7) be a BS and n denote a nonnegative
integer. We say that
(1) (i,7)-ind X = -1<= X =2.
(2) (i,7)-ind X < n if to every pair (x,A), where A € cot;, v €A, there
corresponds a partition T' such that (i,7)-ind T < n — 1.
(3) (i,7)-ind X = n if (i,7)-ind X < n and the inequality (i,7)-ind X <n—1
does not hold.
(4) (i,7)-ind X = oo if the inequality (i,j)-ind X < n does not hold for any
n.
As a rule, p-ind X <n <= (1,2)-ind X <nA(2,1)-ind X <n.

This definition immediately yields some simple properties of the intro-
duced functions.

Proposition 3.1. The following statements hold in a BS (X, 11, 72):
(1) If (i, j)-ind X is finite, then (X, 71, 72) is (i, j)-reqular. Therefore (11 <c
To A (2,1)-ind X < 00) or (11 <y 72 A 2-ind X < 00) = 71 = To.
(2) If (Y, 1{,75) is any BsS of (X, 71,72), then (i,7)-indY < (4,7))-ind X.

Proof. (1) Let (¢,j)-indX =n <oo.Ifz € X, F € cor; and z€F,
then by (2) of Definition 2.2 there exists a partition 7', i.e., X\T = H; U Ho,
H; € Ti\{g}, re H;, AC Hj and H; ﬁHj = &. Therefore (X, 7'1,7'2) is (’i,j)—
regular. For the rest of the proof it remains to use Corollary 3 of Theorem
2.2.1 in [11] and Theorem 1 in [26], respectively.

(2) It suffices to prove that (i, j)-ind X = k implies (7, j)-ind Y < k. For
k = —1, k = oo, the statement is correct. Let it be also correct for &k < n — 1.
We will prove the statement for k =n. If z € Y, A’ € cor] and £ € A’, then
there exists a set A € cor; such that A’ = ANY. Since (i, j)-ind X = n, to the
pair (z, A) there corresponds a partition 7" such that (i, j)-ind T < n—1. It is
obvious that 77 = T'NY is the partition corresponding to (x, A") in (Y, 77, 73).
Hence by the inductive assumption (¢0j)-ind7" <n—1as T C T.

Corollary 3.1. The following statements hold in BS (X, 71, 79):
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(1) If p-ind X is finite, then (X, 11, 72) is p-reqular.
(2) If (Y, 7{,75) is any BsS of (X, 11,72), then p-indY < p-ind X.

Corollary 3.2. Let (X,71,72) be a BS and n denote a nonnegative
integer. Then
(1) (i,7)-ind X < n <= for every point x € X and any i-neighborhood U (x)
there exists an i-open neighborhood V (z) such that 1jclV(z) C U(x)
and (i, j)-ind(j,7)-FrV(r) <n—1 <= (X, 71,72) has an i-base By such
that (i,7)-ind(j,7)-FrV <n —1 for every V € By.
(2) If (X, 71,m2) is i-second countable, then (i,7)-ind X < n <= (X, 11, 7)
has a countable i-base B; such that (i,7)-ind(j,7)-FrV <n—1 for every
V e B;.

Proof. It sufficessto prove only the first equivalence in (1). Let (i, j)-
indX < n, z € X and U(x) be any i-neighborhood. It can be assumed
without loss of generality that U(z) € 7;. Then for the pair (z, A = X\U(x))
there exists a partition T such that (¢,7)-indT < n — 1, X\T = Hy U Ho,
H, € Ti\{g}, re H;,, AC Hj and Hy N Hy = @. It is evident that Tj cl H; N
H; = @ so that 7jclH; C X\A = U(z). Let H; = V(z). Then x € V(z) C
rjclV(xz) C U(x) and, by (2) of Remark 2.1 and (2) of Proposition 2.1,
(,7)-ind(j,7)-Fr V(z) <n —1.

Conversely, let the condition in the right-hand part of the equivalence
be satisfied and (z, A), where A € coT;, x € A behany pair. Then U(z) = X\ A
is an ¢-open neighborhood of z and, by condition, there exists an i-open neigh-
borhood V' (z) such that 7;clV(z) C U(x) and (4, j)-ind(j,4)-Fr V(z) <n—1.
But following (1) of Remark 2.1, (j,7)-Fr V (z) is the partition corresponding
to (z, A) and thus it remains to apply (2) of Definition 2.2.

Proposition 3.2. If for a BS (X, 7, ™) we have (i,7)-ind X =n, n >
1, then for each k = 0,n — 1 the BS (X, 11,72) contains a p-closed subset Y
such that (i,7)-indY = k.

Proof. It is enough to show that X contains a p-closed subset Y such
that (i,7)-indY = n—1 since it is not difficult to see that p-Cl(Y) C p-Cl(X)
for every set Y € p-Cl(X). Since (7,j)-ind X > n — 1, there exist a point
x € X and an i-neighborhood U(x) such that for every i-open neighbor-
hood V (x) satisfying the condition 7;clV(xz) C U(x) we have (4, j)-ind(j, 7)-
FrV(z) > n — 2. On the other hand, since (4,j)-ind X < n, for the same
U(z) there exists an i-open neighborhood V' (x) such that 7; clV'(z) C U(x)
and (i,7)-ind(4,7)-Fr V'(z) < n — 1. By the above arguments we also ob-
tain (i, 7)-ind(j,4)-FrV'(xz) > n — 2. Therefore for the p-closed subset Y =
(4,9)-Fr V'(z) of (X, 71, 72) we have (i,7)-indY =n — 1.
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Corollary. If for a BS (X, 7 < m) we have (i,j)-ind X =n, n > 1,
then for each k = 0,n — 1 the BS (X, 71 < 72) contains a 2-closed subset Y
such that (i,7)-indY = k.

Recall that a BS (X, 71, 72) is p-normal if for every pair of disjoint sets
A, B in X, where A is 1-closed and B is 2-closed, there exist a 2-open set
U C X and a 1l-open V C X such that ACU, BCVand UNV =@ [15].

By analogy with the topological case, BS (X, 7y, 72) is hereditarily p-
normal if its every BsS is p-normal [6].

Theorem 3.1. If a R-p-Tq, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of two BsS’s Y and Z such that
(7,7)-indY <n and (i,7)-ind Z <0, then (i,7)-ind X <n+ 1.

Proof. Let z € X be any point and U(x) € 7; its any neighborhood.
Then by Theorem 2.10 below there exist disjoint sets U € 7; and V € 7; such
that z € U, X\U(x) C V and (X\(UUV))NZ = @. Clearly, z € U C U(x).
But (j,7)-FrU = 7;1UN(X\U) C (X\V)N(X\U) = X\(VUU)C X\Z CY
and, by (2) of Proposition 2.1, (i, j)-ind(j,4)-FrU < n. Thus (4, j)-ind X <
n+ 1.

Corollary. If a R-p -1, d-second countable and p-normal BS (X, 71, 72)

can be represented as the union of two BsS’s Y and Z such that p-indY < n
and p-ind Z <0, then p-ind X <n+1.

Theorem 3.2. If a 111, d-second countable and p-normal BS (X, 71 <
T9) can be represented as the union of two BsS’s Y and Z, where p-indY =
p-ind Z = 0 and one of them is 1-closed, then p-ind X = 0.

Proof. Let, for example Y € cor; C p-Cl(X). Then X\Y C Z and,
by (2) of Corollary 1 of Proposition 2.1, p-ind(X\Y) = 0, where X\Y € 7.
By Corollary of Proposition 0.1.3 in [11], the BS (X, 71 < 72) is p-perfectly
normal, i.e., 7; C j<F,(X) and hence X\Y € 2F,(X), e, X\Y = kﬁlek,
where Fj, € cory C p-Cl(X) and p-ind F, = 0 for every k = 1,00. On the
other hand, Y € p-Cl(X) and therefore X =Y U (X\Y) =Y U koleFk. Thus
it remains to use Corollary 2 of Theorem 2.11 below since (X, 7 < 73) is 11}
implies (X, 71 < 1) is R-p-17.

It is not difficult for one to verify that Theorem 2.2 remains valid if one
of sets Y and Z is 1-open.

Theorem 3.3. Let a R-p-:3, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fs, ... of p-closed
BsS’s such that (i,7)-ind F, < n for each k =1,00. Then (i,j)-ind X <n.
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Proof. We will apply induction with respect to the number n. For n =
0 the theorem has already been proved in Corollary 2 of Theorem 2.11 below.

Assume that the theorem holds for n — 1 and prove it for n. Let X = koleFk,
where Fy, = 11 cl Fi, N 1o cl Fy, and (i, j)-ind Fy, < n for each k = 1,00. By (2)
of Corollary 2 of Proposition 2.1, choose for £ = 1,00 a countable i-base Bf
for the BsS Fj such that (i,j)-ind(j,i)-FrU < n — 1 for every U € BY. By

the inductive assumption the BsS Y = {U(j,7)-FrU : U € koleB?} of the BS
(X, 11, 72) satisfies the inequality (7, j)-ind Y < n—1. Now, by the second part
of Corollary of Lemma 3.1.1 in [11], for each k = 1,00 the BsS Z; = F;\Y
of a BS (Fy, 71, 74) satisfies the inequality (7, j)-ind Zk < 0. Therefore, by Co-

rollary 2 of Theorem 2.11 below, the BsS Z = U Zk = X\Y of (X,71,7m)

satisfies the inequality (7, j)-ind Z < 0 because 1t follows from the equalities
Zk—Fk\Y F.NnZ = (TlchkﬂTgchk)ﬂZ (TlchkﬂZ) (TQClemZ)
that all the Z3’s are p-closed in Z. Thus, by virtue of Theorem 2.1, we have
(1,7)-ind X < n.

Corollary 3.1. Let a R-p-1, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fy, ... of p-closed
BsS’s such that p-ind F), < n for each k =1,00. Then p-ind X < n.

Corollary 3.2. Let a 1417, d-second countable and p-normal BS (X, 7 <
To) can be represented as the union of a sequence Fy, Fy, ... of i-closed sets,
where p-ind F, < n for each k = 1,00, then p-ind X < n.

Proof. Follows directly from the inclusions com C comy C p-Cl(X).

Corollary 3.3. If a R-p-1, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fy, ..., where ev-

ery Fy, is a countable union of p-closed sets, i.e., F, = OleF;“ andp-ind Fi, <n
p:
for each k = 1,00, then p-ind X < n.
Proof. By (2 ) of Proposition 2.1, p-ind sz < n for every k = 1, o0,

p=1,00 and X = U U sz
k=1 p=1

Corollary 3.4. If a 147, d-second countable and p-normal BS (X, 71 <
T9) can be represented as the union of two BsS’s Y and Z, where p-indY < n,
p-ind Z < n and one of them is 1-closed or 1-open, then p-ind X < n.

Proof. Let Y € 7. Then Y € 2:F,(X), so that ¥ = k@ole, where
Fy € cory C p-Cl(X) for each k = 1, 00. Since X\Y C Z, we have p-ind(X\Y)



46 B. Dvalishvili

< n. Clearly, p-ind Fj, < n for each k = 1, 00 and therefore p-ind X < n since
X=YUX\Y)= I:leFk U (X\Y). The proof for the 1-closed set is similar.

Theorem 3.4. For a R-p-Ti, d-second countable and p-normal BS
(X, 71,72) we have: (i,7)-ind X < n <= X can be represented as the union
of two BsS’s Y and Z such that (i,7)-indY <n —1 and (i,7)-ind Z < 0.

Proof. Let (i,7)-ind X < n. Then by (2) of Corollary 2 of Propositi-
on 2.1, X has a countable i-base B; such that (7, j)-ind(j,7)-FrU <n — 1 for
every U € B;. By Theorem 2.3, the BsS Y = U{(j,9)-FtU : U € B;} has
(i,7)-indY < n — 1 and, by the second part of Corollary of Lemma 3.1.1 in
[11], (4,7)-ind Z < 0, where Z = X\Y.

To complete the proof it suffices to apply Theorem 2.1.

Corollary. For a R-p -1, d-second countable and p-normal BS (X, 11, T2)
we have p-ind X < n <= X can be represented as the union of two BsS’s Y
and Z such that p-indY <n—1 and p-ind Z < 0.

Theorem 3.5. If (X,7,7) is a R-p-i, d-second countable and p-
normal BS such that p-ind X < n, then for every pair A € coT, B € comy
and ANB = & there exists a partition T between A and B such that p-ind T <
n — 1.

Proof. By Theorem 2.4, X = Y U Z, where p-indY < n — 1 and
p-ind Z < 0. Following Theorem 2.10 below, for A and B there exists a
partition 7" such that TN Z = @. Since T C X\Z C Y, we have p-ind T <
n—1.

Theorem 3.6. Let (X, 71,7) be a R-p -y, hereditarily p-normal BS
andY C X,Y bed-second countable and p-closed BsS such that p-indY < n.
Then for every pair A € coTy, B € come and ANB = & there exists a partition
T between A and B such that p-ind(TNY) <n — 1.

Proof. Since p-indY < n, by Corollary of Theorem 2.4, Y = PUQ,
where p-ind P <n—1, p-ind@Q < 0. Let A € cor;, B€comn and ANB = g.
Then ANY € cor{, BNY € comy in (Y,7],75) and hence, there exists
a partition 7" between ANY and B NY such that 7 C P and therefore
p-indT” < n — 1. By the second part of Lemma 2.3 below there exists a
partition 7' between A and B such that TNY C T". Thus p-ind(TNY) < n—1.

Theorem 3.7. For a d-second countable and p-normal BS (X, 71, 72)
we have: (i,7)-ind X < n <= X has a countable i-network N; such that
(i,7)-ind(j,i)-Fr N < n —1 for each N € N;.
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Proof. Since any i-base is an i-network, by (2) of Corollary 2 of Pro-
position 2.1 it suffices to prove only that if an i-second countable BS has an
i-network N = {Nj}32, such that (i, j)-ind(j,7)-Fr N <n — 1 for every k =

1,00, then (i,7)-ind X <n. Let Y = ;le(j,z‘)—Fr Ny and Z = X\Y. It follows

from Theorem 2.3 that (4, j)-ind Y < n—1. We will show that (4, j)-ind Z < 0.
For an arbitrary point # € Z and an i-neighborhood U(z) there is N, € N;
such that z € N C U(x). Since x € X\Y C X\(4,7)-Fr N, = X \(7jcI Ny N
7 cl(X\Ng)) = 75int(X\Ng) U 7;int Ny, we have x € Vi(z) = 7int Ny C
U(z). But (j,7)-FrVi(z) C (4,7)-Fr Ny and hence Z N (j,i)-Fr Vi (z) = @.
Thus, by the second part of Corollary of Lemma 3.1.1 in [11], (4, j)-ind Z < 0.
Therefore it remains to use Theorem 2.1.

Corollary. For a R-p-Ti, d-second countable and p-normal BS
(X,71,72) we have: p-ind X < n <= X has a countable 1-network N1 and
a countable 2-network Ny such that (1,2)-ind(2,1)-Fr N < n — 1 for each
N e N1 and (2,1)-ind(1,2)-Fr M <n — 1 for each M € Ns.

Recall that a point xg in a BS (X, 71, 72) is a point of tangency of topolo-
gies 71 and 7y if 71 and 7o coincide at xg, i.e., if for each 1-open neighborhood
U(zo) and each 2-open neighborhood V(z() there exist a 2-open neighbor-
hood V'(zp) and a 1-open neighborhood U’(xg) such that V'(zg) C U(xg)
and U'(zo) C V(z0) [2].

Theorem 3.8. The following conditions are satisfied in a BS (X, 71, 72):

(1) If 1 C T2, then (1,2)-ind X < 1-ind X A 2-ind X < (2,1)-ind X.

(2) If mCTta, then 1-ind X < (1,2)-ind X.

(3) If iNT2, then (2,1)-ind X < 2-ind X.

(4) o €nyi(A) for each A € 2% <= xq is a point of tangency of 1 and
7y = 2-indg, X < (1,2)-indyy X < l-indg, X A 2-indg, X < (2,1)-
ind;, X < 1-ind,, X.

Proof. (1) It is clear that the inequality (1,2)-ind X < 1-ind X holds
for 1-ind X = oco. Thus, assuming that 1-ind X = k£ < oo, we will show that
(1,2)-ind X < k. For k = —1 the required inequality is obvious. Let us assume
that this inequality is also correct for k < n — 1 and prove it for k = n. Since
l-ind X = n, for every point z € X and its any l-open neigbourhood U (x)
there exists an l-open neighborhood V(z) such that 7 clV(z) C U(z) and
1-ind(1-Fr V(z)) < n — 1. Clearly, 71 C 7o implies that 75 clV (z) C 71 cl V()
so that (2,1)-FrV(z) C 1-FrV(z). Hence by the monotonicity of the small
1-inductive dimension function we find that 1-ind(2,1)-FrV(z) < n — 1 and
by the inductive assumption (1,2)-ind(2,1)-Fr V(z) < n — 1. Thus for every
point x € X and its any l-open neighborhood U(x) there exists a 1-open
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neighborhood V' (z) such that mclV(z) C U(z) and (1,2)-ind(2,1)-Fr V(z) <
n — 1 so that (1,2)-ind X < n.

Furthermore, by analogy with the above reasoning we will prove that
2-ind X < (2,1)-ind X. Let us assume that this inequality holds for (2, 1)-ind X
=k < n—1and prove it for kK = n. Since (2, 1)-ind X = n, for every point = €
X and its any 2-open neighborhood U (x) there exists a 2-open neighborhood
V(z) such that 7 clV(z) C U(x) and (2,1)-ind(1,2)-FrV(z) < n — 1. But
71 C 7 implies that 7o cl V(x) C 71 cl V(x) so that 2-Fr V (z) C (1,2)-FrV (z).
Hence by the monotonicity of the small (2, 1)-inductive dimension function
we find that (2,1)-ind(2-FrV(z)) < n — 1 and, by the inductive assump-
tion, 2-ind(2-FrV(z)) < n — 1. Thus for every point x € X and its any 2-
open neighborhood U(x) there exists a 2-open neighborhood V' (x) such that
7o clV(z) C U(z) and 2-ind(2-Fr V(z)) < n — 1. Therefore 2-ind X < n.

(2) By analogy with (1) let us suppose that the required inequality is
correct for (1,2)-ind X = k < n—1 and prove it for k£ = n. If (1,2)-ind X = n,
then for every point x € X and its any 1-open neighborhood U (x) there exists
an 1-open neighborhood V' (z) such that 5 cl V(x) C U(x) and (1,2)-ind(2, 1)-
FrV(z) < n—1. But, by Definition 1.10, 7y cl1V(z) C 7o cl V(z) and therefore
1-FrV(z) C (2,1)-FrV(x). Hence by the monotonicity of the small (1,2)-
inductive dimension function we have (1,2)-ind(1-Fr V(z) < n —1 and by the
inductive assumption 1-ind(1-Fr V(z) < n — 1. Thus for every point x € X
and its any l-open neighborhood U(x) there exists an 1-open neighborhood
V(z) such that 7y clV(z) C U(z) and 1-ind(1-Fr V(z)) < n — 1. Therefore
1-ind X < n.

(3) Let us assume that the required inequality holds for 2-ind X =k <
n — 1 and prove it for k = n. Since 2-ind X = n, for every point x € X and
its any 2-open neighborhood U(x) there exists a 2-open neighborhood V()
such that mclV(z) C U(x) and 2-ind(2-FrV(z)) < n — 1. But, by Defini-
tion 1.14, 7y clV(x) C 1o clV(x) and thus (1,2)-FrV(z) C 2-FrV(x). Hence
because the small 2-inductive dimension function has the property of being
monotone we find that 2-ind(1,2)-FrV(z)) < n — 1 and by the inductive
assumption (2,1)-ind(1,2)-FrV(z) < n — 1. Thus for every point z € X and
its any 2-open neighborhood U(z) there exists a 2-open neighborhood V()
such that 7 clV(z) C U(x) and (2,1)-ind(1,2)-FrV(z) < n — 1. Therefore
(2,1)-ind X < n.

(4) First let us prove the equivalence. If ¢ € X is a tangency point
of 71 and 7, then zy € T1clA = 29 € Tpcl A for each A € 2¥ so that
zg€ny(A) for each A € 2X. Conversely, let 2o € ny(A) for each A € 25, If g
is not a tangency point of 71 and 7o, then there is a neighborhood U (xg) €
such that for each neighborhood V() € 7 we have V (z¢) N (X\U(x¢)) # 2.



The Strengthening and Weakening Instrument: Comparability of Topologies spaces 49

Therefore xg € 71 cl(X\U(z¢)). But xg € (X\U(xg)) = m2cl(X\U(x0))), ie.,
xo € n1(X\U(z9)), which is impossible.

Now let £y € X be a tangency point of 71 and 2. By (1) above it suffices
to prove only that 2-ind,, X < (1,2)-ind,, X A (2,1)-ind,, X < 1-ind,, X.

It is evident that the inequality 2-ind,, X < (1,2)-ind,, X holds for
(1,2)-ind,, X = oo. Thus, assuming that (1,2)-ind,, X = k < oo, we will
show that 2-ind;, X < k. For k = —1 the required inequality is obvious. Let
us suppose that this inequality is also correct for £ < n — 1 and prove it for
k =n. Let U(xy) € 12 be any neighborhood. Since z is a tangency point of 7
and 79, there is a neighborhood W (z¢) € 7o such that W (z¢) C U(xg) and, by
(1,2)-indg, X = n, there is a neighborhood V' (z¢) € 71 such that 7 cl V (zg) C
W (xo) and (1,2)-ind(2,1)-Fr V(zg) < n—1. By (2) of Proposition 2.1 we have
(1,2)-ind 2-Fr V' (z9) < (1,2)-ind(2,1)-Fr V(zp) < n — 1 and, by the inductive
assumption, 2-ind 2-Fr V' (zg) < n — 1. Thus for each U(xzy) € 7o there is
V(zo) € 1 C 7 such that m clV(zg) C U(zg) and 2-ind 2-Fr V(zp) < n — 1.
Hence 2-ind, X < n, i.e., 2-ind,, X < (1,2)-ind,, X.

By analogy with the first case let us suppose that the required in-
equality is correct for 1-ind,; X = k < n — 1 and prove it for k = n.
Let U(xg) € 19 be any neighborhood. Since xy is a tangency point of 71
and 79, there is a neighborhood W(zg) € 7 such that W(xg) C U(zo).
But 1-ind,, X = n and therefore there is a neighborhood V(z¢) € 71 such
that 7 clV(xg) C W(xzg) and 1-ind 1-Fr V(zgp) < n — 1. By the monotonic-
ity we have 1-ind(1,2)-Fr V(zg) < 1-ind 1-Fr V(zp) < n — 1. On the other
hand, by the inductive assumption, (2,1)-ind(1,2)-FrV(z9) < n — 1. Thus
for each U(xg) € 7o there is V(zg) € 71 C 7o such that 71 clV(zg) C
U(zp) and (2,1)-ind(1,2)-FrV(z9) < n — 1. Hence (2,1)-ind,, X < n, i.e.,
(2,1)-ind,, X < 1-ind,, X.

Definition 3.3. Let (A, B) be a pair of subsets of a BS (X, 71, 72),
where A € cot;, B € cot; and ANB = @. Then the partition corresponding to
(A, B) is a p-closed set T for which X\T = HiUHs, H; € ;\{@}, HHNHy =
@ and A C H;, BCHj.

Remark 3.2. In the sequel, without loss of generality, we will some-
times consider a pair (A, B), where A € cory, B € cotya and ANB = &.
As in Remark 2.1, it is easy to verify that in a BS (X, 71, 72) the following
conditions are satisfied for such a pair (A, B):

(1) If there exists a 2-open neighborhood U(A) (a 1-open neighborhood U(B))
such that 7 clU(A) C X\B (roclU(B) C X\A), then (1,2)-FrU(A)
((2,1)-FrU(B)) is the partition corresponding to (A, B) in the sense of
Definition 2.3.
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(2) If T is the partition corresponding to (A, B) in the sense of Definiti-
on 2.3, then (j,i)-Fr H; C T.

Definition 3.4. Let (X, 71,72) be a BS and n denote a nonnegative
integer. We say that:

(1) (i,j)-Ind X = -1<= X = 2.

(2) (i,7)-Ind X < n if to every pair (A, B), where A € cot;, B € cor; and
ANB = @, there corresponds a partition T' such that (i,7)-IndT < n—1.

(3) (1,7)-Ind X = n if (4,7)-Ind X < n and the inequality (i,7)-Ind X <
n — 1 does not hold.

(4) (i,7)-Ind X = oo if the inequality (i,j)-Ind X < n does not hold for any
n.

Naturally, p-Ind X <n <= (1,2)-Ind X <n A (2,1)-Ind X < n.

Lemma 3.1. Let T be a partition in a BS (X, 11, 72) which corresponds
to a pair of disjoint sets (A, B), where A € cory, B € com. If Y C X is a p-
closed set such that ANY # & # BNY, then the set T' = TNY is the partition
in a BsS (Y, 7{,75) corresponding to the pair (A’ =ANY, B =BNY).

Proof. By condition X\T' = Hy U Hy, where H; € 7,\{@}, HHNHy =
@, AC Hy, BC Hi. Hence T' = X\(Hl U HQ)

Let us consider the set Y\T" = Y\(X\(Hy, U Hy)) = (Y\(X\H1)) U
(Y\(X\H2))= (YNH;)U(YNHy) = H UH, where H] € T/\{@}, A" C Hj,
B H| and H, N H}) = o.

Lemma 3.2. If (A, B’) is a pair of disjoint sets in a p-closed BsS
(Y, 7{,75) of a BS (X, 71,72) such that A’ € cor| and B' € coT}, then there
exists a pair of disjoint sets (A, B) in (X, 71, 72) such that A € com;, B € coTo,
ANY =A" and BNY = B'.

Proof. The fact that Y is p-closed in (X, 7y, 72) implies Y = 11 clY N
oclY. Let A" € cor{, B € cory, in (Y,7],7) and A’ N B’ = @. Then there
are A € cor] in (ry 1Y, 7/, 7)) and B € co7l in (raclY, 7], 7)) such that
ANY = A and BNY = B'. It is evident that A € cor;, B € comy and

ANB=g.
Corollary. A p-closed BsS of a p-normal BS is also p-normal.

Proposition 3.3. The following statements hold in a BS (X, 11, 72):
(1) If (1,2)-Ind X or (2,1)-Ind X is finite, then (X, T1,72) is p-normal.
(2) For every p-closed BsS (Y, 7],7) of (X,71,72) we have (i,j)-IndY <
(i,7)-Ind X .
(3) If (X, 71,72) is a j-T1 BS, then (i,7)-ind X < (4,)-Ind X.
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Proof. (1) Is obvious.

(2) It suffices to prove that (i, j)-Ind X=k implies (4, j)-Ind Y < k. This
inequality is correct for £ = —1, k = oco. Let us assume that it is correct for
k <n—1 and prove it for k = n. If (A’, B') is a pair of disjoint sets such that
A" € cot} and B’ € co7;, then by Lemma 2.2 there exists a pair of disjoint
sets (A, B), where A € cot;, B€ coryand ANY = A", BNY = B'. Since
(i,7)-Ind X = n, there exists a partition 7" for (A, B) such that (i,j)-IndT" <
n—1. But by Lemma 2.1, T/ = TNY is the partition in (Y, 71, 74) corresponding
to the pair (A, B’). Hence, by the inductive assumption, (i,5)-Ind7’" <n —1
since T is p-closed in T so that (i,7)-IndY < n.

(3) Is clear.

Corollary 3.1. We have p-IndY < p-Ind X for every p-closed BsS
(Y, 7{,75) of a BS (X, 71, 72) and therefore if Y € comiUcoTa, then p-IndY <
p-Ind X. Moreover, if (X,11,72) is R-p-T1, then p-ind X < p-Ind X.

Corollary 3.2. Let (X, 71, 72) be a BS and n denote a nonnegative inte-
ger. Then (i,7)-Ind X < n <= for any j-closed set F' and any i-neighborhood
U(F) there exists an i-open neighborhood V (F) such that 7;clV (F) C U(F)
and (i,7)-Ind(j,7)-Fr V(F) <n — 1.

The proof of this corollary repeats in the main that of Corollary 2 of
Proposition 2.1, taking into account (2) of Remark 2.2 and (2) of Propositi-
on 2.3.

Corollary 3.3. If for a BS (X, 11, 72) we have (i,7)-Ind X =n (p-Ind

X =n), n > 1, then for each k = 0,n — 1, the BS (X, 71, 72) contains a
p-closed BsS (Y, 71, 75) such that (i,7)-IndY =k (p-IndY = k).

Proof. Issimilar to the proof of Proposition 2.2 with Corollary 2 taken
into account.

Proposition 3.4. The following equivalences hold for every BS
(X,Tl,TQ).'

(1,2)-Ind X = 0 <= (2,1)-Ind X =0 <= p-Ind X = 0.

Proof. Let (1,2)-Ind X =0, F' € cor; be any set and U(F') be its any
2-open neighborhood. Then X\U(F) C X\F. Hence there exists a set V €
71 N coTy such that X\U(F) C V C X\F and therefore F C X\V C U(F),
where X\V € 9 Ncory. Thus (2,1)-Ind X = 0.

The inverse implication can be proved in a similar manner.
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Theorem 3.9. If for a d-second countable BS (X, 11, 72) the equality
p-ind X = 0 holds, then for every pair of disjoint sets A € com, and B € comy

the empty set is a partition between them, i.e., there exists a set V € T9NcoTy
such that A CV and B C X\V and therefore p-Ind X = 0.

Proof. Since p-ind X = 0, for each point z € X there exists a set
U(z) € 1 Ncots or aset V(x) € 7o Ncory such that

(1) (ANU(z) =) or (BNV(z)=2).

It is evident that for the p-open cover U = {{U(z)},{V(z)}}zex of
X there is a countable subfamily ¢’ = {{U(xy) : k = 1,00}, {V(zp) : p =

1,00} } which is also a p-open cover of X . The sets Uy, = U (xy)\ UkV(xp) are 1-
p<

open and 2-closed for each k = 1,00 and the sets V}, = V(a:p)\ku U(xy) are 2-
<p

open and 1-closed for each p = 1, c0. Moreover, U" = {{Uj, : k=1,00},{V},:
p=1,00}} is also a p-open cover of X. It is obvious that Uy N A = & for each
k=1,00 and V, N B = @ for each p = 1,00. Let V.= U{V,,: ANV, # &}

Then A C V. Since BNV, = & for each p = 1, 00, we have Bﬁ(oﬁlvp) =
p:

and therefore B C X'\ EJole CX\U{V,: AnV,#o}=X\V.
p:

Corollary. If (X, 11,m2) is R-p Iy and d-second countable, then p -Ind
X =0<«=p-ind X =0.

Proof. By (3) of Proposition 2.3, p-Ind X = 0 = p-ind X = 0. The
inverse implication is an immediate consequence of Theorem 2.9 and Defini-
tion 2.4.

Lemma 3.3. Let (Y,7{,7) be a BsS of a hereditarily p-normal BS
(X,71,72) and A € cot, B € cors, AN B = &. Then for every partition
T' in the BsS (Y, 11, 75) between Y N1 clVy and Y N 1o clVa, where Vi and
Vo are 2-open and 1-open subsets of X respectively such that A C Vi, B C Va
and T clVi Nyl Vo = &, there exists a partition T in X between A and B
which satisfies the inclusion TNY C T".

If (Y, 7{,75) is a p-closed BsS of a hereditarily p-normal BS (X, 71, 72)
and A € cory, B € cora, ANB = &, then for every partition T' in (Y,1],75)
between ANY and BNY there exists a partition T in X between A and B
such that TNY C T".

Proof. By Corollary of Theorem 0.2.1 and the Corollary of Proposi-
tion 0.1.2 in [11] there exist V} € 7o, Vo € 71 such that A C Vi, B C W,
and 71 clVi NmpclVyo = @. On the other hand, since (Y, 7{,74) is p-normal,
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there are V{ € 75, V4 € 7{ such that Y NmyclVy C V/, Y NmpclVa C V3 and
VinVy=o.Let T" = Y\(V{ UVJ). It is evident that

(1) ANmcVy=2=BnNmcdVj.

Let us consider the BsS (V{ U VY, 7/, 7)), where V] € 7/, Vj € 7{. Tt is
also clear that
(2) VintcdVy =2 =V,nrclV/.

Thus by (1) and (2) we have 71 cl(AUV{)Nre cl(BUVY) = (AUT el V])N
(BUTyclVy) = @ and by Theorem 0.2.1 in [11] there exist Hy € 7o, Hy € 71
such that AUV] € H;, BUVY] C Hy and HiNHy = @. The set T = X \(H; U
H,) is a partition in X between A and B such that TNY =Y \(H, U Hy) C
Y\(VJ UVY) =T, ie., the first part is proved.

Now let (Y =7 clY NmeclY, 1, 7)) be a p-closed BsS of (X, 11, 72) and
T' =Y \(V{ UVJ) any partition between ANY € cor{ and BNY € coT} so
that ANY Cc V] e, BNY C Vy €rfand V/NVJ =@. Let V| € 74 in
(roelY, ', 7)) and VJ" € 7" in (myclY, 7], 7)) such that AN mclY C V/,
BnrcY c VJ" It Vi € 1o and Vi € 7 are the sets for which ViNmclY = V/
and VaoNrelY = V)", then

AN (7’2 ClY\Vl) =AN (TQ ClY\Vlll) =9
and
BN (rcY\V) = BN (rcdY\V)=2.

Thus A C X\(neclY\Vi) =U € mp, B C X\(ncdlY\W2) =V € 7.
Since AN B = @, there exist G € 79, H € 71 such that A C G, B C H and
GNH=g.Llet M =UNGen, N=VNHE&cr. Then AC M, BCN
and, by (4) of Proposition 0.1.2 in [11], there exist Q € 72, P € 71 such that
ACcQCcnced@QcU,BCPCmrncdPCVandmncd@QnNmncdP =o.1It
is evident that 1 clQNY Cc UNY = Y\(cdY\Vi) = V], mcdPNY C
VNY =Y\(riclY\Va) = VJ so that 77 = Y\ (V]/ U V) is a partition between
T cl@NY and 9 cl PNY. Hence, by the first part, there exists a partition T’
between A and B in X such that TNY c T".

Theorem 3.10. Let (X, 71,72) be a R-p 1, d-second countable and p-
normal BS, andY C X, p-IndY =0 (<= p-indY = 0). Then for every pair
of disjoint sets A € com, and B € coTy there exists a partition T between A
and B such that TNY = @.

Proof. Let us consider V; € 5, Vo € 7 such that A C V4, B C V5 and
T clViNmclVy = @. Then by Theorem 2.9 the empty set is a partition in Y
between Y N7y cl V) and Y N cl V. Thus it remains to use Lemma 2.3, since
by Corollary of Proposition 0.1.3 in [11], (X, 71, T2) is p-perfectly normal and
hence hereditarily p-normal.
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Theorem 3.11. If a d-second countable and hereditarily p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fy, ... of p-closed
sets, where (1,2)-Ind F,, = 0 (<= (2,1)-Ind F},, = 0 <= p-Ind F,, = 0) for
each n = 1,00, then (1,2)-Ind X = 0 (<= (2,1)-Ind X =0 <= p-Ind X =
0).

Proof. Let A € corm, B € cors and AN B = &. We will prove that
there exist G € 179, H € 71 such that

(1) ACG, BCH, GNH=9 and GUH = X,

i.e., the empty set is a partition between A and B.
Since (X, 71, T2) is hereditarily p-normal and hence p-normal, by Corol-
lary of Proposition 0.1.2 in [11], there exist Uy € 1o, Vi € 71 such that

(2) AcUy, BcCcVyand mclUgnNmclVy=a.

We will define inductively two sequences of 2-open and l-open sets
Uo,Uy,... and Vp, V1, ..., respectively, satisfying the following conditions for
each k = 0, oo:

(3) U1 CUgy, V1 CVipif k>1, and mpcUpNmyclVy =9,
(4) F, c U, UV, where Fy= 0.

Clearly, the sets Uy and V| defined above satisfy both conditions for
k = 0. Assume that the sets Uy and Vj, satisfying (3) and (4), are defined
for k < p. If F, = 11 cl F, N macl F), then the sets 71 clV,_1 N F), € cor| and
T clV,1 N F, € cory in (F)y, 11, 7) are disjoint. Since (1,2)-Ind Fj, = 0, by
virtue of Theorem 2.9 there exists a subset V' € mNco 7 such that 7 clUp_1N
F, c Vand mpclV,_1 N F, C Fp\V. Since 11 clV C 1 clF,, ocl(F,\V) C
Ty cl F, and F), = 1 cl F, N 7a cl Fy,, we have 1 clV N cl(Fp\V) = @.

Let C = 1 clV\mpclV,—1 and D = 1 cl(Fp\V )\ clUp_1. Then (7 cl
CND)U(CNmclD) = @. Therefore by Theorem 0.2.1 in [11] there exist
Uen, Wemnsuchthat CcU, DCWand UNW = @.

It is evident that VNW = @, (F,\V)NU = @ and consequently
ncdlVnWw =g, TQCI(FP\V) NU = @. Let &1 = 7y ClUp_l U (Tl CIV\W),
Oy = mclVpo1 U (o cl(Fp\V)\U). Then ®; € cor; and &1 N $y = @. Since
(X, 71,72) is p-normal, there exist U, € 1, V), € 7 such that ®; C U,
®y C Vpand 7 clU, N1 clV, = @. The sets (U,) and (V},) satisfy (3) and (4)
for k = p. Thus the construction of the sequences Uy, Uy,... and Vj, Vq,...
is completed. It follows from (2), (3) and (4) that the unions G = prOlUp and

H= ‘E‘ilvp satisfy (1).
p:



The Strengthening and Weakening Instrument: Comparability of Topologies spaces 55

Corollary 3.1. If a d-second countable and hereditarily p-normal BS
(X, 71 < 72) can be represented as the union of a sequence Fy, Fy,... of i-
closed sets, where p-Ind F,, = 0 for every n = 1,00, then p-Ind X = 0.

Proof. Is evident since com; C comy C p-Cl(X).

Corollary 3.2. If a R-p-1, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fs, ... of p-closed
sets, where p-ind F, =0 for every n = 1,00, then p-ind X = 0.

Proof. Follows directly from Corollary of Theorem 2.9 and the fact
that by Proposition 0.1.3 in [11], (X, 71,72) is p-perfectly normal since it is
p-regular and hence hereditarily p-normal.

Corollary 3.3. If a (R-p1) d-second countable and hereditarily p-
normal (p-normal) BS (X, 11, 72) can be represented as the union of a sequence
Fy, Fs, ..., where every Fy is a countable union of p-closed sets, i.e., Fy =

OL_lek and p-Ind F; = 0 (p-ind F, = 0) for each k = 1,00, then p-Ind X =0

n»

(p-ind X = 0).
Proof. By Corollary 1 of Proposition 2.3, p-Ind F¥ = 0 for every

k=1,00,n=1,00,and X = I:ijl EJOl Fk. For p-ind X it remains to use (2) of
=1n=
Proposition 2.1 and Corollary of Theorem 2.9.
Corollary 3.4. If a R-p-T1, d-second countable and p-normal BS
(X, 71 < T9) can be represented as the union of two BsS’s Y and Z, where
p-IndY = p-Ind Z = 0 and one of them is 1-open, then p-Ind X = 0.

Proof. Let, for example, Y € 7. Then X\Y € cory C comp C
p-Cl(X), X\Y C Z and by Corollary 1 of Proposition 2.3, p-Ind(X\Y') = 0.
Moreover, (X,71 < 72) is p-perfectly normal so that ¥ € 27F,(X), ie.,

Y = kOLiJ)le, where Fy, € coms C p-Cl(X) and, by (2) of Proposition 2.3,

p-Ind Fj, = 0 for every k = 1, 00. Therefore X = Y U(X\Y) = k‘iﬁle U(X\Y)
and it remains to use Corollary 1. -

Theorem 3.12. for every R-p -1, d-second countable and p-normal BS
(X, 71, 72) we have p-ind X = p-Ind X.

Proof. By Corollary 1 of Proposition 2.3 it suffices to prove only that
p-Ind X < p-ind X. It is evident that one can assume that p-ind X < oo.
We will apply induction with respect to p-ind X. Let p-ind X = 1. Then by
Theorem 2.5, for every disjoint pair of sets A € cor; and B € co 7, there exists
a partition T between A and B such that p-indT < 0. Hence by Corollary
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of Theorem 2.9, p-IndT < 0, so that p-Ind X < p-ind X. Let us assume
that the inequality is also correct for K < n — 1 and prove it for k = n. Let
A € cor, B € corp and AN B = @. Then by Theorem 2.5 there exists
a partition 7" between A and B such that p-indT < n — 1. It follows from
the inductive assumption that p-Ind7T < n — 1. Therefore p-Ind X < n, i.e.,
p-Ind X < p-ind X.

Corollary 3.1. Let a R-p-i, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fy, ... of p-closed
BsS’s such that p-Ind Fy, < n for each k = 1,00. Then p-Ind X < n.

Proof. It is evident that p-ind F, < n for each £k = 1,00 and by
Corollary 1 of Theorem 2.3, p-ind X < n. Thus p-Ind X < n.

Corollary 3.2. Let 1417, d-second countable and p-normal BS (X, 71 <
T9) can be represented as the union of a sequence Fy, Fy, ... of i-closed sets,
where p -Ind F, < n for each k =1,00. Then p-Ind X < n.

Corollary 3.3. If a R-p-1, d-second countable and p-normal BS
(X, 71,72) can be represented as the union of a sequence Fy, Fs, ..., where ev-

ery Iy, is a countable union of p-closed sets, i.e., Fy, = OLZF;“ andp-Ind F, < n
p:
for each k = 1,00, then p-Ind X <n.
Proof. Since p-Ind Fj, < n and Fé“ € p-Cl(X) for each p = 1,00, by

(2) of Proposition 2.3, p-Ind sz < n for each k = 1,00 and p = 1, 00. Thus,
it remains to use Corollary 1.

Corollary 3.4. If a 1417, d-second countable and p-normal BS (X, 71 <
To) can be represented as the union of two BsS’s Y and Z, where p-IndY < n,
p-Ind Z < n, and one of them is 1-open, then p-Ind X < n.

Proof. Since (X, 11, 72) is p-perfectly normal, it can be assumed that
Y e C 2F,(X). Then Y = k&:le, where Fj, € cory C p-Cl(X) for each
k = 1,00 and by (2) of Proposition 2.3, p-Ind Fy, < n for each k = 1, .
On the other hand, X\Y C Z, X\Y € corny C p-ClI(X) and, by the same
reasoning, p-Ind(X\Y) <n.But X =Y U(X\Y) = kOL:lek U (X\Y) and it
remains to use Corollary 1.
Theorem 3.13. The following conditions are satisfied in a BS (X, 71, 72):
(1) If 1 <¢ T2, then 1-Ind X < (1,2)-Ind X.
(2) If 1 <n T2, then 1-Ind X < (1,2)-Ind X A (2,1)-Ind X < 2-Ind X.
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Proof. (1) It is clear that the inequality 1-Ind X < (1,2)-Ind X holds
for (1,2)-Ind X = oco. Let us assume that (1,2)-Ind X = k£ < oo and show
that 1-Ind X < k. For k£ = —1 the required inequality is obvious. Now let us
assume that the inequality is correct for £ < n — 1 and prove it for £ = n.
Since (1,2)-Ind X = n, for every 2-closed set, in particular for every 1-closed
set F' and its any l-open neighborhood U(F') there exists a l-open neigh-
borhood V(F) such that mclV(F) C U(F) and (1,2)-Ind(2,1)-FrV(F) <
n — 1. Since 7 <¢ T2 and V(F') € 71, by (2) of Corollary of Theorem 1.14,
T clV(F) = 1 cdV(F) and thus (2,1)-FrV(F) = 1-Fr V(F'). Hence (1,2)-
Ind(1-Fr V(F)) < n — 1 and by the inductive assumption 1-Ind(1-Fr V(F)) <
n — 1, i.e., for every 1-closed set F' and its any 1-open neighborhood U(F)
there exists a 1-open neighborhood V' (F') such that 7 clV(F) C U(F) and
1-Ind(1-Fr V(F)) < n — 1. Therefore 1-Ind X < n.

(2) The first inequality is obvious by (1) and Corollary of Theorem 1.19.
Furthermore, by analogy with the above reasoning we can prove that (2,1)-
Ind X < 2-Ind X. Let us assume that the inequality holds for 2-Ind X =
k < n —1 and prove it for Kk = n. Since 2-Ind X = n, for every 2-closed
set, in particular for every 1-closed set F' and its any 2-open neighborhood
U(F) there exists a 2-open neighborhood V (F') such that mclV(F) C U(F)
and 2-Ind(2-FrV(F)) < n — 1. Since 71 <y 72 and V(F) € 7o, by Corol-
lary of Theorem 1.19, 7o clV(F) = 1 clV(F) and therefore 2-FrV(F) =
(1,2)-Fr V(F). Hence 2-Ind(1,2)-FrV(F) < n — 1 and by the inductive as-
sumption (2,1)-Ind(1,2)-Fr V(F) < n — 1. Thus for every 1-closed set F' and
its any 2-open neighborhood U (F') there exists a 2-open neighborhood V (F)
such that 7 clV(F) C U(F) and (2,1)-Ind(1,2)-Fr V(F) < n — 1. Therefore
(2,1)-Ind X <n.

4. Dynamics of Baire-Like Properties and Dimensions

The objects of our final investigation are category notions, Baire-like
properties and pairwise inductive dimensions in the context of d-continuous,
d-closed, (i,7)-feebly continuous and (4, j)-feebly open functions.

In [9]-[11], the (,7)-category requirements on i-open subsets with re-
spect to (X, 71,72) and in itself as a BsS of (X, 71, 7) form the basis of the
determination of (7, j)-Baire spaces . Generally speaking, as distinct from the
topological case, these arguments, are not the same. This distinction leads
us to the definition of six different Baire-like properties which coincide when
topologies are S-related in the sense of A. Todd [25]. It is necessary to note
here that the pairwise Baire BS’s introduced by C. Alegre, J. Ferer and
V. Gregori in [1] are just the pairwise Baire BS’s from [8] and are in fact
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the simplified modifications of the notions from [9]-[11] because they demand
the (i,7)-category requirement of i-open subsets with respect to the whole
BS. These pairwise Baire BS’s called almost (i, j)-Baire spaces in [9]-[11] are
studied in detail in [9], where an overwhelming majority of the results from
[1] are obtained. Moreover, the notion of a pairwise fine BS in [1] is none
other than a BS with the above-mentioned S-related topologies also studied
and used for various purposes in [9]-[11].

Definition 4.1. An (i, j)-Baire space (briefly, an (i,7)-BrS) is a BS
(X, 71,72) such that every nonempty i-open subset U of X is of (i,j)-second
category [11].

This definition immediately implies that if (X, 7, 7) is an (i, j)-BrS,
then X is of (,7)-CatgIl.

Example 4.1. The natural BS (R, wy,ws) is (i,7)-BrS since for every

set U € w\{@} the BsS (U,w],w)) contains no nonempty (i, j)-nowhere dense
sets. It is also clear that (R,wq,ws) is i-BrS.

Therefore, in counterbalance to Remark 1.2, the BS’s (R, w;) and (R, w2)
are both BrS’s but w;Sws is not correct.

Theorem 4.1. The following conditions are equivalent in a BS (X, 71,72):

(1) U e ;\{9} = U € (i,j)-Catg, (X).

(2) If {U,}o2, is any countable family of subsets in X, where U, € 7; N
i-D(X) for each n = 1,00, then n?len €iD(X).

(3) A€ (i,j)-Catg,(X) = X\A € iD(X).

(4) If {Fn}o2, is any countable family of subsets in X, where F, € coT; N
i-Bd(X) for each n = 1,00, then T:CJ:oan € i-Bd(X).

Definition 4.2. An almost (i, j)-Baire space (briefly, A-(i,j)-BrS) is
a BS (X, 11, m) for which one of the equivalent conditions (1)-(4) of Theorem
3.1 is satisfied [9].

The relations between Baire and almost Baire spaces are given in

Theorem 4.2. The following statements hold in BS (X, 71, 72):

(1) (X,11,72) is i-BrS <= (X, 71, 72) is A4-BrS.

(2) (X,11,72) is (i,7)-BrS = (X, 11, m2) is A-(i,7)-BrS.
In a BS (X, 71 <)

(3) (X,Tl,TQ) 18 (1,2)—]31"8 — (X,Tl,TQ) 18 A-(I,Q)—BI'S - (X,Tl,TQ) 18
1-BrS.

(4) (X,11,72) is 2-BrS = (X, 71, m2) is A-(2,1)-BrS [9].
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Definition 4.3. Let (X, 71, m2) and (Y,7v1,72) be BS’s. Then a function
f (X, m,m) — (Y,7,72) is said to be i-continuous (i-open, i-closed) if the
induced functions f : (X, 7)) — (Y,7v) are continuous (open, closed) [19],

Theorem 4.3. Let a function onto f: (X, 71 <) — (Y,71 < 72) be
1-continous and d-open, where X has a countable 1-pseudobase and Y is of
(1,2)-CatgI1. If there is a subset Z C'Y such that Y\Z € (1,2)-Catg,(Y) and
f~1(2) is of (1,2)-Catgll for each point z € Z, then X is of (1,2)-CatgIl.

Proof. Contrary, let X is of (1,2)- Catgl. Then there is a sequence
{F, : F, € coraN (1,2)-ND(X), n = 1,00} such that X = EJoan. For
n=

each n € Nlet M(F,) ={y € Y : 7’{ int(fﬂ(y)ﬁiﬁé)(f_l(y) NnF, # o}
Let {Ux}32, be a countable 1-pseudobase for X, and for each n and k let
M} ={yeY: @ # f"Yy)NUy C F,}. Since f is d-open, we have
fUk) € m, Uy N (X\F,) € 1 since 1 C 12, f(Up N (X\F)) € 72 and
therefore M = f(Up)\f(UprN(X\F},)) is 2-closed in f(Uy). If vy int M} # @,
then @ # f~ 'y int M) N Uy C F,. For the set f~1(viint M) N Uy, € 7
there does not exist a set V € m\{&} such that V' C f~1(vy1int M) N Uy
and V N F, = @. Hence, by Corollary 1 of Theorem 1.1.1 in [11], we have
F, €(1,2)-ND(X). Thus v; int M = @. Since M}* € covsy in (f(Uk,71,75),
we have vyyintyycl M) = @ and f(Uy) € v implies v)intyscl M) = @
e., Mj' € (1,2)-ND(f(Ux)) and, by (1) of Theorem 1.5.2 in [11], M}’ €
(1,2)-N'D(Y). Tt is evident that M(F,) = kﬁle,g for cach n € N so that
M(F,) € (1,2)- Catg,(Y) for each n € N and therefore, by (1) of Theo-
rem 1.1.3 in [11], M = nfle(Fn) € (1,2)-Catg,(Y).

By condition, Y is of (1,2)- CatgIl and there is a subset Z C Y such
that Y\Z € (1,2)-Catg,(Y). It is obvious that Y\M € (1,2)-Catg,,(Y) since,
by (1) of Theorem 1.1.3 in [11], the contrary means that Y € (1,2)- Catgl.
Moreover, if Y\M C Y\Z, then by (1) of Theorem 1.1.3 in [11], Y\M €
(1,2)-Catg,(Y), which is impossible. Hence (Y\M)NZ # @. Let z € (Y\M)N
Z be any point. It is evident that {F, N f~1(2)}>, is a 2-closed cover of
S71(z). Since f71(z) is of (1,2)-Catg1l, there is k € N such 7{ int(p-1,), )

(Fpy N f~1(2)) # 9}. Thus 2 € M. This contradiction completes the proof.

Corollary. Let a function onto f : (X, 71 < 1) — (Y,71 < ) be
1-continuous and d-open, where X has a countable 1-pseudobase and Y 1is
(1,2)-BrS. If there is a subset Z C 'Y such that Y\Z € (1,2)-Catg,(Y) and
f71(2) is (1,2)-BrS for each point z € Z, then X is (1,2)-BrS.
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Proof. Let U € 71\{@} be any set. Then if {U;}?2, is a countable
I-pseudobase of X, then {U, N U}, is a countable 1-pseudobase of U.
Moreover, f|y : U — f(U) is l-continuous and d-open. Since (Y,71,72) is
(1,2)-BrS and f(U) € v1\{@}, we have f(U) € (1,2)-Catg,(Y). Hence, by
Corollary of Theorem 1.5.2 in [11], f(U) is of (1,2)- CatgIl. Suppose that
Z' = Zn f(U). Then f(U)\Z' € Y\Z and by (1) of Theorem 1.1.3 in
[11], f(U)slZ' € (1,2)-Catg,(Y). On the other hand, Corollary (2) of Theo-
rem 1.5.1 in [11] implies that f(U)\Z’ € (1,2)-Catg, f(U) because f(U) € 7.
Now, let z € Z’ be any point. Then (f|y)~'(2) = f~!(2) N U and since
f7Yz) is (1,2)-BrS, f1(2)nU € 7 in (f~(2),7],75), by Corollary 1 of
Theorem 4.1.3 in [11], f~1(2) N U is also (1,2)-BrS. Hence f~1(2) N U is
(1,2)-Catg1I and the applying of Theorem 3.3 for f|y : U — f(U) gives that
U is of (1,2)-CatgIl. Thus (X, 7, 7m) is (1,2)-BrS.

Finally, consider the following special modifications of feebly continuous
and feebly open mappings.

Definition 4.4. A function f : (X, 7,72) — (Y,71,72) is said to be
(1,7)-feebly continuous ((i,7)-feebly open) if V € v \ {@} (V € n;\{@}) and
f7HV) # @ imply that Tjint f~1(V) £ @ (v;int f(V) # 9).

The classes of all (i, j)-feebly continuous ((4, 7)-feebly open) functions
of X to Y are denoted by (i,7)-FC(X,Y) ((4,5)-FO(X,Y)).

It is easy to verify that the inclusions

(2,1)-FC(X,Y)C1-FC(X,Y) (2,1)-FO(X,Y)C1l-FO(X,Y)
N N and N N
2-FC(X,Y)C(1,2)-FC(X,Y) 2-FO(X,Y)C(1,2)-FO(X,Y)

hold for BS’s (X, 71 < 72) and (Y, 71 < 72).
The statements below are the immediate consequences of the corre-
sponding definitions.

Proposition 4.1. For a function f : (X,17,72) — (Y,7,72) the fol-
lowing conditions are satisfied:
(1) If f is onto, then f € (i,7)-FO(X,Y) < f~1(j-D(Y)) C i-D(X).
(2) [ €(i,))-FCX,Y) <= f(j-D(X)) Ci-D(Y).

Corollary. For a function f : (X,71,7) — (Y,71,72) the following
conditions are satisfied:
(1) If f is onto, then f € p-FO(X,Y) <= (f~1(1-D(Y)) C 2-D(X) A
f12D(Y)) C 1-D(X)).
(2) fep-FC(X,Y) <= (f(1-D(X)) C 2-D(Y) A f(2-D(X)) C 1-D(Y)).
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Theorem 4.4. If a function f : (X,71 < 1) — (Y,71 < 72) is one-
to-one onto and f € (1,2)-FC(X,Y) N (2,1)-FO(X,Y), then (X,11,72) is
A-(2,1)-BrS = (Y, 71,72) is (1,2)-BrS and (Y,v,72) is A-(2,1)-BrS =
(X, 11,72) is (1,2)-BrS.

Proof. Let {U,}°, be a sequence, where U,, € 72 N 1-D(Y) for each
n = 1,00. We will prove that the sets 7 int f~'(U,) € 2-D(X) for each
n =1,00. Let zg € X, n € N be arbitrarily fixed and U(z() € 72 any neighbor-
hood. Since f € (2,1)-FO(X,Y), we have vy int f(U(xg)) # @ so that there
exists V € v1\{@} such that V' C f(U(zg)). The set VNU, € y2\{@} since
Up, € 1-D(Y) and 71 C 72. But also f € (2,1)-FC(X,y) and hence @ # W =
rint f~H(V N U,). Therefore W C f~1(V NU,) C f~Hf(U(xo)) = U(xo).
It is clear that W C 7yint f~1(U,) and therefore 2y € mclrint f~1(U,)
since U(zg) € 72 is an arbitrary neighborhood. Let B,, = 7 int f~1(U,). If
zog € X and n € N are arbitrary fixed, then B, € 7 N 2-D(X) for each

n = 1,00. On the other hand, (X, 71, 72) is 4-(2,1)-BrS = n?len € 2-D(X)
and hence, by Proposition 5.1.5 from [9], f(n?len) € 1-D(Y) since f €
(2,1)-FC(X,Y) C (1,2)-FC(X,Y). Since f(n?len) c n?jl f(By) C n‘Flen,
the set norlen € 1-D(Y) and thus (Y, v1,72) is (1,2)-BrS.

Finally, it is evident that f € (2,1)-FC(X,Y) <= f~1(2,1)-FO(Y, X),
fe2,1)-FOX,Y) < f~1(2,1)-FC(Y, X) and therefore the rest is clear.

If a function f : (X,71,72) — (Y,71,72) is d-closed, d-continuous and
AC X, A€ comr Ncote, then f|4 is also d-closed and d-continuous. But in
contrast to this fact, f|4 is not, generally speaking, d-closed, if A € p-Cl(X).

Example 4.2. Let X ={a,b,c,d,e}, 1 ={2,{a}, X}, m={2,{b}, X},
Y = {0,1}, 1 = {2,{0},Y} and v» = {9,{1},Y}. If A = {c,d,e} and
[ (X,m,m) — (Yoy1,72) is defined as f(a) = f(b) = 0 and f(c) = f(d) =
f(e) =1, then f is d-closed but the restriction f|a, where A € p-Cl(X), is
not d-closed.

Theorem 4.5. Let f : (X, 71,72) — (Y,71,72) be a d-closed and d-
continuous function of a R-p-1, d-second countable and p-normal BS X
onto a R-p-y, d-second countable and p-normal BS'Y such that for every
set A € p-Cl(X) the restriction fla : A — f(A) is also d-closed and d-
continuous. If there is an integer k > 1 such that |f =1 (y)| < k for everyy € Y,
then (i,7)-indY < (¢,7)-ind X + (k — 1), (¢,7)-IndY < (4,j)-Ind X + (kK — 1)
and therefore p-indY < p-ind X + (k—1), p-IndY <p-ind X + (k—1).
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Proof. By Theorem 2.13 it suffices to prove only the first inequality.
We can suppose that 0 < (4,7)-ind X < oo and we will apply induction with
respect to the number n+k, where n = (i, j)-ind X. If n+k = 1, then k = 1 as
f is onto and hence f is a d-homeomorphism and the theorem holds. Assume
that the theorem holds whenever n + k < m, where m > 2 and consider a
d-closed and d-continuous function f : X — Y such that f(X) = Y and
n+k=m.

Let B; be a countable i-base of (X, 71, 72) such that (4, j)-ind(j,¢)-Fr U <
n — 1 for every U € B;. If U € B; is an arbitrary set, then f € d-Cl(X,Y) N
dC(X,Y) implies that

(4, 0)-Fr f(U) = v L f(U) Ny l(Y\f(U)) C 75 clU) 0 f(X\U) =
= fU UG )-FU)NfFIX\U) =
(1) = () U f((5,)-FrU)) 0 f(X\U) C f((5,1)-FrU) U A,
where A = f(U) N f(X\U). Since the restriction f|;.mv @ (J,1)-FrU —
f((4,9)-FrU) is d-closed and d-continuous, by the inductive assumption we
have
(4,7)-ind f((4,9)-FrU) < (n—1)+ (k—1) =n+ (k —2).

Assume that A # & and consider the restriction f|s-14) = fa :
f~1(A) — A. It is well known that f4 is d-closed and d-continuous. Moreover,
the restriction fa|(x\oy = Jf1: (X\U)N f~1(A) — A if also onto, d-closed and
d-continuous.

The fibres of f; for each y € A have cardinality |(f~1(y)] < k —1
since, by condition, |f~'(y)] < k and y € A implies that f;'(y) NU =
f~Y(y) NU # @. Therefore, it follows from the inductive assumption, that
(i,§)-ind A < n+(k—1)—1 = n+(k—2), where (4, j)-ind((X\U)N f~1(A)) <
(7,7)-ind X <n.

Since X is p-perfectly normal, i.e., 7; C j-F,(X), we have U = koleFk,

where Fj, € cot; for each k = 1,00. Hence f(U) = koglf(Fk) € jF.(Y),

J(X\U) € cov; so that A = f(U)NF(X\U) = U f(F)NJ(X\D) = U @y,
where each @5 = f(Fi) N f(X\U) is p-closed. Hence by Corollary 3 of Theo-
rem 2.3, (i,7)-ind(f(4,7)-FrUU A) < n+ (k —2). ;From the latter inequality
and (1) we obtain that (i, j)-ind(j,7)-Fr f(U) < n+ (k — 2) for every U € B;.
The same inequality holds if A = @. It is not difficult to see that the family
N; ={f(U): U € B;} is an i-network for Y so that, by Theorem 2.7,
(4,7)-indY <n+k—1=(i,5)-ind X + (k — 1).

Corollary. Let f : (X,71 < 72) — (Y, < 72) be a d-closed and d-
continuous function of a 1-T1, d-second countable and p-normal BS X onto
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a 1-Ty, d-second countable and p-normal BS Y such that for every set A €
coTy the restriction fla : A — f(A) is 1-closed and 1-continuous. If there
is an integer k > 1 such that |f~'(y)| < k for every y € Y, then p-indY <
p-ind X + (k—1) and p-IndY < p-Ind X + (k — 1).
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