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A NOTE ON WEAKLY SEPARABLE SPACES

R.B. Beshimov

Abstract. We study the notion of a weak separable space. Some
counterexamples, which show a strictness of previous results of the au-
thor, are given. The weak separability of hyperspaces and function spaces
is investigated.

1. Introduction

Weakly separable spaces were introduced in [2]. In this article and in
[3], [4], and [5] there were investigated some properties of weakly separable
spaces, their relations with separable spaces, their behavior with respect to
some topological constructions like topological products, continuous images,
compactifications, covariant functors and so on. It should be mentioned also
that in 1977 the weak separability property implicitely was considered by E.K.
van Douwen in [8], where he studied density of compactifications of Tychonoff
spaces.

Here we continue the investigation of the class of weakly separable
spaces. First of all, we discuss Theorem 2.3, which states that every weakly
separable, Hausdorff compact space is separable. It is shown that one cannot
weaken neither separation axiom, nor compactness condition (Examples 3.1,
3.2, and 3.4). We prove also that the weak separability property is preserved
by certain functorial constructions in the class of T1-spaces (Theorem 4.5).
But this is not true for T0-spaces (Example 4.6). Theorem 4.12 is a generaliza-
tion of Shanin’s theorem on a calibre. At last, we characterize spaces X with
weakly separable Cp(X) (Theorem 5.3) and show that for some compacta X
spaces Cp(X) are weakly separable, but non-separable (Example 5.4).

2. Preliminaries

Let us recall that a family B of non-empty (open) subsets of a topological
space X is said to be a (π-base) π-network of X if for every non-empty open
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set U ⊂ X there is a set V ∈ B such that V ⊂ U . A family B of subsets of X
is called:

1) centered if ∩B0 �= ∅ for any finite B0 ⊂ B;
2) σ-centered if B = ∪{Bi : i ∈ ω}, where each Bi is centered.
The next definition is due to V.I.Ponomarev.

2.1. Definition. A topological space X is called weakly separable if X has a
σ-centered π-base.

2.2. Proposition. For an arbitrary topological space X the following condi-
tions are equivalent:

1) every π-base of X is σ-centered;
2) X is weakly separable;
3) X has a σ-centered π-network;
4) every family O of non-empty open subsets of X is σ-centered.

Proof. We need only to check the implication 3) → 4). Take a σ-centered
π-network B = ∪∞

i=0Bi. Set

Oi = {U ∈ O : there is a V ∈ Bi which is contained in U}.
By definition of a π-network, O = ∪∞

i=0Oi. Since Bi is centered, Oi is
centered too. Proposition 2.2 is proved.

Clearly, every separable space is weakly separable. Sometimes the re-
verse is true (look at [2] and [3]). One of main properties of the weak separa-
bility is contained in the next statement.

2.3. Theorem. A Hausdorff compact space X is separable if and only if X
is weakly separable.

Let X be a subspace of Y . We say that Y is a topological extension of
X, if X is dense in Y .

2.4. Proposition. The class of weakly separable spaces is closed with respect
to the following topological operations:

1) open subsets;
2) dense subsets;
3) topological extensions;
4) finite products;
5) countable unions;
6) continuous images.

The proof is rather simple and can be found in [2].

2.5. Theorem [5]. Every weakly separable space X has a separable extension
eX.
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2.6. Remark. The results of this section can be extended to an arbitrary
cardinal number τ . Namely, we say that the weak density of a space X is no
more than τ (write wd(X) ≤ τ) if X has a π-base B which is a union of
τ centered systems Bα. For example, Proposition 2.4 can be generalized by
changing the class of all weakly separable spaces to the class of all spaces X
with wd(X) ≤ τ . A more general version of Theorem 2.3 can be written as:

d(X) = wd(X)

for an arbitrary Hausdorff compact space X.

3. Some counterexamples

3.1. Example. There exists a compact weakly separable T1-space X that is
not separable.

Proof. As the underlying set for the space X we take the space Y = ω1 of all
countable ordinals. The topology of X is a weakening of the topology of Y .
Namely: non-empty open sets of X are complements of compact subsets of Y .
Clearly, these sets give us a topology on the set X. Since singletons are closed
in this topology, X is a T1-space. It is evident, that topologies of spaces X and
Y coincide on compact subsets of Y . Consequently, every centered system Φ
of closed subsets of X is a centered system of compact subsets of Y . Hence,
Φ has a non-empty intersection. This implies a compactness of the space X.

Since each finite union of compact spaces is compact, the family of
all non-empty open subsets of the space X is centered. Thus, X is weakly
separable, because it has a centered base. It remains to show that X is not
separable. Let X0 be an arbitrary countable subset of X. It is well known
that in the space Y = ω1 the closure of every countable set is a (countable)
compactum. Therefore, X0 is contained in some compact subspace F of the
space Y . Let U = Y \F . Then U is a non-empty open subset of X, which
doesn’t meet X0. Hence, X0 is not dense in X. So, X is not separable.

Example 3.1 shows us that we cannot weaken the Hausdorff separation
axiom in Theorem 2.3. As for a compactness, one can weaken it to a local
compactness in view of Proposition 2.4.1. But the following two examples show
that the assertion of Theorem 2.3 cannot be extended neither to countably
compact spaces, nor to Lindelof spaces. To describe these examples we would
like to recall two definitions.

Let {Xα : α ∈ A} be a collection of topological spaces, and let a = (aα)
be a point of their topological product X. By Σ(a) we denote the subspace
of X consisting of all points (xα) such that xα �= aα only for countably many
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α ∈ A. The space Σ(a) is called the Σ-product of the spaces Xα over the point
a. A very important subspace of Σ(a) is the set σ(a) (σ-product of Xα over a)
consisting of all points (xα) such that xα �= aα only for finitely many α ∈ A.

If each Xα is a topological group, then both Σ(e) and σ(e), where e =
(eα) and eα is the neutral element of Xα, are topological groups as well. The
following example, as a topological group, is due to L.S. Pontryagin [12].

3.2. Example. There exists a normal, countably compact, weakly separable,
but non-separable topological group G.

Let Dα = {0α, 1α} be a copy of the group D = {0, 1} = Z2. For the
group G one can take the Σ-product of the groups Dα, α ∈ ω1, over the
zero-point 0 = (0α). In fact, normality of G has been proved in [7]. Countable
compactness of G has been noticed by L.S. Pontryagin [12], who implicitely
has introduced Σ-products of topological groups. At last, it has been noticed
in [6], that G is non-separable, but has a separable compactification.

3.3. Remark. What actually has been proved in [6] is, that the Σ-product
of the continuum many groups Dα is not separable. But if we repeat this
proof word for word, we shall prove non-separability of the group G from
Example 3.2.

3.4. Example. There exists a normal, Lindelof, weakly separable, but non-
separable topological group H.

For the group H, one can take the σ-product of the groups Dα, α ∈ ω1,
over the zero-point. Since H is dense subset of G, it is weakly separable by
Proposition 2.4.2. Further, H is not separable as a dense subset of the non-
separable group G. Finally, H is a Lindelof space being a union of countably
many compact sets Hn, where Hn consists of all points h = (hα) such that
hα �= 0α at most for n coordinates.

Let us recall that a Tychonoff space X is said to be a p-space if there
is a countable set of families ui, i ∈ ω, such that:

1) ui consists of open subsets of βX;
2) X ⊂ ∪ui for any i ∈ ω;
3) ∩{St(x, ui) : i ∈ ω} ⊂ X for any x ∈ X.

If in this definition each family ui consists of one open set, then we
obtain definition of a Čech complete space.

3.5. Remark. The group H from Example 3.4 is not a p-space. In fact,
assume that H is a p-space. Then there exists a perfect mapping f : H → Y

onto a metric (separable) space Y [1]. Take an arbitrary point y ∈ Y . Then



A note on weakly separable spaces 13

f−1(y) is a Gδ-compactum in H. But H is dense in Dω1. Hence, f−1(y) is a
Gδ-set in Dω1. But no compact Gδ-subset of Dω1 is contained in H. We arrive
at a contradiction.

In view of Example 3.4 and Remark 3.5 the next question is of some
interest.

3.6. Question. Is it true that every weakly separable Lindelöf p-space is
separable?

We cannot even answer the next question.

3.7. Question. Is it true that every weakly separable, Lindelöf, Čech com-
plete space is separable?

3.8. Remark. It should be mentioned that both spaces from Examples 3.2
and 3.4 appeared also in [8] (Examples 3.3 and 3.1 respectively). The same is
true about Questions 3.6 and 3.7 (see [8], Question 1).

Let us remind that a subset A of a space X is called regular closed if ii
is the closure of some open set U ⊂ X. The Stone - Čech remainder βω\ω we
denote by ω�.

3.9. Remark. Proposition 2.4 yields that open and regular closed subsets
of a weakly separable space are weakly separable. But it cannot be extended
to neither Gδ-subsets nor finite intersections of regular closed subsets. As a
counterexample one can take a separable compactum X= X0 ∪X1 such that
Xi are regular closed in X, and X0 ∩X1 is a non-separable Gδ-set in X. Such
a compactum X can be obtained from βω×{0, 1} by the identification of the
sets ω� × {0} and ω� × {1}.

For non-compact spaces, we can modify Examples 3.2 and 3.4 in the
following way.

3.10. Example. There exists a separable, countably compact, Tychonoff space
X containing open, countably compact, disjoint subsets U0 and U1 such that
the intersection U0 ∩ U1 is weakly separable, but non-separable.

Proof. Let Y ′
i = βω × {i}, i = 0, 1. Fix an arbitrary point a ∈ ω�. By Y

we denote a quotient space that we get from Y ′ = Y ′
0 ∪ Y ′

1 by identification
of the points a× {0} and a× {1}. Let f : Y ′ → Y be the quotient mapping,
b = f(a×{i}), Yi = f(Y ′

i ). Finally, let X be a subset of the product Y ×Dω1

that is a disjoint sum of the sets U0, {b}×G, U1, where Ui = (Yi\{b})×Dω1

and G is a space from Example 3.2.
Clearly, Ui are open in X and U0 ∩ U1= {b} × G. Further, Yi\{b} is

homeomorphic to the space βω\{a} that is countably compact according to
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([9], Example 3.10.18). Hence, Ui is countably compact as a product of the
countably compact space Yi\{b} and the compact space Dω1. Moreover, Ui

is separable as a product of separable spaces. Thus, X is separable, since
U0∪U1 is dense in X. At last X is countably compact as a union of countably
compact spaces U0, U1 and {b} ×G.

3.11. Example. There exists a separable, σ-compact, normal space X con-
taining open, σ-compact, disjoint subsets U0 and U1 such that the intersection
U0 ∩ U1 is weakly separable, but non-separable.

Proof. Let X be a subset of the product [−1, 1]×Dω1 that is a disjoint sum
of the sets U0, {0}×H, U1, where U0 = [−1, 0)×Dω1 , U1 = (0, 1]×Dω1 and
H is the space from Example 3.4. All declared properties of X can be verified
by scheme of the previous proof.

4. On weakly separable spaces and some functorial construc-
tions

We are going to recall some notions and facts concerning hyperspaces
and related spaces. For a topological space X, by expX one denotes the set
of all non-empty closed subsets of X. Let U1, . . . , Uk be a finite family of open
subsets of X. Set

O < U1, . . . , Uk >= {F ∈ expX : F ⊂ ∪k
1Ui, F ∩ Ui �= ∅, i = 1, . . . , k}.

By the hyperspace of closed subsets of X we call the set expX that is equipped
with so called (finite) Vietoris topology, whose open base consists of sets O <
U1, . . . , Uk >, where Ui are open in X.

Now we indicate certain prominent subspaces of expX. The first of
them is a hypersymmetric n-product expnX of a space X, where n is a positive
integer. It consists of no more than n-point closed subsets of X. The second
one is:

expω X = ∪{expnX : n = 1, 2, . . . }.
At last, expcX consists of all non-empty compact closed subsets of X.

For an arbitrary space X the following inclusions take place:

expnX ⊂ expω X ⊂ expcX ⊂ expX.(3.1)

If X is a T1-space, then it is naturally homeomorphic to exp1X. The following
assertions are due to E.Michael [10].

4.1. Proposition. If X is a T1-space, then:
1) expX is a T1-space;
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2) expω X is dense in expX.

4.2. Proposition. If X is a T1-space, by assigning to (x0, . . . , xn−1) ∈ Xn

the point {x0, . . . , xn−1} ∈ expnX we obtain a continuous surjection πn,X ≡
πn : Xn → expnX.

Now let G be a subgroup of the symmetric group Sn of all permutations
of the set n = {0, . . . , n − 1}. For an arbitrary space X, the group G acts on
Xn by:

g(x0, . . . , n− 1) = (xg(0), . . . , xg(n−1) for every g ∈ G.
Let SPn

GX be the quotient space Xn/G, and let πn
G,X ≡ πn

G : Xn →
SPn

GX be the quotient mapping. The space SPn
GX is called the G-symmetric

n-product of X.

4.3. Proposition. If X is a T1-space, then SPn
GX is a T1-space as well.

In fact, Xn is a T1-space, and SPn
GX is an image of Xn under the

quotient mapping πn
G whose fibers are finite.

Clearly, there is a unique mapping πG
n : SPn

GX → expnX such that

πn = πG
n ◦ πn

G.(4.2)

4.4. Proposition. If X is a T1-space, then the mapping

πG
n : SPn

GX → expnX

is continuous.

Proof. From Proposition 4.2 and equality (4.2) we get that the continuous
mapping πn is a composition of the quotient mapping πn

G and the mapping
πG

n . In this situation πG
n is continuous.

4.5. Theorem. For an arbitrary T1-space X, positive integer n, and a group
G ⊂ Sn, the following conditions are equivalent:

1) X is weakly separable;
2) Xn is weakly separable;
3) SPn

GX is weakly separable;
4) SPnX is weakly separable;
5) expnX is weakly separable;
6) expω X is weakly separable;
7) expcX is weakly separable;
8) expX is weakly separable.

Proof. Implications 1)→ · · · →8) are just immediate corollaries of prelimi-
nary results:
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1)→2) (Proposition 2.4.4); 2)→3) (Proposition 2.4.6); 3)→4) (trivial);
4)→5) (Propositions 2.4.6 and 4.4); 5)→6) (Proposition 2.4.5); 6)→7)→8)
(Propositions 2.4.3 and 4.1, and inclusions (4.1)). Let us check that 8) implies
1). Consider the family

O(T ) = {O < U >: U ∈ T (X)}.
By Proposition 2.2.4 there exist families Ti ⊂ T (X), i ∈ ω, such that

T (X) = ∪{Ti : i ∈ ω}
and every family

O(Ti) = {O < U >: U ∈ Ti}
is centered. But, clearly, O(Ti) is centered if and only if Ti is centered. Ap-
plying Proposition 2.2.4 once more we conclude that X is weakly separable.
Theorem 4.5 is proved.

The assertion of Theorem 4.5 cannot be extended to the class of T0-
spaces.

4.6. Example. There exists a separable T0-space X such that exp1X is not
weakly separable.

Take an arbitrary uncountable set X and fix some its point x0. Topology
on X is defined as follows. A non-empty set U ⊂ X is open iff x0 ∈ U . On one
hand, X contains a dense set consisting of one point x0. On the other hand,
exp1X = X\{x0} is a discrete uncountable set.

4.7. Question. Is it true that expX is (weakly) separable for every countable
space X?

Let us recall that an uncountable cardinal number τ is said to be a
(pre)calibre of a space X if every family u of cardinality τ consisting of non-
empty open subsets of X contains a subfamily u0 with non-empty intersection
(u0 is centered). The following assertions are evident and well known.

4.8. Proposition. If X is separable, then ω1 is a calibre of X.

4.9. Proposition. If ω1 is a precalibre of X, then X has the Souslin property,
i.e. every family of pairwise disjoint non-empty open subsets of X is countable.

4.10. Proposition. If Y ⊂ X is dense in X and τ is a precalibre of X, then
τ is a precalibre of Y .

Shanin got much stronger result than Proposition 4.8. We give here an
important corollary of it.

4.11. Theorem [13]. If Xα is separable for every α ∈ A, then ω1 is a calibre
of the product Π{Xα : α ∈ A}.
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This theorem can be generalized in the following way.

4.12. Theorem. If Xα is weakly separable for every α ∈ A, then ω1 is a
precalibre of the product X = Π{Xα : α ∈ A}.
Proof. In accordance with Theorem 2.5 there exists a separable extension
eXα for each α. Let eX = Π{eXα : α ∈ A}. Then ω1 is a calibre of eX by
Theorem 4.11. Hence, ω1 is a precalibre of X in view of Proposition 4.10.

From Proposition 4.9 and Theorem 4.12 we get

4.13. Corollary [2] If Xα is weakly separable for every α ∈ A, then the
product Π{Xα : α ∈ A} has the Souslin property.

4.14. Remark. The space G from Example 3.2 shows that ω1 has not to be a
calibre of a weakly separable space (even a normal countably compact group).
Indeed, G is a union of an increasing sequence {Dα : α < ω1} of nowhere
dense compacta. Then {Uα = G\Uα : α < ω1} is a decreasing sequence of
dense open sets with empty intersection.

4.15. Proposition. Let Xα consist of more than one point, α ∈ A, and let
X = Π{Xα : α ∈ A}. Then the following conditions are equivalent:

1) X is weakly separable;
2) card(A) ≤ 2ω;
3) X is separable.

Proof. Let X be weakly separable. Then bX = Π{βXα : α ∈ A} is a
separable compactum by Theorem 2.3 and Proposition 2.4.3. According to
Pondiczery - Marczewski theorem (look at [9], Exercise 2.3.G), card(A) ≤ 2ω.
Then X is separable as a product of 2ω separable spaces ([9], Theorem 2.3.15).
Proposition 4.15 is proved.

5. On the weak separability of Cp(X)

In this section all spaces are Tychonoff. For a space X, by Cp(X) we
denote the space of all continuous realvalued functions equipped with a point-
wise convergence topology. In this topology Cp(X) is a dense subset of the
Tychonoff product RX .

Let us also recall that a cardinal number τ is said to be an i-weight
of a space X (written τ = iw(X)) if τ is the smallest cardinal number such
that there is a one-to-one continuous mapping f : X → Y onto a space Y of
weight τ . In particular, if X is a compactum, then iw(X) = w(X).

5.1. Theorem [11]. For an arbitrary X we have

d(Cp(X) = iw(X).
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5.2. Corollary. For an arbitrary non-metrizable compactum X the space
Cp(X) is non-separable.

Now we characterize spaces X with weakly separable Cp(X),

5.3. Theorem. For a space X the following conditions are equivalent:
1) Cp(X) is weakly separable;
2) RX is weakly separable;
3) card(X) ≤ 2ω;
4) RX is separable.

Proof. We follow the next scheme: 1) → 2) → 3) → 4) → 1) using Proposi-
tions 2.4(3), 4.15, and 2.4(2) respectively.

5.4. Example. There exists a compactum X such that Cp(X) is weakly sep-
arable but non-separable.

For X we can take an arbitrary non-metrizable compactum of cardinal-
ity ≤ 2ω. In fact, in this situation Corollary 5.2 and Theorem 5.3 provide the
required properties of Cp(X).
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