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ON A FAMILY OF (n+ 1)-ARY EQUIVALENCE
RELATIONS

Janez USan and MaliSa ZiZzovicé

Abstract. The notion of a partition of type n(n € N) was intro-
duced by J. Hartmanis in [1] as a generalization of the notion of an
ordinary partition of a set. It is a well-known fact that partitions of @
(of type 1) correspond in a one-one way to equivalence relations on Q.
In this article we introduce an analogous family of relations (F,(Q)) for
partitions of type n. Furthermore, for p € F,(Q) the following state-
ments hold: 0("751) =pand (p)~! = p;forn =1 :~ 0 ~ =~ and
~~1=~ (cf. [3]). A similar family of relations for partitions of type n
was described by H. E. Pickett in [2] point out the differences.

1. Preliminaries

J. Hartmanis has introduced in [1] the notion of a partition of type
n (n € N), for sets having at least n distinct elements, by means of the
following definition:
1.1. Definition: Let |Q| > n, n € N and let

QW (a7} a2} C QA I{a}} = n).

Then, we say that P,(Q) is a partition of @ of the type n iff the following
statements hold:

H1 For each C € P,(Q) there is at least one {a}} € Q™ such that
{a?} C C; and

H2 For each {a}} € Q™ there is exactly one C € P,(Q) such that
{a}} CC.

The partitions of type 1 are the ordinary partitions of a set, and the
partitions of type 2 are incidence geometries.

An analogous family of relations for partitions of type n was described
by H. E. Pickett in [2], in the following way:
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(Va; € @)} (aT, a1) E~vp;
(Va; € Q7 (Va e {1,...,n+1})((a7™) E~vp== (@aq1)s - - -1 Ca(n+1)) €E~a);
and
(Va; € Q12 ({a3*'} € QM A (a]1) €~vp A(a31?) Envp=>
‘ = (af, @n42) €~y). O

2. Main results

2.1. Definition: Let |Q| > n, n € N, £(Q"1)%

{(@¥M)|(a7™) € Q™ A {a}} € Q™}, and let p C L(Q™!). Then, we say
that p is an (n+1)—ary left full equivalence relation (briefly: (n+1)—LFE-
relation) on @ iff the following statements hold:

n—1

S (V{ap} € QM)(Yb € Q)((a3,b) € p = (Va € {1,...,n})(a22), b) € p);
Rn (v{af} € QM)(a},a1) € p;

Sn (V{a7} € QU)(V(B}) € QM)A (af,b) € p=> A (b7, @) € p); and

1= =

Tn (W{a7) € QML) € QM)W € QU A (a, ) € o
A(ct,b) € p=> (a},b) € p).

2.2. Theorem: Let |Q| > n, n € N and let p(C L(Q™)) be an
(n+1)—LFE-relation on Q. Also let for each (a7) € Q™ with |{al}| = n, and
for each b e Q

d& n
(0) b€ Clapy &L (a7, 0) € p.

Then {Cepyl(a?) € Q" A{aT} € QMY is a partition of Q of the type n.

n—1
Proof. 1) By S from 2.1, we conclude that the following equality holds
y for all @ € {1,...,n}!. Therefore, instead of C’(ale), we

..... %4 (n)

write Cygny (briefly: Coz), with {a}} € Q1.
n~1
2) By Rn and S, we conclude that the statement H1 holds.
3) The statement H2 holds.
Sketch of the proof.
n
a) Let {a7}, {07} € Q™ and let A (b; € Cap)-

i=1
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b)
n )1 n
(c €Cyp A N\(bi € ca?)) Q. ((b?,c) epA N\(af,bi) € p> 1%
i=1 ) =1
((a'f,c) € p%’l)c € Car;) , 1.e. Cpp C Cop.
¢)

(c € Cop A /\(bi € Cav;)) Q.Y ((a’f, c)EPA /\(a’f,bi) € p) LY

i=1 =1

((a’f,c) €pA /n\(b?,ai) ep) In ((b ¢)ep 2Yee Cb’f)»

=1
i.e. Ca? - Cb’l‘-
d) Let {a7}, {b7}, {ct} € Q™ and let {c}} C Can N Cin.
Then, by a)—c), we conclude that the following equalities hold
Cop = C¢p and Cep = Cip, i.e. Cqp = Cpp. O
By 1.1 and 2.1, we conclude that the following proposition holds:

2.3. Theorem: Let |Q| > n,n € N, let P,(Q) be a partition of Q of
type n, and let p C L(Q™1). Let also for each {a}} € Q™ and for each b € Q

(0) (a7, b) € p&LEC € Pa(Q)))({a?} S C AbE O).
Then p is an (n+ 1)—LFE-relation in Q. O

3. Two more propositions

3.1. Definitions: Let |Q| > n, n € N and let p7,p € L(Q™?). Then:
a) we say that o(p}, p) is a composition of relations p7, p iff for each {7} €
Q™ and for each y € Q the following statement holds:

() ((zF,9) € oo}, p)) &L ((3{z1‘}EQ("))(/\(xi‘,zi)Epi/\ (Z?,y)ep)) ;

i=1
b) we say that (p})~! is an inverse relation of the relations p} iff for each
{1} € Q™ and for each a, € Q the following statement holds:

(b) ((b?’ an) € (prll)_l) éiéf:’ ((aa?_l € Qn ! /\ ala G Pj ) ; and

c) we say that p®,a € {1,...,n}!, is a a—inverse relation of the relation p
iff for each {al} € Q™ and for each b € Q the following statement holds:
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n def
(c) (al , b) € pa@(aa(l), <3 Oa(n) b) € p.

3.2. Theorem: Let Q| > n, n € N and let p (C L(Q™1)) be an

(n + 1)—LFE-relation in Q. Then the following equalities hold:
n+1 .
o("p)=p, (p)F=pandp*=p
foralae {1,...,n}.

Sketch of the proof.
1 n+l g n (n) Y n .. n
1) (2l y)€o(p) (327} € QN (A (21, 2) € p A (2], ) € p)

1=1
g(x’f,y)ep;
1) (x%y)eﬁ:'?"( (z?,zi)epA(x’f,y)e/))é’%((z?,y>eo<"$l>);
i=1
2) () € (B D@t e QU (A (o5 € p)

i=1
SA /\l(mlvy‘t) cEp= (xl’yn) €p
2) yé{z}eQm:

5 Rafm
,RBn
(zT,y) €p (

n

1

b

1(:1:’1‘, z;) € pA(zT,y) € p)

n— ®, n, _
(a7, y, 7)) € p=(27,y) € (p) 1);

<.
[l

1

n
<
>3

1

23) ye{z7}eQ:

(22711', z;) € p

~D RN |

Al(:cl,x]) €PN /\1 o7, ;) € pA (], 2:) € p
._1,+

u;

n

J:’_
n b
/\ ((E lyx?.*.],xi) .'Et) € pg(x?yxi) € (Z)—ly
n—1
() s
31) (IB?, y) € p* =C>(zoz(1)’ -+ Ta(n) y) € p::’(xrll)y) € p; and
n-1

S
32) (=T,y)€p = (Taqr)r---1Ta(n) Y) € p(=°)>(x'f,y) € p°. o

3.3. Theorem: Let |Q| > n,n € N, let N
{(a?,a:){a?} € Q™ Ai € {1,...,n}} and p C L(Q™1). Suppose also that
the following hold:

1° p*=p foralla € {1,...,n}};

2° A C p;

3° ()~ = p; and
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4 o("3) = p.
Then p is an (n+ 1)— LFE-relation in Q.

The sketch of a part of the proof.
a) The statement Tn holds:

n a n+1 o
( R (@3, 2) € pA (o0 y) € 0D (an, y) € oD )) £ (ot y) € p

)
(c),1°

n n n o
b) {57} € QA A(a,b) € =5 A (B ei) € (9) :

( ?70’11) € p.
O

B>

i
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