# DESCRIPTION OF SUPER ASSOCIATIVE ALGEBRAS WITH n-QUASIGROUP OPERATIONS

#### Janez Ušan

**Abstract.** Let  $\Sigma$  be a set operation over Q. Let also  $w_1 = w_2$  be a law in a description of which variables  $x_1, \ldots, x_s$  are included, and also operational symbols  $X_1, \ldots, X_k$ , whose set of lengths is a subset of the set of lengths [:arities] of operations from  $\Sigma$ . Then  $(Q, \Sigma)$  is said to be an algebra with the superidentity  $w_1 = w_2$  iff for every substitution of the variables  $x_1, \ldots, x_s$  with elements of Q and for every substitution of the operational symbols  $X_1, \ldots, X_k$  with operations from  $\Sigma$  [with the corresponding lengths  $w_1 = w_2$  becomes an equality in  $(Q, \Sigma)$ ; [2]. Quasigroup algebras with associative superlaws were described by V. D. Belousov in [5]. (See also [16].) 3-quasigroup algebras with associative superlaws were primary described by Yu. M. Movsisyan [9], p. 152-158].(Associative superlaws or hyperidentities of associativity; see also [15].) In the present paper, for n-quasigroup algebras with associative superlaws, the author was free to use the name: super associative algebras of n-quasigroup operations [briefly: SAAnQ]. In the paper, primary, in a unique way are described nontrivial SAAnQ [briefly: NetSAAnQ for every  $n \in \mathbb{N} \setminus \{1\}$  with an exception of a case for n=2. The crucial role in the mentioned description of NetSAAnQ play the  $\{1,n\}$ -neutral and the inversing operations in an n-group. Starting with the mentioned description of NetSAAnQ, these algebras for  $n \geq 3$  are finnally described in terms of Hosszú-Gluskin algebras of order n.

AMS (MOS) Subject Classification 1991. Primary: 20N15.

Key words and phrases: n-semigroups, n-quasigroups, n-groups,  $\{1, n\}$ -neutral operations on n-groupoids, inversing operation on n-group, central operation on n-group, nHG-algebras.

#### 1. Preliminaries

## 1.1 About the expression $a_p^q$

Let  $p \in \mathbb{N}$ ,  $q \in \mathbb{N} \cup \{0\}$  and let a be a mapping of the set  $\{i | i \in \mathbb{N} \land i \ge p \land i \le q\}$  into the set S;  $\emptyset \notin S$ . Then:

$$a_p^q \text{ stands for } \left\{ \begin{array}{ll} a_p, \ldots, a_q; & p < q \\ a_p; & p = q \\ \text{ empty sequence } (=\emptyset); & p > q. \end{array} \right.$$

For example:  $X(a_j^{j-1}, Y(a_j^{j+n-1}), a_{j+n}^{2n-1}), j \in \{1, ..., n\}, n \in \mathbb{N} \setminus \{1, 2\}, \text{ for } j = n \text{ stands for } X(a_1, ..., a_{n-1}, Y(a_n, ..., a_{2n-1})).$ 

Besides, in some situations instead of  $a_p^q$  we write  $(a_i)_{i=p}^q$  [briefly:  $(a_i)_p^q$ ]. For example:  $(\forall x_i \in Q)_1^q$  for q > 1 stands for  $\forall x_1 \in Q \dots \forall x_q \in Q$  [usually, we write:  $(\forall x_1 \in Q) \dots (\forall x_2 \in Q)$ ], for q = 1 it stands for  $\forall x_1 \in Q$ , and for q = 0 it stands for an empty sequence  $(=\emptyset)$ .

### 1.2 About *n*-semigroups, *n*-quasigroups and *n*-groups

**1.2.1.** Definitions: Let  $n \geq 2$  and let (Q, A) be an n-groupoid. Then:

(a) we say that (Q, A) is an n-semigroup iff for every  $i, j \in \{1, ..., n\}$ , i < j, the following (i, j)-associative law holds

$$A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1}) = A(x_1^{j-1}, A(x_i^{j+n-1}), x_{i+n}^{2n-1})$$
;

(b) we say that (Q, A) is an n-quasigroup iff for every  $i \in \{1, ..., n\}$  and for every  $a_1^n \in Q$  there is exactly one  $x_i \in Q$  such that the following equality holds

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n;$$
 and

(c) we say that (Q, A) is a Dörnte n-group [briefly: n-group] iff (Q, A) is an n-semigroup and n-quasigroup as well.

A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group.

**1.2.2. Proposition** [6]: An n-semigroup (Q, A),  $n \ge 2$ , is an n-group iff for all there is exactly one  $x \in Q$  and exactly one  $y \in Q$ , such that the equalities

$$A(a_1^{n-1}, x) = a_n \text{ and } A(y, a_1^{n-1}) = a_n$$

hold.

**1.2.3. Proposition** [7]: Let (Q, A) be an n-quasigroup and  $n \geq 2$ . Then: (Q, A) is an n-group iff there is an  $i \in \{1, \ldots, n-1\}$  such that the following law holds

$$A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-1})=A(x_1^i,A(x_{i+1}^{i+n}),x_{i+n+1}^{2n-1}).$$

(See, also [8], p.p. 196.)

## 1.3 On the $\{i, j\}$ -neutral operation in an n-groupoid

**1.3.1. Definition** [10]: Let  $n \geq 2$ , let (Q, A) be an n-groupoid and e be an (n-2)-ary operation in Q. Let also  $\{i,j\} \subseteq \{1,\ldots,n\}$  and i < j. Then e is an  $\{i,j\}$ -neutral operation of the groupoid (Q,A) iff the following formula holds

(1) 
$$(\forall a_i \in Q)_1^{n-2} (\forall x \in Q) \quad (A(a_1^{i-1}, \mathbf{e}(a_1^{n-2}), a_i^{j-2}, x, a_{j-1}^{n-2}) = x \\ \wedge \quad A(a_1^{i-1}, x, a_i^{j-2}, \mathbf{e}(a_1^{n-2}), a_{j-1}^{n-2}) = x)^{1)}$$

- **1.3.2.** Remark: For n = 2  $e(a_1^{n-2})$  [=  $e(\emptyset) = e \in Q$ ] is a neutral element of the groupoid (Q, A).
- **1.3.3.** Proposition [10]: Let  $n \ge 2$ ,  $\{i, j\} \subseteq \{1, ..., n\}$  and i < j. Then in every n-groupoid there is at most one  $\{i, j\}$ -neutral operation.
- **1.3.4.** Proposition [10]: In every n-group  $[n \ge 2]$  there is a  $\{1, n\}$ -neutral operation. (See, also [13].)
- **1.3.5. Proposition** [10]: For  $n \geq 3$ , an n-semigroup (Q, A) is an n-group iff (Q, A) has a  $\{1, n\}$ -neutral operation.
- **1.3.6. Proposition:** Let (Q, A) be an n-group, e its  $\{1, n\}$ -neutral operation and  $n \geq 2$ . Then the following formula holds

(2) 
$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) \ A(e(a_1^{n-2}), a_1^{n-2}, x) = A(x, e(b_1^{n-2}), b_1^{n-2}).$$

Proof: 1) for n = 2 the formula (2) reduces to the formula  $(\forall x \in Q) A(\mathbf{e}(\emptyset), x) = A(x, \mathbf{e}(\emptyset))$ ; and

$$\begin{split} 2) \ &\text{let} \ n \geq 3. \ F(x,b_1^{n-2}) \stackrel{def}{=} A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(x,A(\mathbf{e}(b_1^{n-2}),b_1^{n-2},\mathbf{e}(b_1^{n-2})),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ F(x,b_1^{n-2}) &= x \Rightarrow A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(\mathbf{e}(a_1^{n-2})),a_1^{n-2},x). \end{split}$$

## 1.4 On the inversing operation in an n-group

- **1.4.1.** Proposition [11]: Let  $n \geq 2$  and (Q, A) be an n-semigroup. Then:
- a) There is at most one (n-1)-ary operation f in Q such that the following formulas hold
- (1)  $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q) \ A(f(a_1^{n-2}, a), a_1^{n-2}, A(a, a_1^{n-2}, x)) = x$  and
- (2)  $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q) \ A(A(x, a_1^{n-2}, a), a_1^{n-2}, f(a_1^{n-2}, a)) = x;$

 $<sup>\</sup>overline{\frac{1) \text{For } \{i, j\} = \{1, n\}: (\forall a_i \in Q)_1^{n-2} (\forall x \in Q) (A(e(a_1^{n-2}), a_1^{n-2}, x) = x \land A(x, a_1^{n-2}, e(a_1^{n-2})) = x).}$ 

- b) If there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) are satisfied, then (Q, A) is an n-group; and
- c) If (Q, A) is an n-group, then there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) hold.
- **1.4.2. Proposition** [11]: Let (Q, A) be an n-group, e its  $\{1, n\}$ -neutral operation, f its inversing operation and  $n \geq 2$ . Then the following formula holds  $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (A(f(a_1^{n-2}, a), a_1^{n-2}, a) = e(a_1^{n-2}) \land$

$$A(a, a_1^{n-2}, f(a_1^{n-2}, a)) = \mathbf{e}(a_1^{n-2}).$$

**1.4.3. Proposition** [11]: Let (Q, A) be an n-group, e its  $\{1, n\}$ -neutral operation, f its inversing operation and  $n \geq 2$ . Then the formula

$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) (\forall y \in Q) A(x, b_1^{n-2}, y) = A(A(x, a_1^{n-2}, f(a_1^{n-2}, \mathbf{e}(b_1^{n-2}))), a_1^{n-2}, y)$$

holds.

**1.4.4.** Remark: As well as Proposition 1.3.4. and Proposition 1.4.1, for  $n \geq 2$ , e. g. the following proposition holds [14]: If the laws hold in the algebra  $(Q, \{A, f, e\})$  of the type  $\langle n, n-1, n-2 \rangle$   $A(A(x^n), x^{2n-1}) = A(x, A(x^{n+1}), x^{2n-1}) A(x, a^{n-2}, e(a^{n-2})) = x$  and

$$A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}), A(x, a_1^{n-2}, e(a_1^{n-2})) = x \text{ and } A(a, a_1^{n-2}, f(a_1^{n-2}, a)) = e(a_1^{n-2}),$$

then (Q, A) is an n-group. For n = 2 this is the well known characterizations of groups.

## 1.5 On Hosszú-Gluskin algebras

- **1.5.1. Definition** [12]: Let  $\cdot$  be a binary and  $\varphi$  a unary operation in Q. Let also b be a (fixed) element of the set Q, and n a (fixed) element of the set  $\mathbb{N}\setminus\{1,2\}$ . We say that  $(Q,\{\cdot,\varphi,b\})$  is a Hosszú-Gluskin algebra of order n [briefly: nHG-algebra] iff the following hold
  - (1)  $(Q, \cdot)$  is a group,
  - (2)  $\varphi \in Aut(Q, \cdot)$ ,
  - (3)  $\varphi^{n-1}(x) \cdot b = b \cdot x$  for every  $x \in Q$ , and
  - (4)  $\varphi(b) = b$ .
- **1.5.2.** Hosszú-Gluskin Theorem [3-4]: Let (Q, A) be an n-group and  $n \ge 3$ . Then, there is an nHG-algebra  $(Q, \{\cdot, \varphi, b\})$  such that for each  $x_1^n \in Q$  the equality

(5) 
$$A(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$$

holds.

By a simple verification we conclude that the following proposition also holds:

**1.5.3.** Proposition: Let  $(Q, \{\cdot, \varphi, b\})$  nHG-algebra  $[n \ge 3]$ . Let also

$$A(x_1^n) \stackrel{def}{=} x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$$

for all  $x_1^n \in Q$ . Then (Q, A) is an n-group.

**1.5.4.** Definition [12]: We say that an nHG-algebra  $(Q, \{\cdot, \varphi, b\})$  associated to the n-group (Q, A) iff the equality (5) holds for all  $x_1^n \in Q$ .

**1.5.5.** Proposition [12]: Let (Q, A) be an n-group,  $n \geq 3$ ,  $(Q, \{\cdot, \varphi, b\})$  an arbitrary nHG-algebra associated to the n-group (Q, A),  $^{-1}$  the inversing operations in  $(Q, \cdot)$ ,  $k \in Q$  and for every  $x, y \in Q$ 

$$x \cdot_k y \stackrel{def}{=} x \cdot k \cdot y,$$

$$\varphi_k(x) \stackrel{def}{=} k^{-1} \cdot \varphi(x) \cdot \varphi(k)$$
 and

$$b_k \stackrel{def}{=} k^{-1} \cdot \varphi(k^{-1}) \cdot \ldots \cdot \varphi^{n-1}(k^{-1}) \cdot b.$$

Let also

$$C_A \stackrel{def}{=} \{ (Q, \{\cdot_k, \varphi_k, b_k\}) | k \in Q \}.$$

Then,  $C_A$  is a set of all nHG-algebras associated to the n-group (Q, A).

#### 2. Introduction

## 2.1 On n-ary associative laws

Let  $X_1, \ldots, X_4$  be n-ary operational symbols and  $n \in \mathbb{N} \setminus \{1\}$ . Let also  $\Phi$  be a mapping of the set  $\{X_1, \ldots, X_4\}$  into the set  $\{X_1, \ldots, X_4\}$ ,  $i, j \in \{1, \ldots, n\}$ , i < j and let  $x_1, \ldots, x_{2n-1}$  be variables;  $\mathcal{R}\Phi = \{\Phi X_1, \Phi X_2, \Phi X_3, \Phi X_4\} \subseteq \{X_1, \ldots, X_4\}$ . Then we say that

$$\Phi X_1(x_1^{i-1},\Phi X_2(x_i^{i+n-1}),x_{i+n}^{2n-1}) = \Phi X_3(x_1^{j-1},\Phi X_4(x_j^{j+n-1}),x_{j+n}^{2n-1})$$

is a n-ary associative law.

## 2.2 Super associative algebras with n-quasigroup operations

**2.2.1.** Definition: Let  $(Q, \Sigma)$  be an algebra in which (Q, Z) is an n-quasigroup for every  $Z \in \Sigma$ . Then we say that  $(Q, \Sigma)$  is a super associative algebra with n-quasigroup operations [briefly: SAAnQ] iff the following statement holds: there is

$$\Phi \in \{X_1, \dots, X_{2n}\}^{\{X_1, \dots, X_{2n}\}}$$

such that for every  $i \in \{2, ..., n\}$ , for every substitution of the variables  $x_1, ..., x_{2n-1}$  by elements of Q and for every substitution of the operational symbols  $\Phi X_1, ..., \Phi X_{2n}$  by elements of  $\Sigma$  [keeping the same notion  $x_1, ..., x_{2n-1}, \Phi X_1, ..., \Phi X_{2n}$ ] the following equality holds

$$\Phi X_1(\Phi X_2(x_1^n), x_{n+1}^{2n-1}) = \Phi X_{2i-1}(x_1^{i-1}, \Phi X_{2i}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$

**2.2.2.** Remark: The case n=2 was described by V. D. Belousov in [5]. In that occasion SAA2Q were said to be systems of quasigroups with associative superlaws. The case n=3 was described by Yu. M. Movsisian [:the book [9], p.p. 152-158].  $\square$ 

An immediate consequence of Def. 2.2.1 and of the definition of the *n*-group is the following proposition:

**2.2.3.** Proposition: Let  $n \in \mathbb{N} \setminus \{1\}$ . Then: if  $(Q, \Sigma)$  SAAnQ, then (Q, Z) is an n-group for every  $Z \in \Sigma$ .

#### 2.3 Nontrivial SAAnQ

If  $|\Sigma| = 1$  or  $|\mathcal{R}\Phi| = 1$ , then for every set Q and for every  $n \geq 2$  there is  $SAAnQ(Q, \Sigma)$ .

**2.3.1. Definition:** Let  $(Q, \Sigma)$  be an SAAnQ;  $n \geq 2$ . Then  $(Q, \Sigma)$  is a non-trivial SAAnQ [briefly: NetSAAnQ] iff the following conjuction holds

$$|\Sigma| > 1 \land |\mathcal{R}\Phi| > 1.$$

**2.3.2. Theorem:** Let  $(Q, \Sigma)$  be an SAAnQ. Then: if  $(Q, \Sigma)$  is NetSAAnQ, then the following statements hold:

(1) 
$$\begin{aligned} |\{\Phi X_1, \Phi X_2\}| &= 2 \Rightarrow \\ (\forall i \in \{2, \dots, n\}) \{\Phi X_{2i-1}, \Phi X_{2i}\} &= \{\Phi X_1, \Phi X_2\}; \text{ and } \\ |\{\Phi X_1, \Phi X_2\}| &= 1 \Rightarrow \end{aligned}$$

(2) 
$$(\forall i \in \{2, \dots, n\})(|\{\Phi X_{2i-1}, \Phi X_{2i}\}| = 1) \land$$

$$(\exists j \in \{2,\dots,n\})\{\Phi X_{2j-1},\Phi X_{2j}\} \neq \{\Phi X_1,\Phi X_2\}).$$

**Proof.** 1) Let  $|\{\Phi X_1, \Phi X_2\}| = 2$ .

a) Let  $A, B, C, D, \bar{D}$  be arbitrary operations from  $\Sigma, x_1, \ldots, x_{2n-1}$  arbitrary elements from Q and i an arbitrary element of the set  $\{2, \ldots, n\}$  so that

$$\begin{split} &A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},D(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and} \\ &A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},\bar{D}(x_i^{i+n-1}),x_{i+n}^{2n-1}). \end{split}$$

Thereby, since  $\Sigma$  is a set of *n*-quasigroup operations, we conclude that  $D = \bar{D}$ , i.e. that  $\Phi X_{2i}$  has no free choice for the substitution with operations from the set  $\Sigma$ . Similarly we conclude that  $\Phi X_{2i-1}$  has no free choice for the substitution with operations from  $\Sigma$ . Hence, for every  $i \in \{2, \ldots, n\}$  it is true that

$$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 4.$$

b) Let  $A, B, C, \bar{C}$  be arbitrary elements from the set  $\Sigma, x_1, \ldots, x_{2n-1}$  arbitrary elements from the set Q and i an arbitrary elements from the set

$$\{2,\ldots,n\}$$
 so that 
$$A(B(x_1^n),x_{n+1}^{2n-1})=A(x_1^{i-1},C(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and }$$
 
$$A(B(x_1^n),x_{n+1}^{2n-1})=A(x_1^{i-1},\bar{C}(x_i^{i+n-1}),x_{i+n}^{2n-1}); \text{ or }$$
 
$$A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and }$$

Hence, since  $\Sigma$  is a set of *n*-quasigroup operations, we conclude that with  $\Phi X_1 = \Phi X_{2i-1}$  or  $\Phi X_2 = \Phi X_{2i}$ 

 $A(B(x_1^n), x_{n+1}^{2n-1}) = \bar{C}(x_1^{i-1}, B(x_i^{i+n-1}), x_{i+n}^{2n-1}).$ 

$$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 3.$$

In the same way we conclude that with  $\Phi X_2 = \Phi X_{2i-1}$  or  $\Phi X_1 = \Phi X_{2i}$  it is true that

$$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 3$$

for every  $i \in \{2, \ldots, n\}$ .

c) Let A, B be arbitrary elements of the set  $\Sigma, x_1, \ldots, x_{2n-1}$  arbitrary elements from Q, and i an arbitrary element of the set  $\{2, \ldots, n\}$  so that

$$A(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{i-1}, Ax_i^{i+n-1}), x_{i+n}^{2n-1})$$
 or

$$A(B(x_1^n),x_{n+1}^{2n-1})=B(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}).$$

Hence, since (Q, A) and (Q, B) are n-groups, it follows that A = B, i.e. that  $\Phi X_1$  or  $\Phi X_2$  has no free choice for the substitution with operations from  $\Sigma$ , which is a contradiction with the assumption that the following equality holds  $|\{\Phi X_1, \Phi X_2\}| = 2$ .

- 2) Let  $|\{\Phi X_1, \Phi X_2\}| = 1$ .
- a) Let  $A, B, C, \overline{C}$  be arbitrary elements from  $\Sigma, x_1, \ldots, x_{2n-1}$  arbitrary elements from Q and i an arbitrary element from  $\{2, \ldots, n\}$  so that

$$A(A(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, C(x_i^{i+n-1}), x_{i+n}^{2n-1})$$
 and

$$A(A(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, \bar{C}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$

Hence, since  $\Sigma$  is a set of n-quasigroup operations, we conclude that  $\Phi X_{2i}$  has no free choice for the substitution with operations in  $\Sigma$ . Similarly we conclude that  $\Phi X_{2i-1}$  also has no free choice for the substitution with operations from  $\Sigma$ . Thus, for every  $i \in \{2, \ldots, n\}$ , it is true that

$$|\{\Phi X_{2i-1}, \Phi X_{2i}\}| = 1.$$

b) Finally, taking into account the proposition proved in a) and the assumption that  $(Q, \Sigma)$  is NetSAAnQ, we conclude that there is at least one  $j \in \{2, ..., n\}$  such that

$$\{\Phi X_{2j-1}, \Phi X_{2j}\} \neq \{\Phi X_1, \Phi X_2\}. \square$$

Theorem 2.3.2 gives the posibility to describe NetSAAnQ:

- a) with **not more than** n operational symbols in the case  $|\{\Phi X_1, \Phi X_2\}| = 1$ ; and
- b) with **two** operational symbols in the case  $|\{\Phi X_1, \Phi X_2\}| = 2$ . Consequently, having in mind Theorem 2.3.2, we induce the following two agreements:
- **2.3.3.** Definition: Let  $(Q, \Sigma)$ ,  $|\Sigma| \geq 2$ , be an algebra in which the following condition holds: (Q, Z) is an n-quasigroup,  $n \geq 2$ , for every  $Z \in \Sigma$ . Let also  $\omega$  be a mapping of the set  $\{1, \ldots, n\}$  into the set  $\{1, \ldots, n\}$  such that it satisfies the following conditions: a)  $\omega(1) = 1$ , and b)  $|\mathcal{R}\omega| \geq 2$ . In addition, the set of all mappings  $\omega$  satisfying the conditions a)-b) will be denoted by  $\Omega$ . Then, we shall say that  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ iff for every  $i \in \{2, \ldots, n\}$ , for every substitution of variables  $x_1, \ldots, x_{2n-1}$  with elements from Q, and every substitution of n-ary operational symbols  $X_{\omega(1)}, \ldots, X_{\omega(n)}$  with operations from  $\Sigma$  the following equality holds

$$X_1(X_1(x_1^n), x_{n+1}^{2n-1}) = X_{\omega(i)}(x_1^{i-1}, X_{\omega(i)}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$

**2.3.4.** Definition: Let  $(Q, \Sigma)$ ,  $|\Sigma| \geq 2$ , be an algebra in which the following proposition holds: (Q, Z) is an n-quasigroup,  $n \geq 2$ , for every  $Z \in \Sigma$ . Let also  $\hat{S}$  be a subset of the set  $S = \{2, \ldots, n\}$  [including  $\hat{S} = \emptyset$ ]. Then we shall say that  $(Q, \Sigma)$  is an  $\hat{S}$ -NetSAAnQ iff for every substitution of the variables  $x_1, \ldots, x_{2n-1}$  with elements from Q and for every substitution of n-ary operational symbols  $X_1, X_2$  with operations from  $\Sigma$  the following statement holds

$$\bigwedge_{i \in S \backslash \hat{S}} X_1(X_2(x_1^n), x_{n+1}^{2n-1}) = X_1(x_1^{i-1}, X_2(x_i^{i+n-1}), x_{i+n}^{2n-1}) \land$$

$$\bigwedge_{i \in \hat{S}} X_1(X_2(x_1^n), x_{n+1}^{2n-1}) = X_2(x_1^{i-1}, X_1(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$

- **2.3.5.** Remark: If  $(Q, \Sigma)$  is NetSAAnQ,  $A \in \Sigma$  and  $|\Sigma \setminus \{A\}| \ge 2$ , then also  $(Q, \Sigma \setminus \{A\})$  is NetSAAnQ.
- 2.4 On NetSAAnQ with n=2

For n=2 there are [exactly] the following cases for NetSAAnQ

- 1)  $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$  -NetSAAnQ,
- 2) Ø-NetSAAnQ and
- 3) S-NetSAAnQ,  $[S = \{2\}]$ ,

with which are, respectively, connected the following laws

$$X_1(X_1(x_1^2), x_3) = X_2(x_1, X_2(x_2^3)),$$

$$X_1(X_2(x_1^2), x_3) = X_1(x_1, X_2(x_2^3))$$
 and

$$X_1(X_2(x_1^2), x_3) = X_2(x_1, X_1(x_2^3)).$$

All three cases are described by V. D. Belousov in [5]. Among others, there are the following results.

- **2.4.1:** Let  $(Q, \Sigma)$  be an NetSAAnQ. Then the following hold:
  - a) (Q, A) is a group for every  $A \in \Sigma$ ;
- b) If A is an arbitrary operation from  $\Sigma$ , then for every  $B \in \Sigma$  there is  $k \in Q$  such that for all  $x, y \in Q$

$$B(x,y) = A(A(x,k),y).$$

Moreover:

- $b_1$ ) If  $(Q, \Sigma)$  is  $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ -NetSAAnQ, then  $k \in Q$  is an element from the support of the center of the group (Q, A) and k is a self inverse element in (Q, A); and
- $b_2$ ) If  $(Q, \Sigma)$  is  $\emptyset$ -NetSAAnQ, then  $k \in Q$  is an element from the support of the center of the group (Q, A); and
- $b_3$ ) If  $(Q, \Sigma)$  is an S-NetSAAnQ, then  $k \in Q$  is not limited by (Q, A)  $[:A = \cdot, B(x, y) = x \cdot k \cdot y, C(x, y) = x \cdot \bar{k} \cdot y, B(C(x, y), z) = (x \cdot \bar{k} \cdot y) \cdot k \cdot z = x \cdot \bar{k} \cdot (y \cdot k \cdot z) = C(x, B(y, z))].$
- **2.4.2:** If  $(Q, \Sigma)$  is  $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ -NetSAA2Q, then  $(Q, \Sigma)$  is  $\emptyset$ -NetSAA2Q.
- **2.4.3:** If  $(Q, \Sigma)$  is  $\emptyset$ -NetSAA2Q, then  $(Q, \Sigma)$  is also an S-NetSAA2Q.
- **2.4.4:** There is a NetSAA2Q  $(Q, \Sigma)$  such that it is  $\emptyset$ -NetSAA2Q and that it is not  $(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array})$ -NetSAAnQ.
- **2.4.5:** There is a NetSAA2Q  $(Q, \Sigma)$  such that it is an S-NetSAA2Q and that it is not  $\emptyset$ -NetSAAnQ.

**Remark:** The analogon of Proposition 2.4.5 with  $n \geq 3$  is not satisfied.

## 3. Central operations on *n*-groups

**3.1.** Definition: Let (Q, A) be an n-group and  $n \in \mathbb{N} \setminus \{1\}$ . Let also  $\alpha$  be an (n-2)-ary operation in the set Q. We say that  $\alpha$  is a central operation of the n-group (Q, A) iff the following formula holds:

$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) \ A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}).$$

- **3.2.** Remarks: a) If n = 2, then  $\alpha(c_1^{n-2}) \models \alpha(c_1^0) = \alpha(\emptyset) = c \in Q$  is a central element of the group (Q, A); and b) The  $\{1, n\}$ -neutral operation e of the n-group (Q, A) is a central operation of that n-group.
- **3.3. Proposition:** Let (Q, A) be an n-group,  $\alpha$  its central operation and  $n \in \mathbb{N} \setminus \{1\}$ . Then for every  $i \in \{1, ..., n\}$ , for every  $x_1^n \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, A(x_1^n)) = A(x_1^{i-1}, A(\alpha(b_1^{n-2}), b_1^{n-2}, x_i), x_{i+1}^n).$$

**Proof.** For n = 2  $\alpha(a_1^{n-2})$   $[= \alpha(\emptyset)]$  is an element of the center of the group (Q, A).

Let  $n \geq 3$ . Then:

1) Since, by the assumption, (Q, A) is an n-group [n-semigroup], we conclude that for every  $x_1^n \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equalities hold

$$\begin{split} A(\boldsymbol{\alpha}(a_1^{n-2}), a_1^{n-2}, A(x_1^n)) &= A(A(\boldsymbol{\alpha}(a_1^{n-2}), a_1^{n-2}, x_1), x_2^n) \\ &= A(A(\boldsymbol{\alpha}(b_1^{n-2}), b_1^{n-2}, x_1), x_2^n); \text{ and} \end{split}$$

2) Since, by the assumption, (Q, A) is an n-group and  $\alpha$  its central operation, we conclude that for every  $j \in \{1, \ldots, n-1\}$ , for every  $x_1^n \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following sequence of equalities hold

$$\begin{split} &A(x_1^{j-1},A(\alpha(a_1^{n-2}),a_1^{n-2},x_j),x_{j+1}^n) = \\ &A(x_1^{j-1},A(x_j,\alpha(b_1^{n-2}),b_1^{n-2}),x_{j+1}^n) = \\ &A(x_1^j,A(\alpha(b_1^{n-2}),b_1^{n-2},x_{j+1}),x_{j+2}^n). \end{split}$$

- **3.4. Proposition:** Let (Q, A) be an n-group and  $n \in \mathbb{N} \setminus \{1\}$ . Let also  $\alpha$  be a mapping of the set  $Q^{n-2}$  into the set Q. Then the following statements are equalvalent:
  - (a)  $\alpha$  is a central operation of the n-group (Q, A);
  - (b) The following formula holds

$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall c_i \in Q)_1^{n-2} (\forall d_i \in Q)_1^{n-2} (\forall x \in Q) (A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = A(x, c_1^{n-2}, \alpha(c_1^{n-2})) = A(d_1^{n-2}, \alpha(d_1^{n-2}), x);$$

(c) The following formula holds 
$$(\forall a_i \in Q)_1^{n-2}(\forall b_i \in Q)_1^{n-2}(\forall x \in Q) \quad A(x, a_1^{n-2}, \alpha(a_1^{n-2})) = A(b_1^{n-2}, \alpha(b_1^{n-2}), x).$$

**Proof.** For n=2 the proposition is trivial.

Let  $n \geq 3$ .

I: (a)  $\Leftrightarrow$  (b):

The statement (a) is an immeediate consequence of the statement (b).

By the assumption that (Q, A) is an n-group,  $\alpha$  its central operation and by Proposition 3.3, we deduce that the following sequence of implications holds

$$\begin{split} F(a_1^{n-2},x) &\stackrel{def}{=} & A(x,a_1^{n-2},\alpha(a_1^{n-2})) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(A(x,a_1^{n-2},\alpha(a_1^{n-2})),a_1^{n-2},z) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(x,a_1^{n-2},A(\alpha(a_1^{n-2}),a_1^{n-2},z)) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(A(\alpha(b_1^{n-2}),b_1^{n-2},x),a_1^{n-2},z) \Rightarrow \\ F(a_1^{n-2},x) &= & A(\alpha(b_1^{n-2}),b_1^{n-2},x), \end{split}$$

and hence we conclude that the formula

(1) 
$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) A(x, a_1^{n-2}, \alpha(a_1^{n-2})) = A(\alpha(b_1^{n-2}), b_1^{n-2}, x)$$

holds.

By the similar arguments, considering also the formula (1), we conclude that the following sequence of implications holds

$$\begin{split} \Phi(a_1^{n-2},x) &\stackrel{def}{=} & A(a_1^{n-2},\alpha(a_1^{n-2}),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(a_1^{n-2},\alpha(a_1^{n-2}),x)) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},A(z,a_1^{n-2},\alpha(a_1^{n-2})),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},A(\alpha(b_1^{n-2}),b_1^{n-2},z),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(\alpha(b_1^{n-2}),b_1^{n-2},x)) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(x,\alpha(b_1^{n-2}),b_1^{n-2})) \Rightarrow \\ & \Phi(a_1^{n-2},x) &= & A(x,\alpha(b_1^{n-2}),b_1^{n-2}), \\ & \text{and hence we conclude that also the formula} \end{split}$$

(2) 
$$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) A(a_1^{n-2}, \alpha(a_1^{n-2}), x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2})$$

holds.

Considering the formulas (1) and (2) and the definition 3.1, we conclude that the implication (a)  $\Rightarrow$  (b) holds.

II: If  $\alpha$  satisfies the formula in the statement (c), then for every  $i \in$  $\{1,\ldots,n\}$ , for every  $x_1^n\in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$A(A(x_1^n),a_1^{n-2},\boldsymbol{\alpha}(a_1^{n-2}))=A(a_1^{i-1},A(x_i,b_1^{n-2},\boldsymbol{\alpha}(b_1^{n-2})),x_{i+1}^n).$$

Proposition II can be proved by a simple imitation of the proof of Proposition 3.3.

III: (b)  $\Leftrightarrow$  (c):

The statement (c) is an immediate consequence of the statement (b).

The implication (c)  $\Rightarrow$  (b) can be proved imitating the proof of the implication (a)  $\Rightarrow$  (b), where instead of Proposition 3.3 Proposition II is used.

See Remark 3.11. □

A direct consequence of Proposition 3.4 is the following proposition:

**3.5. Proposition:** Let (Q, A) be an n-group and  $n \in \mathbb{N} \setminus \{1\}$ . Let also  $\alpha$  and  $\beta$  be central operations of the n-group (Q, A). Then for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(a_1^{n-2})) = A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})).$$

**3.6.** Proposition: Let (Q, A) be an n-group,  $\alpha$  its central operation and  $n \in \mathbb{N} \setminus \{1\}$ . Then there is a permutation  $\alpha$  of the set Q such that for every  $x \in Q$ ,  $a_1^{n-2}$ ,  $b_1^{n-2} \in Q$  the following conjunction of equalities holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = \alpha(x) \wedge A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = \alpha(x).$$

**Proof.** Let  $k_1^{n-2}$  be an arbitrary **choosen** sequence over the set Q. Then,  $\alpha$ , where

$$\alpha(x) \stackrel{def}{=} A(x, \alpha(k_1^{n-2}), k_1^{n-2})$$

for every  $x \in Q$ , is a permutation of the set Q, since (Q, A) is an n-quasigroup. Hence, by the Definition 3.1, we conclude that the proposition holds.  $\square$  An immediate consequence of Proposition 3.3 and Proposition 3.6 is the following proposition:

**3.7. Proposition:** Let (Q, A) be an n-group,  $\alpha$  its central operation,  $\alpha$  a permutation of the set Q such that for every  $x, a_1^{n-2} \in Q$  the equality

$$A(\boldsymbol{\alpha}(a_1^{n-2}),a_1^{n-2},x)=\alpha(x)$$

holds, and  $n \in \mathbb{N} \setminus \{1\}$ . Then for every  $i \in \{1, ..., n\}$  and for every  $x_1^n \in Q$  the following equality holds

$$\alpha A(x_1^n) = A(x_1^{i-1}, \alpha(x_i), x_{i+1}^n). \quad \Box$$

A consequence of Proposition 3.6 and of Hosszú-Gluskin theorem is the following proposition:

**3.8. Lemma:** Let  $n \in \mathbb{N} \setminus \{1\}$ , (Q, A) an n-group and  $(Q, \{\cdot, \varphi, b\})$  an nHG-algebra associated to the n-group (Q, A) [:1.5.4]. Then: if  $\alpha$  is a central operation of the n-group (Q, A), then there is exactly one constant  $a \in Q$  such that for every sequence  $a_1^{n-2}$  over Q, the equality

$$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_1^{n-2})=a$$

holds.

**Proof.** Let  $c_1^{n-2}$  be an arbitrary [fixed] sequence over Q. Then, by Proposition 3.6, for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the equality

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(\alpha(c_1^{n-2}), c_1^{n-2}, x)$$

holds, from which, by Hosszú-Gluskin Theorem, we conclude that for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the equality

$$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})\cdot b\cdot x=\alpha(c_1^{n-2})\cdot\varphi(c_1)\cdot\ldots\cdot\varphi^{n-2}(c_{n-2})\cdot b\cdot x$$
 holds, i.e.,

$$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})=\alpha(c_1^{n-2})\cdot\varphi(c_1)\cdot\ldots\cdot\varphi^{n-2}(c_{n-2})$$

holds. Hence, since by the assumption,  $c_1^{n-2}$  is a fixed sequence over Q, by the convention that the constant  $\alpha(c_1^{n-2}) \cdot \varphi(c_1) \cdot \ldots \cdot \varphi^{n-2}(c_{n-2})$  is denoted by a, we conclude that for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})=a.$$

- **3.9. Proposition:** Let  $n \in \mathbb{N} \setminus \{1,2\}$ , (Q,A) an n-group,  $(Q,\{\cdot,\varphi,b\})$  its associated nHG-algebra and  $^{-1}$  the inversing operation in the group  $(Q,\cdot)$ . Then: if
  - a)  $\alpha$  is a central operation of the n-group (Q, A); and
- b)  $\alpha$  is a permutation of the set Q such that for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$\alpha(x) = A(\alpha(a_1^{n-2}), a_1^{n-2}, x),$$

then there is exactly one constant  $a \in Q$  such that for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equalities hold

- (1)  $\alpha(a_1^{n-2}) = a \cdot (\varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1};$
- (2)  $\alpha(x) = (a \cdot b) \cdot x;$
- (3)  $\varphi(a) = a \text{ and }$
- $(4) (a \cdot b) \cdot x = x \cdot (a \cdot b).$

**Proof.** 1) Since  $(Q, \cdot)$  is a group and  $^{-1}$  its inversing operation, by Lemma 3.8, we conclude that there is exactly one constant  $a \in Q$  such that for every sequence  $a_1^{n-2}$  over Q the equality (1) holds.

2) By the assumption of the proposition, by Hosszú-Gluskin Theorem, we conclude that for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the equality

$$\alpha(x) = \alpha(a_1^{n-2}) \cdot \varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}) \cdot b \cdot x$$

holds, and from there, by Lemma 3.8, we conclude that there is exactly one constant  $a \in Q$  such that for every  $x \in Q$  the equality (2) holds.

3) Considering the definition 3.1, Hosszú-Gluskin Theorem and by the fact  $\varphi \in Aut(Q,\cdot)$ , we conclude that for every  $x \in Q, a_1^{n-2}, b_1^{n-2} \in Q$ , the equality

$$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})\cdot b\cdot x=x\cdot\varphi(\alpha(b_1^{n-2})\cdot\varphi(b_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2}))\cdot b$$

holds, and from there, by Lemma 3.8, we conclude that there is exactly one constant  $a \in Q$  such that for every  $x \in Q$  the equality

$$a \cdot b \cdot x = x \cdot \varphi(a) \cdot b$$

holds, i.e.,

$$\varphi(a) = a$$
,

and then that for every  $x \in Q$  the equality (4) holds.  $\square$ 

One could check that the following proposition holds:

**3.10. Proposition:** Let  $n \in \mathbb{N} \setminus \{1, 2\}$ , (Q, A) an n-group,  $(Q, \{\cdot, \varphi, b\})$  its associated nHG-algebra and  $^{-1}$  the inversing operation in the group  $(Q, \cdot)$ . Let also a be a fixed element of the set Q such that

$$\varphi(a) = a$$
 and

$$(a \cdot b) \cdot x = x \cdot (a \cdot b)$$

for every  $x \in Q$ . Then: if for every  $x \in Q$ ,  $a_1^{n-2} \in Q$  we have that

$$\alpha(a_1^{n-2}) \stackrel{def}{=} a \cdot (\varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1} \text{ and}$$
$$\alpha(x) \stackrel{def}{=} a \cdot b \cdot x,$$

then  $\alpha$  is a central operation of the n-group (Q, A) and  $\alpha$  is a permutation of the set Q such that for every  $x \in Q$ ,  $a_1^{n-2}, b_1^{n-2} \in Q$ , the following equalities hold

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = \alpha(x)$$
 and  $A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = \alpha(x)$ .

**3.11. Remark:** A direct consequence of Proposition 3.4 is the following proposition. Let  $n \geq 3$ , let (Q, A) be an n-group and let  $\alpha$  be an (n-2)-ary operation in the set Q, If for every  $x \in Q$ ,  $a_1^{n-2}$ ,  $b_1^{n-2} \in Q$ , the following equality holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}),$$

then for every  $x \in Q$ , every sequence  $a_1^{n-2}$  over Q and every sequence  $b_1^{n-2}$  over Q there holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, b_1^{n-2}, \alpha(b_1^{n-2})).$$

However, the converse does not hold. For example: Let ( $\{1, 2, 3, 4\}$ , ) be the Klein's group (Tab.1) and  $^{-1}$  the corresponding inversing operation. Further on, let  $\varphi$  be the permutation of the set  $\{1, 2, 3, 4\}$  defined in the following way

$$\varphi \stackrel{def}{=} \left( \begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array} \right).$$

In addition, let

$$A(x_1^3) \stackrel{def}{=} x_1 \cdot \varphi(x_2) \cdot x_3 \cdot 2$$
 and  $\alpha(c) \stackrel{def}{=} 3 \cdot (\varphi(c))^{-1}$ .

Then: (i)  $(\{1,2,3,4\}, \{\cdot, \varphi, 2\})$  is a 3HG-algebra associated to the 3-group  $(\{1,2,3,4\},A)$ ; and (ii) for every  $x \in \{1,2,3,4\}$  and for every  $c \in \{1,2,3,4\}$  the following equalities hold

## 4. A description of $\omega$ -NetSAAnQ

**4.1. Theorem:** Let  $\omega$  be an arbitrary mapping from the set  $\Omega$ . Let also  $(Q, \Sigma)$  be an  $\omega$ -NetSAAnQ,  $n \geq 2$ , A an arbitrary operation from  $\Sigma$  and  $f_A$  the inversing operation in the n-group (Q, A). Then, for every  $B \in \Sigma$  there is exactly one central operation  $\alpha$  of (Q, A) such that for each  $x_1^n, a_1^{n-2} \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equalities hold

$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) \text{ and }$$

$$f_A(a_1^{n-2}, \alpha(a_1^{n-2})) = \alpha(a_1^{n-2}).$$

**Proof.** Let A and B be **arbitrary** operations from  $\Sigma$ . By Proposition 2.2.3, (Q, A) and (Q, B) are n-groups. By Proposition 1.3.2, (Q, A) and (Q, B) have  $\{1, n\}$ -neutral operations, denoted, respectively, by  $\mathbf{e}_A$  and  $\mathbf{e}_B$ . Let also the inversing operation in (Q, A) be denoted by  $f_A$ .

1) By Definition 2.3.3 and by Proposition 2.2.3, for every  $x_1^{2n-1} \in Q$  the following equality holds

$$B(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})),$$

hence, by the substitutions  $x_{n+1}^{2n-1} = a_1^{n-2}$  and  $x_{2n-1} = \mathbf{e}_B(a_1^{n-2})$ , where  $a_1^{n-2}$  is an arbitrary sequence over Q, we conclude that for every  $x_1^n, a_1^{n-2} \in Q$  the following equality holds

(1) 
$$B(x_1^n) = A(x_1^{n-1}, A(x_n, a_1^{n-2}, e_B(a_1^{n-2}))).$$

2) Since (Q, B) is an n-group, for every  $x_1^{2n-1} \in Q$  the following equality holds

$$B(B(x_1^n),x_{n+1}^{2n-1})=B(x_1,B(x_1^{n+1}),x_{n+2}^{2n-1}),$$

hence, by the statement concerning (1), we conclude that for every  $x_1^{2n-1}$ ,  $a_1^{n-2}$ ,  $b_1^{n-2} \in Q$ , the following equality holds

$$A(A(x_1^{n-1},A(x_n,a_1^{n-2},\mathbf{e}_B(a_1^{n-2}))),x_{n+1}^{2n-2},A(x_{2n-1},a_1^{n-2},\mathbf{e}_B(a_1^{n-2})))=$$

$$A(x_1, A(x_2^n, A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2}))), x_{n+2}^{2n-2}, A(x_{2n-1}, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))),$$

that is, since (Q, A) is an n-semigroup, also the following equality holds

$$A(x_1,A(x_2^n,A(a_1^{n-2},\mathbf{e}_B(a_1^{n-2}),x_{n+1})),x_{n+2}^{2n-2},A(x_{2n-1},a_1^{n-2},\mathbf{e}_B(a_1^{n-2})))=$$

$$A(x_1, A(x_2^n, A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2}))), x_{n+2}^{2n-2}, A(x_{2n-1}, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))).$$

Hence, since (Q, A) is an n-quasigroup, we conclude that for every  $x_{n+1} \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equalty holds

$$A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}), x_{n+1}) = A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2})),$$

hence by Proposition 3.4, we conclude that  $e_B$  is a central operation of the n-group (Q, A).

3) Starting with the statement concerning (1), with the substitutions  $x_2^{n-1} = a_1^{n-2}$ ,  $x_1 = e_B(a_1^{n-2})$  and  $x_n = x$ , we conclude that for every  $x \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$x = A(\mathbf{e}_B(a_1^{n-2}), a_1^{n-2}, A(x, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))),$$

hence, by Proposition 1.4.1, we conclude that for every  $x, a_1^{n-2} \in Q$  the following equality holds

$$A(f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})), a_1^{n-2}, x) = A(x, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})).$$

Hence, by the substitution  $x = \mathbf{e}_A(a_1^{n-2})$ , we conclude that for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})) = \mathbf{e}_B(a_1^{n-2}).$$

4) By the assumption that for every  $x_1^n \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) = A(x_1^{n-1}, A(\hat{\alpha}(a_1^{n-2}), a_1^{n-2}, x_n),$$

and since (Q, A) is an *n*-quasigroup, we conclude that  $\alpha = \hat{\alpha}$ .  $\square$ 

**4.2. Theorem:** Let (Q, A) be an n-group,  $f_A$  its inversing operation,  $n \geq 2$  and let (Q, A) has at least twoelement set of central operation  $C_A$  such that for every  $\alpha \in C_A$  the following formula holds

(1) 
$$(\forall a_i \in Q)_1^{n-2} f_A(a_1^{n-2}, \alpha(a_1^{n-2})) = \alpha(a_1^{n-2}).$$

Let also  $\hat{\mathbf{C}}_A$  be at least twoelement subset of the set  $\mathbf{C}_A$  and let

(2) 
$$B \in \Sigma \stackrel{def}{\Leftrightarrow} (\exists \alpha \in \hat{\mathbf{C}}_A) (\forall a_i \in Q)_1^{n-2} (\forall x_i \in Q)_1^n B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$

Then,  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ for every  $\omega \in \Omega$ .

**Proof.** 1) Let B be an **arbitrary** operation from  $\Sigma$  and  $\alpha$  its corresponding operation from  $\hat{\mathbf{C}}_A$ . Then, by Proposition 3.6, there is a permutation  $\alpha$  of the set Q such that for every  $x_1^n \in Q$  the following equality holds

(a) 
$$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n)),$$

hence immediately we conclude that (Q, B) is an n-quasigroup. Further, starting with the statement concerning (a), by Proposition 3.7, we conclude that for every  $x_1^{2n-1} \in Q$ , the following sequence of equalities holds

$$B(B(x_1^n), x_{n+1}^{2n-1}) = \alpha A(A(x_1^{n-1}, \alpha(x_n)), x_{n+1}^{2n-1})$$

$$= \alpha A(x_1, A(x_2^{n-1}, \alpha(x_n), x_{n+1}), x_{n+2}^{2n-1})$$

$$= B(x_1, B(x_2^{n+1}), x_{n+2}^{2n-1}),$$

i.e.

$$B(B(x_1^n), x_{n+1}^{2n-1}) = B(x_1, B(x_2^{n+1}), x_{n+2}^{2n-1}).$$

Hence, since (Q, B) is an n-quasigroup, by Proposition 1.2.3, we conclude that (Q, B) is an n-group.

2) A consequence of the condition (1) is the following statement

$$(b) \qquad (\forall x \in Q)\alpha(\alpha(x)) = x.$$

Further, starting with the statement concerning (a) and the statement (b), by Proposition 3.7, we conclude that for every  $x_1^{2n-1} \in Q$  the following equality holds

$$B(B(x_1^n), x_{n+1}^{2n-1}) = A(A(x_1^n), x_{n+1}^{2n-1}).$$

Hence, since B is an arbitrary operation from  $\Sigma$  and since (Q, B) is an n-group, we conclude that for **every substitution** of variables  $x_1, \ldots, x_{2n-1}$  with elements from Q and for **every substitution** of operational symbols

 $X_{\omega(1)}, \ldots, X_{\omega(n)}$ , by operations from  $\Sigma$  the following conjunction of equalities holds

$$\bigwedge_{i=2}^{n} X_1(X_1(x_1^n), x_{n+1}^{2n-1}) = X_{\omega(i)}(x_1^{i-1}, X_{\omega(i)}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$

Hence, by the assumption  $|\hat{\mathbf{C}}_A| \geq 2$ , we conclude that  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ for every  $\omega \in \Omega$ .

By Theorem 4.1 and by Theorem 4.2, we conclude that the following proposition holds:

- **4.3. Proposition:** For every  $\omega \in \Omega$  and for every  $\bar{\omega} \in \Omega$  the following statement holds:  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ  $[n \geq 2]$  iff  $(Q, \Sigma)$  is an  $\bar{\omega}$ -NetSAAnQ.
- **4.4. Proposition:** For every  $\omega \in \Omega$  and for every  $\hat{S} \subseteq \{2, ..., n\}$  the following statement holds: If  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ then  $(Q, \Sigma)$  is an  $\hat{S}$ -NetSAAnQ.
- **Proof.** 1) Let  $(Q, \Sigma)$  be an  $\omega$ -NetSAAnQ and  $n \geq 2$ . Let also A, B, C be arbitrary operations from  $\Sigma$ . Then, by Theorem 4.1, there are central operations  $\alpha$  and  $\beta$  of the n-group (Q, A) such that for every  $x_1^n, a_1^{n-2} \in Q$  the following equalites hold

(1) 
$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n))$$
 and

(2) 
$$C(x_1^n) = A(x_1^{n-1}, A(\beta(a_1^{n-2}), a_1^{n-2}, x_n)).$$

Starting with the statement concernig (1) and (2) and by Proposition 3.6, we conclude that there are permutations  $\alpha$  and  $\beta$  of the set Q such that for every  $x_1^n \in Q$  the following equalities hold

$$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n))$$
 and

$$C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$$

hence, by Proposition 3.7, we conclude that for every  $x_1^{2n-1} \in Q$  the following equality holds

(3) 
$$B(C(x_1^n), x_{n+1}^{2n-1}) = \alpha(\beta(A(A(x_1^n), x_{n+1}^{2n-1}))).$$

2) The consequence of the Proposition 3.5 and Proposition 3.6 is the following statement

(4) 
$$(\forall x \in Q)\alpha(\beta(x)) = \beta(\alpha(x)).$$

[Sketch of the proof:  $\alpha(\beta(x)) = A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(x)) = A(\alpha(a_1^{n-2}), a_1^{n-2}, A(\beta(a_1^{n-2}), a_1^{n-2}, x)) = A(A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(a_1^{n-2})), a_1^{n-2}, x) = A(A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})), a_1^{n-2}, x) = A(A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})), a_1^{n-2}, x) = A(\beta(a_1^{n-2}), a_1^{n-2}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x)) = A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(x)) = \beta(\alpha(x)).$ 

Finally, starting with the statement concerning (3) and (4), since (Q, A) is an n-group, we conclude that for every  $i \in \{2, \ldots, n\}$  and for every  $x_1^{2n-1} \in Q$  the following equalities hold

$$B(C(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, C(x_i^{i+n-1}), x_{i+n}^{2n-1}) =$$

$$=C(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}).$$

Thus, we have proved that  $(Q, \Sigma)$  is an  $\hat{S}$ -NetSAAnQ for every  $\hat{S} \in \{2, \dots, n\}$ .

By Theorem 4.1, Proposition 3.6 and Proposition 3.7, we conclude that also the following proposition holds:

**4.5. Proposition:** Let  $(Q, \Sigma)$  be an  $\omega$ -NetSAAnQ, A and B **arbitrary** operations from  $\Sigma$ , let  $\alpha$  be a central operation of (Q, A) and  $\alpha$  be an permutation of the set Q such that for every  $x_1^n \in Q$ , every  $x \in Q$  and every sequence  $a_1^{n-2}$  over Q the following equalities hold

$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) \text{ and}$$
  

$$\alpha(x) = A(\alpha(a_1^{n-2}), a_1^{n-2}, x).$$

Let also n = 2m and  $m \in \mathbb{N}$ . Then  $\alpha$  is an isomorphism from the n-group (Q, B) onto the n-group (Q, A).

## 5. Description of Ø-NetSAAnQ

**5.1. Theorem:** Let  $(Q, \Sigma)$  be an  $\emptyset$ -NetSAAnQ,  $n \geq 2$  and A an arbitrary operation from  $\Sigma$ . Then, for every  $B \in \Sigma$  there is exactly one central operation  $\alpha$  of the n-group (Q, A) such that for every  $x_1^n, a_1^{n-2} \in Q$  the following equality holds

$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$

**Proof.** Let A and B be two arbitrary operations from  $\Sigma$ . By Proposition 1.3.4, (Q, A) and (Q, B) have  $\{1, n\}$ -neutral operations, which will be denoted, respectively, with  $\mathbf{e}_A$  and  $\mathbf{e}_B$ . Let also the inversing operation in the n-group (Q, A) be denoted by  $f_A$ .

1) By Definition 2.3.4, since this is the case when  $\hat{S} = \emptyset$ , for every  $x_1^{2n-1} \in Q$  the following equality holds

$$A(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{n-1}, B(x_n^{2n-1})),$$

hence, by the substitutions  $x_{n+1}^{2n-2} = a_1^{n-2}$  and  $x_{2n-1} = \mathbf{e}_A(a_1^{n-2})$ , where  $a_1^{n-2}$  is an arbitrary sequence over Q, we conclude that for every  $x_1^n, a_1^{n-2} \in Q$  the following equality holds

(1) 
$$B(x_1^n) = A(x_1^{n-1}, B(x_n, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))).$$

Starting with the statement connected with (1), by the substitutions  $x_2^{n-1} = a_1^{n-2}$  and  $x_1 = \mathbf{e}_B(a_1^{n-2})$ , the following equality holds

$$x_n = A(\mathbf{e}_B(a_1^{n-2}), a_1^{n-2}, B(x_n, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))),$$

hence, by Proposition 1.4.1, we conclude that for every  $x_n, a_1^{n-2} \in Q$  the following equality holds

(2) 
$$B(x_n, a_1^{n-2}, e_A(a_1^{n-2})) = A(f_A(a_1^{n-2}, e_B(a_1^{n-2})), a_1^{n-2}, x_n).$$

Further, by the statements connected with (1) and (2), we conclude that for every  $x_1^n, a_1^{n-2} \in Q$ , the following equality holds

(3) 
$$B(x_1^n) = A(x_1^{n-1}, A(f_A(a_1^{n-2}, e_B(a_1^{n-2})), a_1^{n-2}, x_n)).$$
  
2) Let

(4) 
$$\alpha(a_1^{n-2}) \stackrel{\text{def}}{=} f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))$$

for every sequence  $a_1^{n-2}$  over Q. [By the substitutions (4), the formula (3) reduces to

$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).]$$

In the following we prove that  $\alpha$  is a central operation of the n-group (Q, A).

By Definition 2.3.4, since this is the case  $\hat{S} = \emptyset$ , for every  $x_1^{2n-1} \in Q$  the following equality holds

$$A(x_1^{n-2}, B(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, B(x_n^{2n-1})),$$

hence, by the statements connected with (3) and (4), we conclude that for every  $x_1^{2n-1} \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$A(x_1^{n-2},A(x_{n-1}^{2n-3},A(\alpha(a_1^{n-2}),a_1^{n-2},x_{2n-2})),x_{2n-1})=$$

$$A(x_1^{n-1}, A(x_n^{2n-2}, A(\alpha(b_1^{n-2}), b_1^{n-2}, x_{2n-1})),$$

i.e., since (Q, A) is an n-semigroup, the following equality also holds

$$A(x_1^{n-2}, A(x_{n-1}^{2n-3}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_{2n-2})), x_{2n-1}) =$$

$$A(x_1^{n-2},A(x_{n-1}^{2n-3},A(x_{2n-2},\alpha(b_1^{n-2}),b_1^{n-2})),x_{2n-1}).$$

Hence, since (Q, A) is an n-quasigroup, we conclude that  $x_{2n-2} \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$A(\alpha(a_1^{n-2}), a_1^{n-2}, x_{2n-2}) = A(x_{2n-2}, \alpha(b_1^{n-2}), b_1^{n-2}),$$

hence, by Definition 3.1, we conclude that  $\alpha$  is a central operation of the n-group (Q, A).

3)  $\alpha$  is uniquely determined by B: part 4) of the proof of Theorem 4.1. **5.2. Theorem:** Let (Q, A) be an n-group,  $n \geq 2$  and let (Q, A) has at least two central operations. Let also  $\mathbb{C}_A$  be at least two element subset of the set of all central operations of the n-group (Q, A), and

$$B \in \Sigma^{def} \quad (\exists \alpha \in \mathbf{C}_A)(\forall a_i \in Q)_1^{n-2}(\forall x_i \in Q)_1^n B(x_1^n) =$$
$$= A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$

Then,  $(Q, \Sigma)$  is an  $\emptyset$ -NetSAAnQ.

**Proof.** 1) Let B and C be arbitrary operations from  $\Sigma$ . Let also  $\alpha$  and  $\beta$  be central operations of the n-group (Q, A) from  $\mathbf{C}_A$  such that for every sequence  $a_1^{n-2}$  over Q, the following equalities hold

$$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n))$$
 and  $C(x_1^n) = A(x_1^{n-1}, A(\beta(a_1^{n-2}), a_1^{n-2}, x_n)).$ 

Then, by Proposition 3.6, there are permutations  $\alpha$  and  $\beta$  of the set Q such that for every  $x_1^n \in Q$  the following equalities hold

(1) 
$$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n))$$
 and (2)  $C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$ 

(2) 
$$C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$$

hence immediately we conclude that (Q, B) and (Q, C) are n-quasigroups.

2) Starting with the Propositions connected with (1) and (2), by Proposition 3.7 and by assumption that (Q, A) is an n-group, we conclude that for every  $i \in \{2, ..., n\}$  and for every  $x_1^n \in Q$  the following sequence of equalities holds

$$\begin{split} &B(C(x_1^n),x_{n+1}^{2n-1}) = A(A(x_1^{n-1},\beta(x_n)),x_{n+1}^{2n-2},\alpha(x_{2n-1})) = \\ &\alpha A(\beta A(x_1^n),x_{n+1}^{2n-1}) = \alpha(\beta A(A(x_1^n),x_{n+1}^{2n-1})) = \\ &\alpha(\beta A(x_1^{i-1},A(x_i^{i+n-1}),x_{n+1}^{2n-1})) = \alpha A(x_1^{i-1},\beta A(x_i^{i+n-1}),x_{n+1}^{2n-1}) = \\ &B(x_1^{i-1},C(x_i^{i+n-1}),x_{n+1}^{2n-1}), \end{split}$$

i.e., the equality

$$B(C(x_1^n),x_{n+1}^{2n-1})=B(x_1^{i-1},C(x_i^{i+n-1}),x_{n+1}^{2n-1}),\\$$

also holds.  $\square$ 

For  $\alpha$  and  $\beta$  from the proof of Theorem 5.2 the following statement holds:

$$(\forall x \in Q)\alpha(\beta(x)) = \beta(\alpha(x)).$$

Starting with Theorem 5.1, by the above statement and by the proof of Theorem 5.2, we conclude that the following proposition holds:

**5.3. Proposition:** If  $(Q, \Sigma)$  is an  $\emptyset$ -NetSAAnQ,  $n \geq 2$ , then  $(Q, \Sigma)$  is also an  $\hat{S}$ -NetSAAnQ for every  $\hat{S} \subseteq \{2, ..., n\}$ .

By Theorem 5.1, Proposition 3.6 and Proposition 3.7, we conclude that the following proposition holds:

**5.4. Proposition:** If  $(Q, \Sigma)$  is an  $\emptyset$ -NetSAAnQ,  $n \ge 2$ , then for every  $A, B \in$  $\Sigma$  there is a permutation  $\alpha$  of the set Q such that for every  $x_1^n \in Q$  the following equality holds

$$\alpha^{n-1}B(x_1^n) = A(\alpha(x_1), \dots, \alpha(x_n)).$$

# 6. A description of $\hat{S}$ -NetSAAnQ

**6.1. Theorem:** Let  $n \in \mathbb{N} \setminus \{1, 2\}$ ,  $\hat{S} \subseteq \{2, ..., n\}$  and  $\hat{S} \neq \emptyset$ . Then, the following statement holds: if  $(Q, \Sigma)$  is an  $\hat{S}$ -NetSAAnQ, then  $(Q, \Sigma)$  is an  $\emptyset$ -NetSAAnQ.

**Proof.** Let A and B be two **arbitrary** operations from  $\Sigma$ . By Proposition 2.2.3, (Q, A) and (Q, B) are n-groups. By Proposition 1.3.2, (Q, A) and (Q, B) have  $\{1, n\}$ -neutral operations, denoted, respectively, by  $\mathbf{e}_A$  and  $\mathbf{e}_B$ . Let also the inversing operation in (Q, A) be denoted by  $f_A$ , and the inversing operation in (Q, B) be denoted by  $f_B$ .

1) By Definition 2.3.4, since  $\hat{S} \neq \emptyset$ , we conclude that there is an  $i \in \{1, \ldots, n-1\}$  such that for every  $x_1^{2n-1} \in Q$  the following equality holds

(1) 
$$A(x_1^{i-1}, B(x_i^{i+n-1}), x_{i+n}^{2n-1}) = B(x_1^i, A(x_{i+1}^{i+n}), x_{i+n+1}^{2n-1}).$$

Starting with the statements connected with (1), with the substitutions  $x_{i+1}^{i+n-2}=a_1^{n-2}$  and  $x_{i+n-1}=\mathbf{e}_A(a_1^{n-2})$ , where  $a_1^{n-2}$  is an arbitrary sequence over  $Q^2$ , we conclude that for every  $x_1^i, a_1^{n-2}, x_{i+n}^{2n-1} \in Q$  the following equality holds

$$A(x_1^{i-1}, B(x_i, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2})), x_{i+n}^{2n-1}) = B(x_1^i, x_{i+n}^{2n-1}),$$

whence, since for every  $a_1^{n-2}, u, x_i \in Q$  the equivalence

$$B(x_i, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2})) = u \Leftrightarrow x_i = B(u, a_1^{n-2}, f_B(a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))),$$

we conclude that for every  $y_1^n, a_1^{n-2} \in Q$  also the following equality holds

(a) 
$$A(y_1^n) = B(y_1^{i-1}, B(y_i, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_{i+1}^n),$$

where

(b) 
$$\alpha_B(a_1^{n-2}) \stackrel{def}{=} f_B(a_1^{n-2}, e_A(a_1^{n-2})).$$

Similarly, if we put in (1)  $x_{i+2}^{i+n-1} = a_1^{n-2}$  and  $x_{i+1} = \mathbf{e}_B(a_1^{n-2})$ , we conclude that for every  $y_1^n, a_1^{n-2} \in Q$  the equality

$$(\bar{a}) B(y_1^n) = A(y_1^i, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}), y_{i+2}^n),$$

holds, where

$$(\bar{b})$$
  $\alpha_A(a_1^{n-2}) \stackrel{def}{=} f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})).$ 

2) Since  $n \geq 3$  and since the present  $\hat{S}$ -NetSAAnQ satisfy the condition  $\hat{S} \neq \emptyset$ , arbitrary  $A, B \in \Sigma$  satisfy not only the statement connected with (1), but also at least one of the following statements

 $a_1^{n-2}$  is not an empty sequence, since  $n \ge 3$ .

I: There is an  $j \in \{1, \dots, n-1\}$ , satisfying the condition  $j \leq i-1$  or  $j \geq i+2$ , such that for every  $x_1^{2n-1} \in Q$  the following holds

(2) 
$$A(x_1^{j-1}, B(x_j^{j+n-1}), x_{j+n}^{2n-1}) = A(x_1^j, B(x_{j+1}^{j+n}), x_{j+n+1}^{2n-1});$$

II: There is an  $j \in \{1, \ldots, n-1\}$ , satisfying the condition  $j \leq i-2$  or  $j \geq i+1$ , such that for every  $x_1^{2n-1} \in Q$  the following holds

(3) 
$$B(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}) = B(x_1^j, A(x_{j+1}^{j+n}), x_{j+n+1}^{2n-1});$$
 and

III: For every  $x_1^{2n-1} \in Q$  the following equalities hold

(1<sub>1</sub>) 
$$A(B(x_1^n), x_{n+1}^{2n-1}) = B(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1})$$
 and

(4) 
$$B(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}) = A(x_1^2, B(x_3^{n+2}), x_{n+3}^{2n-1})$$

3) In the following we prove that for an arbitrary  $C \in \Sigma$ , for every  $D \in \Sigma$  there is a central operation  $\alpha_C$  of the *n*-group (Q, C) such that for every  $x_1^n \in Q$  and for every sequence  $a_1^{n-2}$  over Q the equality

$$D(x_1^n) = C(x_1^{n-1}, C(\alpha_C(a_1^{n-2}), a_1^{n-2}, x_n))^{3)}$$

holds, whence, since  $(Q, \Sigma)$  is an NetSAAnQ, by Theorem 5.2, it follows that  $(Q, \Sigma)$  is an  $\emptyset$ -NetSAAnQ.

Case I: Let the statement I holds together with the statement concerning (1). Starting with the statement with (2),  $(\bar{a})$  and  $(\bar{b})$ , by the substitution  $x_j^{j+n-1}=y_1^n$ , we conclude that for every  $x_1^{i-1},y_1^n,x_{j+n}^{2n-1}\in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$\begin{split} &A(x_1^{j-1},A(y_1^i,A(\alpha_A(a_1^{n-2}),a_1^{n-2},y_{i+1}),y_{i+2}^n),x_{j+n}^{2n-1}) = \\ &A(x_1^{j-1},y_1,A(y_2^{i+1},A(\alpha_A(b_1^{n-2}),b_1^{n-2},y_{i+2}),y_{i+3}^n,x_{j+n}),x_{j+n+1}^{2n-1}), \end{split}$$

i.e., since (Q, A) is an n-semigroup, also the following equality holds

$$A(x_1^{j-1}, A(y_1^i, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}), y_{i+2}^n), x_{j+n}^{2n-1}) = A(x_1^{j-1}, A(y_1^i, A(y_{i+1}, \alpha_A(b_1^{n-2}), b_1^{n-2}), y_{i+2}^n), x_{i+n}^{2n-1}),$$

hence, since (Q, A) is an n-quasigroup, we conclude that for every  $y_{i+1} \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}) = A(y_{i+1}, \alpha_A(b_1^{n-2}), b_1^{n-2}).$$

Hence, by Definition 3.1, we conclude that  $\alpha_A$  is a central operation of the n-group (Q, A). Thus, starting with statements connected with  $(\bar{a})$  and  $(\bar{b})$ ,

<sup>&</sup>lt;sup>3)</sup> In the case I C = A and D = B, and in the cases II and III C = B and D = A.

by Proposition 3.3, we conclude that for every  $y_1^n \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$B(y_1^n) = A(y_1^{n-1}, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_n)).$$

Case II: Let the statement II holds together with the statement connected with (1). Starting with the statements concernig (3), (a) and (b), by the substitution  $x_j^{j+n-1} = y_1^n$ , similarly to the case I [using Proposition 3.4 instead of Definition 3.1], we conclude that  $\alpha_B$  is a central operation of the n-group (Q, B) and that for every  $y_1^n \in Q$  and for every sequence  $a_1^{n-2}$  over Q the following equality holds

$$A(y_1^n) = B(y_1^{n-1}, B(\alpha_B(a_1^{n-2}), a_1^{n-2}, y_n)).$$

Case III: Let III holds. The equality  $(1_1)$  is the equality (1) for i = 1. Also [for i = 1], te statement connected with (a) reduces to the following statement: for every  $y_1^n, a_1^{n-2} \in Q$  the following equality holds

(a<sub>1</sub>) 
$$A(y_1^n) = B(B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_2^n)$$
$$[= B(B(y_1, b_1^{n-2}, \alpha_B(b_1^{n-2})), y_2^n)].$$

Starting with the statements concerning (4),  $(a_1)$  and (b), by the substitution  $x_2^{n+1} = y_1^n$ , we conclude that for every  $x_1, y_1^n, x_{n+2}^{2n-1} \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$B(x_1, B(B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_2^n), x_{n+2}^{2n-2}) =$$

$$B(B(x_1, b_1^{n-2}, \alpha_B(b_1^{n-2})), y_1, B(y_2^n, x_{n+2}), x_{n+3}^{2n-1}),$$

i.e., since (Q, B) is an n-semigroup, the following equality also holds

$$B(x_1, B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), B(y_2^n, x_{n+2}), x_{n+3}^{2n-1})$$
  
 $B(x_1, B(b_1^{n-2}, \alpha_B(b_1^{n-2}), y_1), B(y_2^n, x_{n+2}), x_{n+3}^{2n-1}),$ 

whence, since (Q, B) is an n-quasigroup, we conclude that for every  $y_1 \in Q$ , for every sequence  $a_1^{n-2}$  over Q and for every sequence  $b_1^{n-2}$  over Q the following equality holds

$$B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})) = B(b_1^{n-2}, \alpha_B(b_1^{n-2}), y_1).$$

Hence, by Proposition 3.4, we conclude that  $\alpha_B$  is a cental operation of the n-group (Q, B). Thus, starting with the statements connected with  $(a_1)$  and (b), by Proposition 3.3, for every  $y_1^n \in Q$  and for every sequence  $a_1^{n-2}$  over Q, the following equality holds

$$A(y_1^n) = B(y_1^{n-1}, B(\alpha_B(a_1^{n-2}), a_1^{n-2}, y_n)).$$

### 7. A description NetSAAnQ

- **7.1. Theorem:** Let  $(Q, \Sigma)$  be an  $\omega$ -NetSAAnQ and  $n \geq 3$ . Let also A be an arbitrary operation from  $\Sigma$  and  $(Q, \{\cdot, \varphi, b\})$  an nHG-algebra associated to the n-group (Q, A). Then, for every  $B \in \Sigma$  there is exactly one  $a \in Q$  such that for every  $x, x_1^n \in Q$  the following equalities hold:
- (a)  $B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n;$
- (b)  $(a \cdot b) \cdot x = x \cdot (a \cdot b);$
- (c)  $\varphi(a) = a \text{ and }$
- $(a \cdot b) \cdot (a \cdot b) = e,$

where e is a neutral element of the group  $(Q, \cdot)$ .

The sketch of the proof:

1) 
$$B(x_{1}^{n}) = A(x_{1}^{n-1}, A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, x_{n}))$$

$$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, x_{n})$$

$$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot \alpha(a_{1}^{n-2}) \cdot \varphi(a_{1}) \cdot \ldots$$

$$\varphi^{n-2}(a_{n-2}) \cdot b \cdot x_{n}$$

$$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_{n}$$

$$[:4.1, 1.5.2, 3.9].$$
2) 
$$(\forall x \in Q)(a \cdot b) \cdot x = x \cdot (a \cdot b) [:4.1, 3.9].$$
3) 
$$\varphi(a) = a [:4.1, 3.9].$$
4) 
$$f_{A}(a_{1}^{n-2}, \alpha(a_{1}^{n-2})) = \alpha(a_{1}^{n-2}) \Leftrightarrow$$

$$e_{A}(a_{1}^{n-2}) = A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, \alpha(a_{1}^{n-2}));$$

$$e_{A}(a_{1}^{n-2}) = b^{-1} \cdot (\varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1};$$

$$A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, \alpha(a_{1}^{n-2})) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$

$$\alpha(a_{1}^{n-2}) \cdot \varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}) \cdot b \cdot \alpha(a_{1}^{n-2}) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$

$$a \cdot b \cdot \alpha(a_{1}^{n-2}) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$

$$a \cdot b \cdot a \cdot (\varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1} = b^{-1}(\varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1} \Leftrightarrow$$

$$a \cdot b \cdot a = b^{-1} \Leftrightarrow$$

$$(a \cdot b) \cdot (a \cdot b) = e \Box$$

The statements 1)-3) from the sketch of the proof of Theorem 7.1 are valid also if 6.1, 5.1, 1.5.2, 3.9; 6.1, 5.1, 3.9 and 6.1, 5.1, 3.9 are used respectively instead of propositions listed in the brackets. Thereby, with the mentioned substitutions of used propositions 1)-3) is the sketch of the proof of the following proposition:

- **7.2. Theorem:** Let  $(Q, \Sigma)$  be an  $\hat{S}$ -NetSAAnQ and  $n \geq 3$ . Let also A be an arbitraty operation from  $\Sigma$  and  $(Q, \{\cdot, \varphi, b\})$  an nHG-algebra associated to the n-group (Q, A). Then, for every  $B \in \Sigma$  there is exactly one  $a \in Q$  such that for every  $x, x_1^n \in Q$  the following equalities hold:
- (a)  $B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n;$
- (b)  $(a \cdot b) \cdot x = x \cdot (a \cdot b)$  and
- (c)  $\varphi(a) = a$ .  $\square$

By Proposition 3.10, Theorem 5.2 and Proposition 5.3, we conclude that the following proposition holds:

**7.3.** Theorem: Let  $n \geq 3$ , let (Q, A) be an n-group,  $(Q, \{\cdot, \varphi, b\})$  its associated nHG-algebra and let A be at least two element subset of the set Q, such that for every  $a \in Q$  the following holds:

$$a \in \mathcal{A} \stackrel{def}{\Leftrightarrow} \varphi(a) = a \land (\forall x \in Q)(a \cdot b) \cdot x = x \cdot (a \cdot b).$$

Let also  $\Sigma$  be the set of n-ary operations  $(n \geq 3)$  in Q such that for every B

$$B \in \Sigma \stackrel{def}{\Leftrightarrow} a \in \mathcal{A} \land (\forall x_i \in Q)_1^n B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n.$$

Then  $(Q, \Sigma)$  is an  $\hat{S}$ -NetSAAnQ for every  $\hat{S} \subseteq \{2, \dots, n\}$ .  $\square$ 

By Proposition 3.10, part 4) of the sketch of the proof of Theorem 7.1 and by Theorem 4.2, we conclude that the following proposition holds:

**7.4.** Theorem: Let  $n \geq 3$ , let (Q, A) be an n-group,  $(Q, \{\cdot, \varphi, b\})$  its associated nHG-algebra, e the neutral element of the group  $(Q, \cdot)$  and let A be at least two element subset of the set Q, such that for every  $a \in Q$  the following holds:

$$a \in \mathcal{A} \stackrel{def}{=} \varphi(a) = a \wedge (\forall x \in Q)((a \cdot b) \cdot x = x \cdot (a \cdot b) \wedge (a \cdot b) \cdot (a \cdot b) = e).$$

Let also  $\Sigma$  be the set of n-ary operations in Q such that for every B the following holds:

$$B \in \Sigma \stackrel{def}{\Leftrightarrow} B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n \wedge a \in \mathcal{A}.$$
Then,  $(Q, \Sigma)$  is an  $\omega$ -NetSAAnQ for every  $\omega \in \Omega$ .

# 8. On a description of the case n=3 by Yu. M. Movsisyan

Nontrivial super associative algebras with 3-quasigroup operations were described firstly by Yu. M. Movsisyan [: [9], p. 152-158].

In this section we compare one proposition of Yu. M. Movsisyan [: [9], p. 152, direction " $\Rightarrow$ " of Theorem 2.2.37] with the corresponding proposition from 7 for n=3 [:Theorem 7.2 for n=3]. Therefore, we advance the following definition:

- **8.1:** Let  $(Q, \{\circ, \beta, r, s, t\})$  be an algebra, where  $\circ$  is a binary operation in  $Q, \beta$  is a permutation of the set Q, and r, s, t fixed elements of the set Q. Then we say that  $(Q, \{\circ, \beta, r, s, t\})$  is a 3M-algebra iff the following statements hold:
- (1)  $(Q, \circ)$  is a group;
- (2)  $\beta \in Aut(Q, \circ)$ ;
- (3)  $\beta(s \circ r) = r \circ s \circ t^{(-1)}$ , where  $^{(-1)}$  is the inversing operation in the group  $(Q, \circ)$ ; and
- (4)  $(\forall x \in Q)\beta^2(x) \circ (\beta(r^{(-1)}) \circ s) = (\beta(r^{(-1)}) \circ s) \circ x. \square$

Using Definition 8.1, Theorem of Movsisyan corresponding Theorem 7.2 for n=3 [: [9], p. 152, direction " $\Rightarrow$ " of Theorem 2.2.37], can be formulated in the following way:

- **8.2:** Let  $(Q, \Sigma)$  be an  $\hat{S}$ -NetSAAnQ and n=3. Then there is 3M-algebra  $(Q, \{\circ, \beta, r, s, t\})$  such that the following statement holds: for every  $B \in \Sigma$  there is exactly one  $p \in Q$  such that for every  $x, x_1^3 \in Q$  the following equalities are satisfied:
- (a)  $B(x_1^3) = x_1 \circ r \circ \beta(x_2) \circ s \circ p \circ x_3$
- (b)  $p \circ x = x \circ p$  and
- (c)  $\beta(p) = t \circ p$ .

Using 2.3.5, Theorem 7.2 can be formulated in the similar way for n = 3: 8.3: Let  $(Q, \Sigma)$  be an  $\hat{S}$ -NetSAAnQ and n = 3. Then there is 3HG-algebra (Q,  $\{x_0, h\}$ ) such that the following statement holds: for every  $R \in \Sigma$  there is

 $(Q, \{\cdot, \varphi, b\})$  such that the following statement holds: for every  $B \in \Sigma$  there is exactly one  $a \in Q$  such that for every  $x, x_1^3 \in Q$  the following equalities are satisfied:

- $(\bar{a}) B(x_1^3) = x_1 \cdot \varphi(x_2) \cdot b \cdot a \cdot b \cdot x_3,$
- $(\bar{b}) (a \cdot b) \cdot x = x \cdot (a \cdot b)$  and
- $(\bar{c}) \varphi(a) = a. \square$

By 8.2 and 8.3, using the statements connected with (a) and  $(\bar{a})$ , respectively, from 8.2 and 8.3, we conclude that also the following proposition holds:

**8.4.** Proposition: Let  $(Q, \Sigma)$  be an  $\hat{S}$ -NetSAAnQ and n=3. Let also  $(Q, \{\circ, \beta, r, s, t\})$  and  $(Q, \{\cdot, \varphi, b\})$  be a 3M- and 3HG-algebras, respectively, associated in the sense of 8.2 and 8.3 to the algebra  $(Q, \Sigma)$ . Then there is exactly one  $k \in Q$  such that for every  $x, y \in Q$  the following equality holds

$$x \circ y = x \cdot k \cdot y.$$

Finally, by 1.5.3, 8.4, 1.5.5, 7.2, 8.3 and 8.2, we conclude that the following proposition holds:

**8.5.** Proposition: Let  $(Q, \Sigma)$  be an  $\hat{S}$ -NetSAAnQ and n = 3. Let also  $(Q, \{\circ, \beta, r, s, t\})$  be a 3M-algebra associated to the algebra  $(Q, \Sigma)$  in the sense of 8.2. Then, there is a 3HG-algebra  $(Q, \{\cdot, \overset{\circ}{\varphi}, \overset{\circ}{b}\})$  such that the following statements holds: for every  $B \in \Sigma$  there is exactly one  $p \in Q$ , and exactly one

 $\overset{\circ}{a} \in Q$  such that for every  $x, x_1^3 \in Q$ , together with (a)-(c) from 8.2, also the following equalities hold

$$B(x_1^3) = x_1 \circ \mathring{\varphi}(x_2) \circ \mathring{b} \circ \mathring{a} \circ \mathring{b} \circ x_3,$$

$$(\mathring{a} \circ \mathring{b}) \circ x = x \circ (\mathring{a} \circ \mathring{b}), \varphi(\mathring{a}) = \mathring{a},$$

$$\mathring{b} \circ \mathring{a} \circ \mathring{b} = r \circ s \circ p \ and \mathring{\varphi}(x) = r \circ \beta(x) \circ r^{(-1)}.$$

#### 9. References

- Dörnte W.: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
- [2] Bruck, R. H.: A survey of binary systems, Springer-Verlag, Berlin-Heidelberg-Göttingen 1958.
- [3] Hosszú, M.: On the explicit form of n-group operations, Publ. math., Debrecen (10) 1-4 (1963), 88-92.
- [4] Gluskin, L. M.: Position operatives, Mat. sb. t. (68) (110) No3 (1965), 444-472.(In Russian.)
- [5] Belousov, V. D.: Systems of quasigroups with generalized identities, Usp. mat. nauk 20, No 1, 1965, 75-146. (In Russian.)
- [6] Szász, C.: Asupra axomelor care la baza definititei unui n-group, "Lucrări ştint. Inst. Politehn. Braşov. Fac. Mec." 7(1965), 43-47. (Ref. Zh. Mat. 12A, 1966, 258.)
- [7] Sokolov, E. I.: On Gluskin-Hosszú theorem for Dörnte n-group, Math. issl. 39, "Stiinca", Kishinev 1976, 187-189. (In Russian.)
- [8] Dudek W.A., Glazek K., Gleichgewicht B.: A note on the axioms of n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergrom (Hungary), 1977, 195-202.
- [9] Movsisyan, Yu. M.: Introduction to the theory of algebras with hiperidentities, Izdat. Erevan Univ., Erevan, 1986. (In Russian.)
- [10] Ušan, J.: Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18-2 (1988), 117-126. (In Russian.)
- [11] Ušan, J.: A comment of n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24-1 (1994), 281-288.
- [12] Ušan, J.: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-1 (1995), 101-119.
- [13] Ušan, J.: On n-groups with  $\{i, j\}$ -neutral operation for  $\{i, j\} \neq \{1, n\}$ , Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-2 (1995), 167-178.

- [14] Ušan J.: n-Groups,  $n \geq 2$ , as Varieties of Type (n, n-1, n-2), Algebra and Model Theory, Collection of papers edited by A.G. Pinus and K.N. Ponomaryov, Novosibirsk 1997, 182–208.
- [15] Denecke K. and Wismath L.S.: Hyperidentities and clones, Goron and Breach Sci. Publ., Singapore 2000.
- [16] Glazek K.: Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, Proc. of the Synposium "n-ary structures" (Skopje 1982), Macedonian Academy of Sciences and Arts, Skopje 1982, 253-289.

Institute of Mathematics, University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia