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DESCRIPTION OF SUPER ASSOCIATIVE
ALGEBRAS WITH n-QUASIGROUP
OPERATIONS
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Abstract. Let ¥ be a set operation over Q. Let also w; = w; be a
law in a description of which variables zj,...,z, are included, and also
operational symbols X, ..., X, whose set of lengths is a subset of the
set of lengths [:arities] of operations from X. Then (@, ¥) is said to be
an algebra with the superidentity wy = wo iff for every substitution of
the variables zi,..., s with elements of @) and for every substitution
of the operational symbols Xj,..., X} with operations from T [with
the corresponding lengths] wi = w2 becomes an equality in (Q, X); [2].
Quasigroup algebras with associative superlaws were described by V. D.
Belousov in [5]. (See also [16].) 3-quasigroup algebras with associative
superlaws were primary described by Yu. M. Movsisyan [ (9], p. 152-
158].(Associative superlaws or hyperidentities of associativity; see also
[15].) In the present paper, for n-quasigroup algebras with associative
superlaws, the author was free to use the name: super associative
algebras of n-quasigroup operations [briefly: SAAnQ)]. In the paper,
primary, in a unique way are described nontrivial SAAnQ [briefly:
NetSAAnQ) for every n € N\ {1} with an exception of a case for n = 2.
The crucial role in the mentioned description of NetSAAnQ@ play the
{1, n}-neutral and the inversing operations in an n-group. Starting with
the mentioned description of NetSAAnQ), these algebras for n > 3 are
finnaly described in terms of Hossz1i-Gluskin algebras of order n.
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1. Preliminaries

1.1 About the expression a]

Let p € N, g € NU{0} and let a be a mapping of the set {i| i € NA¢ >
pAi< g} into the set S; 0 ¢ S. Then:

Qp, - - -, Qg} p<gq
a} stands for < ap; p=gq

empty sequence (= 0); p > q.
For example: X(ag_l,Y(a;:"'"_l),a?i;l), j€e{1,...,n}, ne N\ {1,2}, for
j = n stands for X(ay,...,an-1,Y(an,...,020-1)).
Besides, in some situations instead of a3 we write (a;);_,, [briefly: (a:)7 ].
For example: (Vz; € Q)} for ¢ > 1 stands for Vz; € Q...Vz, € Q [usually, we
write: (Vz1 € Q)...(Vz2 € Q)], for ¢ =1 it stands for Vz; € @, and for ¢ =0
it stands for an empty sequence (= @).

1.2 About n-semigroups, n-quasigroups and n-groups

1.2.1. Definitions: Let n > 2 and let (Q, A) be an n-groupoid. Then:
(a) we say that (Q, A) is an n-semigroup iff for every i, € {1,...,n},
i < j, the following (i, j)-associative law holds

A(:Ei_l,A(:vi-Fn_l),x?:;l) — A(IL"{~1,A(:L‘;+H_1),$]2:;1 :
(b) we say that (Q, A) is an n-quasigroup iff for every i € {1,...,n} and
for every ab € Q there is exactly one z; € Q) such that the following equality
holds
A(a’i‘1 , Ti, a?‘l

(¢c) we say that (Q, A) is a Dornte n-group [briefly: n-group] iff (Q, A) is an
n-semigroup and n-quasigroup as well.

A notion of an n-group was introduced by W. Dérnte in [1] as a gener-
alization of the notion of a group.
1.2.2. Proposition [6]: An n-semigroup (Q, A), n > 2, is an n-group iff for
all there is exactly one x € Q and exactly one y € Q, such that the equalities

A(a}™1,z) = ap and A(y, a7 ) = a,

) =an; and

hold.
1.2.3. Proposition [7]: Let (Q, A) be an n-quasigroup and n > 2. Then:
(@, A) is an n-group iff there is ani € {1,...,n — 1} such that the following
law holds

A(a:’i_l,A(m::'F""l) - = A(a:’l,A(z:i?),zﬁ:il .

»itn
(See, also [8], p.p. 196.)
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1.3 On the {i, j}-neutral operation in an n-groupoid

1.3.1. Definition [10]: Let n > 2, let (Q, A) be an n-groupoid and e be an
(n — 2)-ary operation in Q. Let also {i,7} C {1,...,n} andi < j. Thene
is an {1, j }-neutral operation of the groupoid (Q, A) iff the following formula
holds ] )
@ (EeQiT(eeQ) (AW e@ ) ol " nai) =g
A Al z,0]7% e(a}?),a77E) = z)V)
1.3.2. Remark: For n =2 e(a??) [= e(0) = e € Q] is a neutral element of
the groupoid (Q, A).
1.3.3. Proposition [10]: Let n > 2, {i,5} € {1,...,n} and i < j. Then in
every n-groupoid there is at most one {i, j}-neutral operation.
1.3.4. Proposition [10]: In every n-group [n > 2] there is a {1,n}-neutral
operation. (See, also [13].) :
1.3.5. Proposition [10]: For n > 3, an n-semigroup (Q, A) is an n-group
iff (@, A) has a {1,n}-neutral operation.
1.3.6. Proposition: Let (Q, A) be an n-group, e its {1, n}-neutral operation
and n > 2. Then the following formula holds
o (Yo € QI € Q) (v € Q) Ale(al ), a7 2) =
Az, e(d772),0772).
Proof: 1) for n = 2 the formula (2) reduces to the formula

(Vz € Q)A(e(d),z) = A(z,e(d)); and
2) let n > 3. F(z, b7~ A(z, e(b772),b772) =

AP (2,5772), o(b2),5:72) = A(A(z, e(b1™2),572), (b7 %), b7) =

A(F (5,572, (872, 5%) = A(a, A(e(B~2), 72, e(53%), b~%) =

A(F(z,577%), e(577%),577%) = A(z, e(67™%),007%) =

F(z,b77%) = x = A(z, e(b772),b772) = A(e(a]™?)),a] 2, z).

1.4 On the inversing operation in an n-group

1.4.1. Proposition [11]: Let n > 2 and (Q, A) be an n-semigroup. Then:
a) There is at most one (n — 1)-ary operation f in Q such that the

following formulas hold

(1) (Vai € Q)77 *(Va € Q)(Vz € Q) A(f(a] %, a),07 7% A(a, a1 7%, 2)) = =

and

(2) (Ya; € Q)7 %(Va € Q)(Vz € Q) A(A(z, a7 %, a),a7 72, f(a772,a)) = g;

YFor {i,5} = {Ln}: (Vai € Q7 *(¥z € Q) (Ale(a]™),a}%z) = z A
A(z,a7 7%, e(a}™?)) = 2). "
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b) If there is an (n— 1)-ary operation f in Q such that the formulas (1)
and (2) are satisfied, then (Q, A) is an n-group; and
c) If (Q, A) is an n-group, then there is an (n — 1)-ary operation f in
Q such that the formulas (1) and (2) hold.
1.4.2. Proposition [11]: Let (Q, A) be an n-group, e its {1, n}-neutral oper-
ation, f its inversing operation and n > 2. Then the following formula holds
(Va; € Q)T 2(Va € Q)( A(f(aT72,a),a77% a) = e(a} 2)A

Ale,a2"?, f(a27,a)) = e(a}2)).
1.4.3. Proposition [11]: Let (Q, A) be an n-group, e its {1, n}-neutral op-
eration, f its inversing operation and n > 2. Then the formula

(Va; € Q)772(vh; € Q)7 7*(Vz € Q)(Vy € Q)A(z, b7, y) =
A(A(z, 0572, f(a7 2, e(B32))), a7 2, )

holds.
1.4.4. Remark: As well as Proposition 1.8.4. and Proposition 1.4.1, for
n > 2, e. g. the following proposition holds [14]: If the laws hold in the algebra
(Q, {A, f,e}) of the type (n,n—1,n—2)
A(A(zD), z307h) = Ale, Alesth), o551, Az, o7 7% e(a™)) =« and
Ala, a7, f(a77%,0)) = e(a]™?),
then (Q, A) is an n-group. For n = 2 this is the well known characterizations

of groups.
1.5 On Hosszi-Gluskin algebras

1.5.1. Definition [12]: Let - be a binary and ¢ a unary operation in Q. Let
also b be a (fized) element of the set Q, and n a (fixed) element of the set
N\ {1,2}. We say that (Q, {-, »,b}) is a Hosszi-Gluskin algebra of order
n [briefly: nHG-algebra] iff the following hold

(1) (Q,") is a group,

(2) pEe AUt(Qa ')J

(8) " Hz) - b=b-z for every x € Q, and

(4) p(b) =b.
1.5.2. Hosszi-Gluskin Theorem [3-4]: Let (Q, A) be an n-group and n >
3. Then, there is an nHG-algebra (Q, {:, p,b}) such that for each 2T € Q the
equality

(5) A(al) =21 @(22) ... 9" (zn) - b
holds.

By a simple verification we conclude that the following proposition also
holds:
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1.5.3. Proposition: Let (@, {-, ¢,b}) nHG-algebra [n > 3]. Let also
Aty o). " @n) b

for all 27 € Q. Then (Q, A) is an n-group.

1.5.4. Definition [12]: We say that an nHG-algebra (Q, {-, ¢, b}) associ-

ated to the n-group (Q, A) iff the equality (5) holds for all z7 € Q.

1.5.5. Proposition [12]: Let (Q, A) be an n-group, n > 3, (Q, {-, ¢,b}) an

arbitrary nHG-algebra associated to the n-group (Q, A), ~! the inversing

operations in (Q,-), k € Q and for every z,y € Q

Tk ydéfz ‘ k: -,
def, 1
pr(z) =k7" - p(z) - (k) and

b k1 (k1) - ... Pk b
Let also dof
Ca={(Q, {'r,ox bi})|k € Q}.

Then, C4 is a set of all nHG-algebras associated to the n-group (Q, A).

2. Introduction

2.1 On n-ary associative laws

Let Xi,...,X4 be n-ary operational symbols and n € N\ {1}. Let also
® be a mapping of the set {Xi,..., X4} into the set {Xi,...,X4}, 4,5 €
{1,...,n},i < jand let zi1,...,Z2,—1 be variables; R® = {$X;, DX, PXj3,
®X4} C {X1,..., X4} Then we say that

®X1 (2871, @ Xa(ztm 1), 27 1) = @ X3(2] 7!, @ Xy (2 TY), 52 Y)

is a n-ary associative law,

2.2 Super associative algebras with n-quasigroup operations

2.2.1. Definition: Let (Q, ) be an algebra in which (Q, Z) is an n-quasigroup
for every Z € T. Then we say that (Q,X) is a super associative algebra
with n-quasigroup operations [briefly: SAAnQ] iff the following statement
holds: there is
® e {Xy,...,Xon} KrXon}

such that for every i € {2,...,n}, for every substitution of the variables
Z1,...,Zon—1 by elements of Q and for every substitution of the oper-
ational symbols ®X1,...,®Xo, by elements of & [keeping the same notion
Z1,...,Ton—1, PX1,..., PXo,] the following equality holds

X1 (2 Xa(a7), z207) = ®Xpim1 (257F, @ Xoi(2i 1), 22770,
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2.2.2. Remark: The case n = 2 was described by V. D. Belousov in [5].
In that occasion SAA2Q) were said to be systems of quasigroups with
associative superlaws. The case n = 3 was described by Yu. M. Movsisian
[:the book [9]. p.p. 152-158]. O :

An immediate consequence of Def. 2.2.1 and of the definition of the
n-group is the following proposition:
2.2.3. Proposition: Let n € N\ {1}. Then: if (Q,%¥) SAAnQ, then (Q, Z)

is an n-group for every Z € L.

2.3 Nontrivial SAAnQ

If |£| =1 or |R®| = 1, then for every set Q and for every n > 2 there
is SAAnQ (Q, ).
2.3.1. Definition: Let (Q,X) be an SAAnQ; n > 2. Then (Q,X) is a non-
trivial SAAnQ [briefly: NetSAAnQ/ iff the following conjuction holds

S| > 1A|RS| > 1.

2.3.2. Theorem: Let (Q,X) be an SAAnQ. Then: if (Q,X) is NetSAAnQ,
then the following statements hold:
{®X:, X2} =2=

(VZ S {2, e ,n}){<I>X2,~_1, @Xzi} = {@Xl, @XQ}; and
{®X1, 8Xo)| =1 =

(2) (VZ c {2, ce ,n})(|{<I>X2,~_1, (DXZz}l = 1)/\

(Elj € {2, . ,n}){@ng_l, ‘I)X2j} % {‘I’Xl, ‘I)Xz})
Proof. 1) Let |{®X1, 2X3}| = 2.
a) Let A, B,C, D, D be arbitrary operations from X, z1, ... ,Z,_1 ar-
bitrary elements from @ and ¢ an arbitrary element of the set {2,...,n} so
that

A(B(z?),z337") = C(ai™", D(zit™1), 221 ") and

A(B(a?), z7i1") = C(ai™, D(a™ ), 27100,
Thereby, since ¥ is a set of n-quasigroup operations, we conclude that D = D,
i.e. that ®X5; has no free choice for the substitution with operations from the

set X. Similary we conclude that ®X,;_; has no free choice for the substitution
with operations from ¥. Hence, for every i € {2,...,n} it is true that

,{@Xl, DXy, &Xo; 4, @Xz,}l < 4.

b) Let A, B,C,C be arbitrary elements from the set ¥, z1,. .. , Ton_1
arbitrary elements from the set @ and i an arbitrary elements from the set
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{2,...,n} so that

A(B(z7), s = A@e™, Ozt 1), 22 1) and
A(B(z}), z207h) = A, Clait™ 1), 22371); or

A(B(z?}), xi’_‘[l )= C(m’_l,B(x’:J'"_l),xizj_‘;l) and

A(B(27),2257") = C(ay, Bz 1), 270 1).
Hence, since % is a set of n-quasigroup operations, we conclude that with
‘PXl = ¢X2i—1 or (I)Xg = <I>X2.,'
|{<§X1, DXy, & Xo;_1, ‘I>X21}| < 3.
In the same way we conclude that with X = ®X5;_; or &X; = ®Xy; it is

true that
H{®X1, ®Xo, 8Xo;_1, X0} <3

for every i € {2,...,n}.
c) Let A, B be arbitrary elements of the set X, z1,... ,zo,—1 arbitrary

elements from @, and 7 an arbitrary element of the set {2,...,n} so that
A(B(z}),a2i7") = At Azt ), 220 or
A(B(z}), 2257") = Bz, B(zi™h), 275 1).

Hence, since (@, A) and (Q, B) are n-groups, it follows that A = B, i.e. that
® X, or X, has no free choice for the substitution with operations from %,
which is a contradiction with the assumption that the following equality holds
{®X;,2Xo} =2.

2) Let |{@X1,(I)X2}| =1.

a) Let A, B, C, C be arbitrary elements from &, 21, ... , T2,—1 arbitrary

elements from @ and ¢ an arbitrary element from {2,...,n} so that
ACAGED), 5235) = B, O™, a2571) and

A(A(2}),2337") = Blai ™, O™ ), 2.
Hence, since ¥ is a set of n-quasigroup operations, we conclude that ¢ X»; has
no free choice for the substitution with operations in 3. Similary we conclude
that ®X5;_1 also has no free choice for the substitution with operations from
L. Thus, for every i € {2,...,n}, it is true that
|{@X21'_1, ‘PXQi}l =1.

b) Finally, taking into account the proposition proved in a) and the
assumption that (@, X) is NetSAAnQ, we conclude that there is at least one
j €{2,...,n} such that

{‘I’ij_l, (I)X2]~} # {@Xl, ‘I)Xz}. O
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Theorem 2.3.2 gives the posibility to describe NetSAAnQ:

a) with not more than n operational symbols in the case [{®Xj,
®X,}| = 1; and _

b) with two operational symbols in the case [{®X;, 8 X2} = 2.

Consequently, having in mind Theorem 2.3.2, we induce the following two
agreements:
2.3.3. Definition: Let (Q,X), |X| > 2, be an algebra in which the following
condition holds: (Q, Z) is an n-quasigroup, n > 2, for every Z € . Let also w
be a mapping of the set {1,...,n} into the set {1,...,n} such that it satisfies
the following conditions: a) w(1) = 1, and b) |Rw| > 2. In addition, the set
of all mappings w satisfying the conditions a)-b) will be denoted by Q. Then,
we shall say that (Q,X) is an w-NetSAAnQ iff for every i € {2,...,n}, for
every substitution of variables zq,...,ZTon—1 with elements from Q, and ev-
ery substitution of n-ary operational symbols Xy, - - - , Xu(n) with operations
from 3 the following equalily holds

X1 (Xl(l'?)’ :1:127,1-'}'-_11) = Xw(i)(x§~1’ Xw(i) (x:}n-l)’ xf_’ﬁ;l :
2.3.4. Definition: Let (Q, %), |Z| > 2, be an algebra in which the following
proposition holds: (Q, Z) is an n-quasigroup, n > 2, for every Z € &. Let
also S be a subset of the set S = {2,...,n} [including § = @]. Then we
shall say that (Q,X) is an S-N etSAAnQ iff for every substitution of the
variables x1, ... ,Xon—1 with elements from Q and for every substitution of n-
ary operational symbols X1, Xo with operations from T the following statement
holds
A Xi(Xa(a?), 225 = Xa(e ™, Xl ™), 227 HA
ieS\$
N\ Xi(Xa(eD), &37") = Xa(ai™h Xa(eft ), 220,
ic$
2.3.5. Remark: If (Q,X) is NetSAAnQ, A € ¥ and |Z \ {A}| > 2, then
also (Q,X\ {A}) is NetSAAnQ.

2.4 On NetSAAnQ with n =2

For n = 2 there are [exactly] the following cases for NetSAAnQ
1) (12 )-NetSAAnQ,

2) )-NetSAAnQ and
3) S-NetSAAnQ, [S = {2},
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with which are, respectively, connected the following laws
X1(X1(23), z3) = Xa(w1, Xa(23)),

X1(Xo(2?), z3) = X1(z1, X2(z3)) and

X1(X2(x3), z3) = Xo(z1, X1(23)).
All three cases are described by V. D. Belousov in [5]. Among others,
there are the following results.
2.4.1: Let (Q,X) be an NetSAAnQ. Then the following hold:
a) (Q, A) is a group for every A€ X ;
b) If A is an arbitrary operation from X, then for every B € X there is
k € Q such that for all z,y € Q

B(z,y) = A(A(z, k), y).
Moreover:

bi) If (Q,%) is ( 12 )-NetSAAnQ, then k € Q is an element from the
support of the center of the group (@, A) and k is a self inverse element
in (@, A); and

be) If (Q, L) is B-NetSAAnQ, then k € Q is an element from the
support of the center of the group (Q, A); and

b3) If (Q, %) is an S-NetSAAnQ, then k € Q is not limited by (Q, A)
[A=-, B(z,y)=z-k-y, C(z,y) =2z-k-y, B(C(z,y),2) = (z-k-y) - k-2=
z-k-(y-k-z)=C(z,B(y, 2))]
2.4.2: If (Q,X) is ( 12 )-NetSAA2Q, then (Q, %) is 0-NetSAA2Q.
2.4.3: If (Q,X) is 0-NetSAA2Q, then (Q,X) is also an S-NetSAA2Q).
2.4.4: There is a NetSAA2Q (Q,X) such that it is 0-NetSAA2Q and that it
is not (12 )-NetSAAnQ.

2.4.5: There is a NetSAA2Q (Q,X) such that it is an S-NetSAA2Q and
that it is not B-NetSAAnQ.
Remark: The analogon of Proposition 2.4.5 with n > 3 is not satisfied.

3. Central operations on n-groups

3.1. Definition: Let (Q, A) be an n-group and n € N\ {1}. Let also o be an
(n— 2)-ary operation in the set Q. We say that  is a central operation of
the n-group (Q, A) iff the following formula holds:

(Vai € Q)7 7(Vb; € Q)7 *(Vz € Q) A(ev(a}™?),a} 7%, 2) =
A(z, o(b77%), b772).
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3.2. Remarks: a) If n = 2, then o(c}™) = a(d) =a®) =ce Q] is a

central element of the group (Q, A); and b) The {1,n}-neutral operation e of

the n-group (Q, A) is a central operation of that n-group.

3.3. Proposition: Let (Q, A) be an n-group, « its central operation and n €

N\ {1}. Then for every i € {1,...,n}, for every 27 € Q, for every sequence

a?’z over @ and for every sequance b’f’z over Q the following equality holds
Alera?™), 7%, (D) = Alai™, Al ), 8%, ), 2840).

Proof. For n = 2 a(a]™?) [= (0)] is an element of the center of the group
(Q, 4).

Let n > 3. Then:

1) Since, by the assumption, (Q, A) is an n-group [n-semigroup|, we
conclude that for every z7 € Q, for every sequence al'2 over ¢ and for every
sequence b’f"z over @ the following equalities hold

A(o(a}2),a7 7%, A(z?)) = A(A(a(a}7?),a77%, 71), 23)
= A(A(a(b77%),b772,21),23); and

2) Since, by the assumption, (@, A) is an n-group and « its central
operation, we conclude that for every j € {1,...,n—1}, for every =7 € Q, for

every sequence a’f‘z over @ and for every sequence b’f’z over @ the following

sequence of equalities hold

A7 Alodal™?), al 2, z5), 27, =
A, Az, a(6772),6772), 27,) =

A(fL“i, A(a(lel—-2)’ b?_Q) Ij+1)7 :1,';?'_*_2).

3.4. Proposition: Let (Q, A) be an n-group and n € N\ {1}. Let also a be
a mapping of the set Q"2 into the set Q. Then the following statements are
equaivalent:

(a) « is a central operation of the n-group (Q, A);

(b) The following formula holds

(Vas € Q)F>(¥h: € Q) *(¥es € Q)F (v € Q)F2(var € Q) (
Ala(a7™2), 0572, 5) = Alz, a(b72),6772) =
Ale, v 2, o) = A2, (&), 2));

(¢) The following formula holds
(Vai € QF*(vh € Q)12 (Vz € Q) A(s,} % a(al™?)) =

A, (72, ).
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Proof. For n = 2 the proposition is trivial.

Let n > 3.

I: (a) & (b):

The statement (a) is an immeediate consequence of the statement (b).

By the assumption that (Q, A) is an n-group, « its central operation
and by Proposition 3.3, we deduce that the following sequence of implications
holds

def

( 2z = A(z,a}™ ,a(a’f 2))=>

A(F(a7™% 2),077% 2

)
)
A(F(al™ 2, z),a ,Z) = A(:v,a’f_2,A(a(a? ),a17%2)) =
A(F(al™ 2:), ,z) = A(A(a(b’l"z),b" ,z),a?_z,z)=>

F(ai™2) = Aa(b}™),617% 1),
and hence we conclude that the formula
1) (Vs € QA € Qv € Q)A(r, o} e ) =
A(a(b’f‘g), b?‘z, x)
holds.
By the similar arguments, considering also the formula (1), we conclude
that the following sequence of implications holds

<I>(a""2,a:) def A(al™ 2,a(a’1‘ 2),:1:):>

= A(A(z, 7% a7 ™?)),a77%, 2) =

A} ?,2,8(a % 2) = A%z A7 a(el ), 7)) =

A(a?™%,2,8(a7 % 2)) = A(a77% A(z,07 7%, a(a}7?)), 2) =

A@a72,2,80¥ % z) = AP A(a(d? )77 2),2) =

AT 2,2, 8} % z) = A(a} %z, A7), 0772, 1)) =

Al 2,001 % 2)) = A(e? 7% 2 Alz, (b 72),8777)) =
®(a]% ) = Alz,ald?™?), 007,

and hence we conclude that also the formula
@) (Va; € Q)7 *(vb: € Q)77 (Vz € Q)A(a] ™%, ax(a]™?),2) =
Az, a(b772), b772)

holds.

Considering the formulas (1) and (2) and the definition 3.1, we conclude
that the implication (a) = (b) holds.

II: If o satisfies the formula in the statement (c), then for every ¢ €
{1,...,n}, for every 27 € Q, for every sequence a;‘_z over () and for every
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sequence b’f‘z over () the following equality holds
A(A(2D), a1 7% ala? ™)) = AlaT", Az, 5772, e(b772)), 2ly)-

Proposition I can be proved by a simple imitation of the proof of Propo-
sition 3.3.

IIT: (b) & (c):

The statement (c) is an immediate consequence of the statement (b).

The implication (c¢) = (b) can be proved imitating the proof of the
implication (a) = (b), where instead of Proposition 3.3 Proposition II is
usea.

See Remark 3.11. O

A direct consequence of Proposition 3.4 is the following proposition:
3.5. Proposition: Let (Q, A) be an n-group and n € N\ {1}. Let also & and
B be central operations of the n-group (Q, A). Then for every sequence a’l‘_2
over @ the following equality holds

Alalal™), a7, B(a] ) = AB(a2), o772, ala] ).

3.6. Proposition: Let (@, A) be an n-group, a its central operation and
n € N\ {1}. Then there is a permutation « of the set Q such that for every
T EQ, a'l’_2, b’f_2 € Q the following conjunction of equalities holds

A(a(a?"Q), a?"2, z) = a(z) A Az, a(b?'z), b’l‘_2) = afx).

Proof. Let k‘?"2 be an arbitrary choosen sequence over the set Q. Then, a,
where

a(z) 2 Ale, a(k77), £772)
for every z € Q, is a permutation of the set @, since (Q, A) is an n-quasigroup.
Hence, by the Definition 3.1, we conclude that the proposition holds. O
An immediate consequence of Proposition 3.3 and Proposition 3.6 is the fol-
lowing proposition:
3.7. Proposition: Let (@, A) be an n-group, o its central operation, a a
permutation of the set Q) such that for every z, a?_2 € Q the equality

A(a(al _2)3 al_z; 117) = Cl(.’E)
holds, and n € N\ {1}. Then for every i € {1,...,n} and for every z7 € Q
the following equality holds
aA(z}) = A(a:’i—l, o(z:), 2741)- O

A consequence of Proposition 3.6 and of Hosszi-Gluskin theorem is the
following proposition:
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3.8. Lemma: Letn € N\ {1}, (Q, A) an n-group and (Q, {-, ¢,b}) an nHG-
algebra associated to the n-group (Q, A) [:1.5.4]. Then: if o is a central op-
eration of the n-group (Q, A), then there is ezactly one constant a € Q such
that for every sequence a’f“z over Q, the equality

(a7 - plar) .. "A@)= a

holds.
Proof. Let ¢}~ be an arbitrary [fixed] sequence over Q. Then, by Proposition
3.6, for every z € @ and for every sequence a’f“2 over @ the equality

Ala(a}™®),077%,2) = A(e(c} %), ] %, 2)

holds, from which, by Hosszi-Gluskin Theorem, we conclude that for every
z € @ and for every sequence a’f“z over (J the equality

o(af™?) plar) ... " H(an-2) bz = a(cF ) ple1) - 9" enn) bz
holds, i.e.,
(@) - p(ar) - " Hano) = &) - pler) . " (nn)

holds. Hence, since by the assumption, c'l‘_2 is a fixed sequence over (J, by
the convention that the constant c(ct™2) - (1) - ... - 9" ?(cp-2) is denoted
by a, we conclude that for every sequence a?‘z over Q the following equality
holds
a(™?) p(@) ... p

3.9. Proposition: Let n € N\ {1,2}, (@, 4) an n-group, (Q, {-,p,b}) its
associated nHG-algebra and ~! the inversing operation in the group (Q,-).
Then: if

a) a is a central operation of the n-group (Q, A); and

b) « is a permutation of the set Q such that for every x € Q and for

every sequence a?_z over Q) the following equality holds
a(z) = Ala(a?™?),a] 7%, 2),

then there is ezactly one constant a € @ such that for every x € @ and for
every sequence a’f"z over @ the following equalities hold

"2(gp_3) = a.

(1) a(a?™?) =a-(p(ar) ... " *(an-2)) 7}
(2) a(z) = (a-b) - z;

(3) p(a) =a and

(4) (a-b)-z=z-(a-b).

Proof. 1) Since (Q,-) is a group and ~! its inversing operation, by Lemma
3.8, we conclude that there is exactly one constant a € Q such that for every
sequence a’l‘_2 over @ the equality (1) holds.



142 Janez U%an

2) By the assumption of the proposition, by Hosszi-Gluskin Theorem,
we conclude that for every z € @ and for every sequence a?’z over @ the
equality

o(z) = a(a?™?) - p(ar) .. 9" 2 (anz) bz
holds, and from there, by Lemma 3.8, we conclude that there is exactly one
constant a € @ such that for every z € Q the equality (2) holds.
3) Considering the definition 3.1, Hosszi-Gluskin Theorem and by the
fact ¢ € Aut(Q,-), we conclude that for every z € Q,al —2 N 2 ¢ @, the

equality
a(a}?)-p(ar) - " *(an-2)-b-z = z-0(a(bT %) p(b1) - . - 9" *(an-2)) -

holds, and from there, by Lemma 3.8, we conclude that there is exactly one
constant a € @ such that for every x € @) the equality

a-b-z=x-p(a)-b

holds, i.e.,
p(a) = a,
and then that for every z € Q the equality (4) holds. O
One could check that the following proposition holds:
3.10. Proposition: Let n € N\ {1,2}, (Q, 4) an n-group, (Q, {-, p,b}) its
associated nHG-algebra and ~! the inversing operation in the group (Q,-).
Let also a be a fized element of the set Q@ such that

p(a)=a and
{(a-b)-z=2z-(a-b)
for every x € Q. Then: zf for every z € Q, af "2 ¢ Q we have that
Ca(@ e (p(ar) .. 0" Han-2)"" and
a(x)défa bz,
then « is a central operation of the n- group (@, A) and « is a permutation of
the set @ such that for every z € Q, a7 -2 bn"2 € Q, the following equalities
hold
A(e(a?™?), 6772, 2) = a(z) and A(z, a(b772),5772) = o(z).

3.11. Remark: A direct consequence of Proposition 8.4 is the following
proposition. Let n > 3, let (Q), A) be an n-group and let o be an (n — 2)-
ary operation in the set Q, If for every z € Q,a}” -2 b"' € Q, the following
equalitiy holds

Ala(a]™?), 0772, 2) = Az, a(b77%),b772),
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then for every x € Q, every sequence a'l“2 over Q) and every sequence b’l‘—2

over @) there holds

A(a(a.;‘_z), a?_z, r) = A(z, b’f"z, a(b’l‘_z)).
However, the converse does not hold. For example: Let ({1, 2, 3,4}, ) be the
Klein’s group (Tab.1) and ~! the corresponding inversing operation. Further
on, let ¢ be the permutation of the set {1,2, 3,4} defined in the following way

gef (1 2 3 4
=112 4 3/

Az} défxl - p(xg) - z3 -2 and

a(e) <3 (p(e) ™"
Then: (i) ({1,2,3,4},{:,»,2}) is a 3HG-algebra associated to the 3-group
({1,2,3,4}, A); and (ii) for every = € {1,2,3,4} and for every c € {1,2, 3,4}
the following equalities hold

In addition, let

A(a(c), ¢, z) = 4z, A(z,c,alc)) = 4z, and A(z, a(c),c) = 3z.
11121314
1({112(3]|4
212|1]4|3 Tab.1
31314112
414/13|12|1

4. A description of w-NetSAAnQ

4.1. Theorem: Let w be an arbitrary mapping from the set Q. Let also
(Q,X) be an w-NetSAAnQ, n > 2, A an arbitrary operation from ¥ and fa
the inversing operation in the n-group (Q, A). Then, for every B € ¥ there
is ezactly one central operation a of (Q, A) such that for each x7, a’f‘z €Q
and for every sequence ay =2 over Q the following equalities hold

B(z7) = A(a:l'l, A(a(a’f‘z),a’f_z,xn)) and

fa(@l ™2, (@) = afa} ™).
Proof. Let A and B be arbitrary operations from ¥. By Proposition 2.2.3,
(@, A) and (Q, B) are n-groups. By Proposition 1.3.2, (@, A) and (Q, B) have
{1, n}-neutral operations, denoted, respectively, by e4 and ep. Let also the
inversing operation in (@, A) be denoted by fa.
1) By Definition 2.3.3 and by Proposition 2.2.3, for every :1;%"_1 € Q
the following equality holds

B(B(z1),2731") = A(a? ™ A(e ),
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I 2n—1 -2 -2
hence, by the substitutions 27" = a7~ 2 and z9p_1 = ep(al™ "), where af

is an arbitrary sequence over ), we conclude that for every z7, a?_z € @ the
following equality holds

(1) B(a]) = A(a7™", A(zn, a7 7%, ep(a} ™))
2) Since (Q, B) is an n-group, for every 22"~} € Q the following equality
holds
B(B(z1), 2237") = Blz1, B(z1*), 2733"),
hence, by the statement concerning (1), we conclude that for every x2" 1
a?™2, b772% € Q, the following equality holds
A(A(z1_11 A(:Bn, a?—zs eB(arll_z)) ) xrzs-—l'z’ A(x2n—1v a?_2’ ep (a?—z))) =

Az, A3, Aznir, 572, ep(6772)), 2735, Awan-1, 67 7%, ep(a] ™),
that is, since (@, A) is an n-semigroup, also the following equality holds
A(z1, A(e3, A(a] 2, ep(a]™?), Zp41)), 25457 Al22n-1, 07 %, ep(al™?))) =

A(xl’ A(zgn A({En+1, b?_21 eB(bT—2))) 121,1-:-221 A(x2"—1’ al eB(a? 2)))

Hence, since (@, A) is an n-quasigroup, we conclude that for every zn41 €
Q, for every sequence aj ~2 over Q and for every sequence b?‘z over () the
following equalty holds

A(a’? - eB(a?—Q)’ $n+1) = A($n+1 ) b?_2a €p (b?_2)),

hence by Proposition 3.4, we conclude that ep is a central operation of the

n-group (Q, A).
3) Starting with the statement concerning (1), with the substitutions

237! = o772, 21 = ep(a}™?) and z, = z, we conclude that for every z € Q

and for every sequence a;“z over ) the following equality holds

z = A(ep(a]™?), a”_2 Alz, a’f—2 es(a7™2))),
hence, by Proposition 1.4.1, we conclude that for every z,al” 2 € Q the fol-
lowing equality holds

A(f a3, ep(af™), af 2, 2) = Alz, o} %, ep(af~?).

Hence by the substitution z = e4(a]” 2), we conclude that for every sequence

al” 2 over Q the following equality holds
fa(@™?, ep(a?™?)) = ep(al™?).

4) By the assumption that for every 2} € Q and for every sequence
a7~ 2 over Q the following equality holds

A(277", Alo(a}™?), a1 7%, 7)) = A7, A(&(a} %), a7 7%, ),
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and since (@, A) is an n-quasigroup, we conclude that @ = &. O

4.2. Theorem: Let (Q, A) be an n-group, fa its inversing operation, n > 2
and let (Q, A) has at least twoelement set of central operation C4 such that
for every a € C4 the following formula holds

(1) (Va; € Q)77 fa(a? ™%, a(a?™?)) = a(e}™?).
Let also C‘A be at least twoelement subset of the set C4 and let
(2) B e ¥ (3a € €,)(Va; € Q¥ 2(Va; € Q)TB(zT) =

AT, Aleda?™?), a7 7%, 20)).
Then, (Q,X) is an w-NetSAAnQ for every w € 1.
Proof. 1) Let B be an arbitrary operation from £ and « its corresponding
operation from C4. Then, by Proposition 3.6, there is a permutation o of the
set @ such that for every z7 € @ the following equality holds

(a) B(z}) = A(z77, elzn)),

hence immediately we conclude that (@, B) is an n-quasigroup. Further, start-
ing with the statement concerning (a), by Proposition 3.7, we conclude that

for every xf"_l € @, the following sequence of equalities holds

B(B(27), 227" = aA(A(z77Y, azn)), 52070

= aA(zl; A(xg_la a(x’n)i xn+1)1 xiﬁ__Ql)

= B(z1, B(z5*"), 2233),
i.e.
B(B(z}),z2%7") = B(z1, B(z51"), #2%5)).
Hence, since (@, B) is an n-quasigroup, by Proposition 1.2.3, we conclude that
(Q, B) is an n-group.
2) A consequence of the condition (1) is the following statement

(b) (Ve € Q)a(a(z)) = =.

Further, starting with the statement concerning (a) and the statement (b), by
Proposition 3.7, we conclude that for every xf"‘l € @ the following equality
holds

B(B(z1), 2777") = A(A(1), 227).-
Hence, since B is an arbitrary operation from ¥ and since (Q, B) is an n-
group, we conclude that for every substitution of variables z1,..., Ton-1
with elements from ) and for every substitution of operational symbols
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Xu(1)s- - s Xw(n), Dy operations from % the following conjunction of equalities
holds

n

/\ Xl(Xl(zl)) 121.1-{1) = w(z)( Xw(t)( gt ): xf:rfl)

i=2
Hence, by the assumption |C 4| >2, we conclude that (Q, ) is an w-NetS AAnQ
for every w € Q.

By Theorem 4.1 and by Theorem 4.2, we conclude that the following

proposition holds:
4.3. Proposition: For every w € Q and for every @ € Q) the following state-
ment holds: (Q, ) is an w-NetSAAnQ [n > 2] iff (Q, X) is an @-NetSAAnQ.
4.4. Proposition: For every w € Q and for every S C {2,...,n} the fol-
lowing statement holds: If (Q,X) is an w-NetSAAnQ then (Q,X) is an S-
NetSAAnQ.
Proof. 1) Let (@, %) be an w-NetSAAnQ and n > 2. Let also A, B,C be
arbitrary operations from ¥. Then, by Theorem 4.1, there are central oper-
ations @ and 3 of the n-group (Q, A) such that for every m’ll,a'f_Z € Q the
following equalites hold
(1) B(a}) = A(a7 ™", Ala(a} ), a7 7% 2,)) and
(2) Cla}) = A(zp~, A(B(al2), a2, ).
Starting with the statement concermg (1) and (2) and by Proposition 3.6, we
conclude that there are permutations « and 3 of the set () such that for every
z] € Q the following equalities hold

B(z}) = A(2}™", a(zn)) and

C(z}) = AT, B(zn)),
hence, by Proposition 3.7, we conclude that for every x2" leQthe following
equality holds

(3) B(C(21),2217") = a(B(A(A(2D), 223 1))).
2) The consequence of the Proposition 3.5 and Proposition 3.6 is the
following statement

4) (v € Q)a(f(z)) = B(e(x)).
[Sketch of the proof: a(B(z)) = A(a(a}?), a? 2 ﬂ(a:)) = A(a(a}™?),a}
AB(a2), a7, 2) = A(A(a(ar ), a2, Bla? ), 07, 2) = ACAB(ar 2)

2, (@), a7, 2) = AB(ar ), a4, Alala™), 2, ) = AlB(a ),
a1 7%, a(z)) = f(e(z)).]

Finally, starting with the statement concerning (3) and (4), since (Q, A)
is an n-group, we conclude that for every i € {2,...,n} and for every 22"~ €

@ the following equalities hold
B(C(a}), 227") = Blai™, Clait™), o) =
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= Clai ™, B ™), 7).

Thus, we have proved that (Q, X) is an S-NetSAAnQ for every § € {2,...,n}.
0O

By Theorem 4.1, Proposition 3.6 and Prbposition 3.7, we conclude that
also the following proposition holds:
4.5. Proposition: Let (Q, 2) be an w-NetSAAnQ, A and B arbitrary oper-
ations from %, let o be a central operation of (Q, A) and a be an permutation
of the set Q) such that for every 7 € Q, every x € Q and every sequence a'f_z
over @ the following equalities hold

B(z?) = A(a?, Ala(a?72), a7 %, 2,)) and
a(z) = Ale(a?™?),a]7%, ).

Let also n = 2m and m € N. Then « is an isomorphism from the n-group
(Q, B) onto the n-group (Q, A).

5. Description of (-NetSAAnQ

5.1. Theorem: Let (Q,X) be an B-NetSAAnQ, n > 2 and A an arbitrary
operation from Y. Then, for every B € ¥ there is exactly one central operation
a of the n-group (Q, A) such that for every z7, a;’_2 € Q the following equality
holds

B(a}) = Ala]™", Alala}™), 4}, 2,).
Proof. Let A and B be two arbitrary operations from %. By Proposition
1.3.4,(Q, A) and (Q, B) have {1, n}-neutral operations, which will be denoted,
respectively, with e4 and eg. Let also the inversing operation in the n-group
(Q, A) be denoted by fa.
1) By Definition 2.3.4, since this is the case when § = 0, for every
€ @ the following equality holds

A(B(a),2757") =A@, Ba*™),

271.1

hence, by the substitutions xn’if =a}” 2 and zop_q = ea(al n—2 ) where a’f—2
is an arbitrary sequence over @, we conclude that for every z7,a 2 e Q the
following equality holds

(1) B(z}) = A(e]™", B(zn, a7, ea(a] ™).

n— l

Starting with the statement connected with (1), by the substitutions z7
a?‘z and z; = eB(a?"z), the following equality holds

zn = A(e(a]™?),a7™%, B(za, a} 7%, e4(al™?))),
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hence, by Proposition 1.4.1, we conclude that for every :1/:,,,,(1’1‘_2 € @ the
following equality holds

(2) B(zn, G"ll—2’ eA(a‘;L—z)) = A(fA(a?_z’ eB(“?_2)), a?_2, Tp).
Further, by the statements connected with (1) and (2), we conclude that for
every =7, a] 2 € Q, the following equality holds
(3) B(a?) = A(z7™", A(fa(a1 ™% ep(a ™)), a1 7%, zn)).
2) Let

() a(a} ) fa(ai ™, epla} ™)
for every sequence a7~2 over Q. [By the substitutions (4), the formula (3)
reduces to
B(z}) = A(277", A(e(a?™?), 0772, 20)) )
In the following we prove that « is a central operation of the n-group (Q, A).
By Definition 2.3.4, since this is the case § = 0, for every :I:fn_l €Q
the following equality holds

A(2?7%, B(237%), 2an1) = A2}, Bl ™),

hence, by the statements connected with (3) and (4), we conclude that for
2n~—1 n—2 n—2
every T € Q, for every sequence a]”“ over () and for every sequence b

over (@ the following equality holds
A(a77%, A@R 7%, Aledal ™), a7 72, 2an-2), Ban1) =

A(xl_l ) A(xgln—z, A(a(b’ll_z)) b?_za x2n—1)),
i.e., since (@, A) is an n-semigroup, the following equality also holds

A(x;“2, A(m,zﬁ_la, A(a(a?_z), a'f~2, Ton-2)), Ton—1) =

A(xrll_zi A(x12111—13, A($2'n-—2, a(b?_2)’ b?_2)): xZ'n—l)-
Hence, since (@, A) is an n-quasigroup, we conclude that zo,—» € @, for
every sequence a?“z over () and for every sequence b?“z over () the following

equality holds
A(a(a?_2)s a?_z» Ton-2) = A(T2n-2, a(brll_2)7 b?—z)v

hence, by Definition 3.1, we conclude that « is a central operation of the
n-group (Q, 4).

3) a is uniquely determined by B: part 4) of the proof of Theorem 4.1.
5.2. Theorem: Let (Q, A) be an n-group, n > 2 and let (Q, A) has at least
two central operations. Let also C 4 be at least twoelement subset of the set of
all central operations of the n-group (Q, A), and

Bex® (3o e Cp)(Vai € Q)7 2(vz; € QNB(ah) =

= A(z7™", Ala(a? ™), 0] 7%, 20)).
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Then, (Q,X) is an B-NetSAAnQ.
Proof. 1) Let B and C be arbitrary operations fron X. Let also a and 3 be .
central operations of the n-group (Q, A) from C 4 such that for every sequence

a?“2 over @, the following equalities hold

B(x?) = A(x’f‘l, A(a(a?_z), a’f‘z,zn)) and

C(2}) = A(a7 ™, A(B(a7™?), a7 7%, 2n))-

Then, by Proposition 3.6, there are permutations a and g of the set @ such
that for every 27 € @ the following equalities hold
(1) B(a}) = A}, a(zs)) and
2) C(a}) = AP, Aln)),
hence immediately we conclude that (Q, B) and (@, C) are n-quasigroups.

2) Starting with the Propositions connected with (1) and (2), by Propo-
sition 3.7 and by assumption that (Q, A) is an n-group, we conclude that for
every 1 € {2,...,n} and for every z7 € Q the following sequence of equalities
holds

B(C(a}), 2517") = A(A(=T ™Y, B(zn)), 2i1%, al@2n-1)) =

aA(BA(2}), 2357") = a(BA(A(2D), z5%71)) =

a(BA(zi7H, Az ), 22001)) = @A(ey T BA(ET™ ), 20 ) =

B(ey !, O(ai™ ), 2357"),
i.e., the equality

B(C(a}), 7531") = By, O™ ™), 2ni"),

also holds. O

For a and § from the proof of Theorem 5.2 the following statement
holds:

(Vz € Q)a(B(z)) = Blo(x)).

Starting with Theorem 5.1, by the above statement and by the proof of The-
orem 5.2, we conclude that the following proposition holds:
5.8. Proposition: If (Q,X) is an §-NetSAAnQ, n > 2, then (Q, Z) is also
an S-NetSAAnQ for every S C {2,...,n}.

By Theorem 5.1, Proposition 3.6 and Proposition 3.7, we conclude that
the following proposition holds:
5.4. Proposition: If (Q,X) is an B-NetSAAnQ, n > 2, then for every A, B €
Y there is a permutation o of the set Q such that for every z7 € Q the
following equality holds

o 1 B(z]) = Alalzy), . .., afzy)).
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6. A description of S-NetSAAnQ

6.1. Theorem: Letn € N\ {1,2}, § C {2,...,n} and S # 0. Then, the
following statement holds: if (Q, L) is an S-N etSAAnQ, then (Q,X) is an
0-NetSAAnQ.
Proof. Let A and B be two arbitrary operations from ¥. By Proposition
2.2.3,(Q, A) and (Q, B) are n-groups. By Proposition 1.3.2, (Q, A) and (Q, B)
have {1, n}-neutral operations, denoted, respectively, by e4 and ep. Let also
the inversing operation in (Q, A) be denoted by f4, and the inversing opera-
tion in (@, B) be denoted by fz.

1) By Definition 2.3.4, since S # (@, we conciude that there is an ¢ €
{1,...,n — 1} such that for every :1/;2"_1 € Q the following equality holds

(1) Ay, B(a™ ), 225 = B(at, AT, 2lh)-
Starting with the statements connected with ( ), with the substitutions
:z:i-i’l‘_z = a7 ? and Tiyn-1 = eala} 2) where a2 is an arbitrary sequence
over Q?, we conclude that for every zt,al” z 221_1; € @ the following equality
holds

A Bles, 0l eale) ™), a27Y) = Blad, o25570),

-2

whence, since for every a7™%, u, z; € Q the equivalence

B(zi, a7 2, ea(a}” 2))=U@

z; = B(u, a1 ,fB( 2 ealal™))),
we conclude that for every 4T, a 2 € Q also the following equality holds
(a’) A(yl) :B(yi lsB(yi)a1~ ,aB(al— ))1y‘i+1)v
where

n—2y4e - n—

(b) ap(al ™) fp(al 2 ea(al ™).
Similarly, if we put in (1) mzig—l = a7 ? and z;4; = ep(al™?), we conclude
that for every y7', a 2 € Q the equality
(6’) B(yl) = A(yh (aA(al 2) al ay1+1)’yz+2)
holds, where
©) (@) falap % ep(al ),

2) Since n > 3 and since the present S-NetSAAnQ satisfy the condition
S # 0, arbitrary A, B € ¥ satisfy not only the statement connected with (1),
but also at least one of the following statements

2 "'2 is not an empty sequence, since n > 3.
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I: Thereis an j € {1,...,n — 1}, satisfying the condition j < i —1 or
j > 1+ 2, such that for every a:2" 1 € @ the following holds

(2) Az, Bl ), 22 = Ale], B(eI1T), 275 00);
II: There is an j € {1,. — 1}, satisfying the condition j <i— 2 or
j > 1+ 1, such that for every 12" 1 € Q the following holds
(3) B(z]! A(l‘]+n_ yaan ) = (le,A(xji?% z4); and
III: For every 372"_ € @ the following equalities hold
(11) A(B(xl)wmiﬁ-;l) - (xl,A(xn-H)’ 127.1-:-21) and
(4) B(x1, Ay ™), 235") = A(e}, Bla5 ™), 2233")

3) In the following we prove that for an arbitrary C' € X, for every
D € X there is a central operation a¢ of the n-group (@, C) such that for

every z7 € @ and for every sequence a’f_2 over () the equality

D(z}) = C(a77!, Clac(ar™?), a7 7%, z4))Y

holds, whence, since (@, L) is an NetSAAnQ, by Theorem 5.2, it follows that
(Q,%) is an O-NetSAAnQ.

Case I: Let the statement I holds together with the statement concern-
ing (1). Starting with the statement with (2 ) (a) and (b) by the substitution
:c].+"_1 = y7, we conclude that for every ] ,yl, ]2 tn € @, for every se-

quence af~ ~2 over Q and for every sequence by~ 2 over Q the following equality

holds
A, A, Alra(al), 68 yn) 1) 2201) =
1 W, Qa\G ay S Yi+1) Yigo azj.}.n

- _ B L
A(II:{ » Y1, A(y%+1a 14(‘1/1(1)'51 2); b? 2, yi+2), y?+3a :Ej-f-n)a w_’?ini—l)’
i.e., since (Q, A) is an n-semigroup, also the following equality holds

A(:It‘i ) (yl’A(aA( n 2) a?—z’yi+1))y?+2)’x_?i;1) =

A]Y A, A, aa(872),8772),47,,), 2207 1),

hence, since (@, A) is an n-quasigroup, we conclude that for every y;4; € Q, for
every sequence a’f—2 over () and for every sequence b’f‘z over @ the following
equality holds

A(aa(ar™ 2)ya?_2,yi+1) = A(yi+1,aA(b711_2)’b111_2)'

Hence, by Definition 3.1, we conclude that a4 is a central operation of the
n-group (@, A). Thus, starting with statements connected with (@) and (b),

3)Int',heca.'seIC=Aa‘ndD=B,za.ndinthecasesIIa.ndIIIC:BandD=A.
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by Proposition 3.3, we conclude that for every y7' € Q and for every sequence
a’f‘z over @ the following equality holds

B(y?) = A(y™t, A(oa(a?™2), a772, yn)).

Case II: Let the statement II holds together with the statement con-
nected with (1). Starting with the statements concernig (3), (a) and (b}, by
the substitution :z:j-+""1 = y, similarly to the case I [using Proposition 3.4
instead of Definition 3.1], we conclude that cp is a central operation of the
n-group (@, B) and that for every yI' € Q and for every sequence a’l‘_2 over
@ the following equality holds

A = By, Blap(a}™%), a7 %, yn)).

Case III: Let IIT holds. The equality (11) is the equality (1) for i = 1.
Also [for i = 1], te statement connected with (a) reduces to the following
statement: for every y7', a 2 € Q the following equality holds

(a1) A(y1)=B(B(y1,a1_ ,ap(a}™?)),v3)

[= B(B(y1, 4772, ap(677%)), 43)].
Starting with the statements concerning (4), (a1) and (b), by the substitution

”+1 = yT, we conclude that for every z1,yf, x ,21 T2 € Q, for every sequence

a? =2 over Q and for every sequence b'l‘_2 over @ the following equality holds

B(zy, B(B(y1,a7 7%, ap(al ™), 43), 2033") =
B(B(zl,b?_z,aB(b?_z)),yl,B(@/g,xn+2),$33_31),

i.e., since (@, B) is an n-semigroup, the following equality also holds
B(zl)B(yl)al QB(G,? 2)) B(y2,$n+2), n7-7|'-31)

B(z1, B(b772, ap(b77%), y1), By, Tnt2), z20351),

whence, since (Q, B) is an n-quasigroup, we conclude that for every y; € Q, for
every sequence a?_z over () and for every sequence b?“z over @ the following

equality holds
B(y1, a7, ap(a}™?)) = B(? ™%, ap(ti ™), 51).

Hence, by Proposition 3.4, we conclude that a g is a cental operation of the

n-group (@, B). Thus, starting with the statements connected with (a;) and
(b), by Proposition 3.3, for every yf € Q and for every sequence a}~ ~2 over Q,

the following equality holds
A(y?) = B(y? ™, Blap(a}™?), a1 7%, ya))-
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7. A description NetSAAnQ

7.1. Theorem: Let (Q,X) be an w-NetSAAnQ andn > 3. Let also A be an
arbitrary operation from ¥ and (Q, {-,p, b}) an nHG-algebra associated to
the n-group (@, A). Then, for every B € X there is ezactly one a € Q such
that for every z,z7 € Q the following equalities hold:
(a) B(a}) =21 9(x2) ... " 2 (Tp1)-b-a- b zp;
(b) (a-b)-z=z-(a-b);
(c) w(a) =a and
(d) (a-b)-(a-b)=e¢,
where e is a neutral element of the group (Q, ).
The sketch of the proof:
1) B(x?) = A(:Brll_l ) A(a(arll_2)1 a?—zj mn))

= Iy~ SD(-'L'2) Teeet (pn_z(zn—l) “b- A(a(a’ll_Q), aq —21 m‘n,)
= z1-9(@) ... " 22n1) - b-a(@a¥ ) - play) .. .-
‘/’n_z(an—2) b-zp
= z1-9(x2) ... 0" *(Tp_1) b-a-b-zy
(4.1, 1.5.2, 3.9].
2) (VzeQ)(a-b)-z=z-(a-b)[4.1,3.9].
3)  ¢(a)=a[41,3.9]
4)  fa@ % ead ™) = afa} ) &
eA(G"ll—z) = A(a(a?_z)’ a111,—2’ a(a?—2));
ea(ar™®) =b7"- (par) .- " (an2))7h

Al(a]™), a1 7%, e} ™)) = ea(al2) &
a(a?™?) - plar) - ... " Xan2) - b-a(af7?) = ea(a]™?) &
a-b- a(al’f—2) =€y an_z) RN

1
a-b-a-(plar) ... 9" (an2)) ' =b"Hp(a1) - ... " (an2)) I
a-b-a=b"le

(a-b)-(a-b)=e O
The statements 1)-3) from the sketch of the proof of Theorem 7.1 are
valid also if 6.1, 5.1, 1.5.2, 3.9; 6.1, 5.1, 3.9 and 6.1, 5.1, 3.9 are used re-
spectively instead of propositions listed in the brackets. Thereby, with the
mentioned substitutions of used propositions 1)-3) is the sketch of the proof
of the following proposition:
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7.2. Theorem: Let (Q, %) be an S-NetSAAnQ and n > 3. Let also A be an
arbitraty operation from ¥ and (Q,{-, ¢,b}) an nHG-algebra associated to
the n-group (Q, A). Then, for every B € ¥ there is exactly one a € Q such
that for every x,z7 € Q the following equalities hold:

(a) B(x}) =1z -o(x2) ... " % (zn_1) b a-b-xp;
(b) (a-b)-z=z-(a-b) and
() ela)=a.O

By Proposition 3.10, Theorem 5.2 and Proposition 5.3, we conclude that
the following proposition holds:
7.3. Theorem: Let n > 3, let (Q, A) be an n-group, (Q, {-, ¢, b}) its associ-
ated nHG-algebra and let A be at least two element subset of the set Q,
such that for every a € Q the following holds:

aEAdgw(a) =aA(VzeQ)(a-b)-z=z-(a-b).
Let also ¥ be the set of n-ary operations (n > 3) in Q such that for every B

B¢ Edga € AN(Vz; € Q)TB(2}) =21 - p(z2) - .. .- go"_z(a:n_l) ‘b-a-b-zy,.

Then (Q, £)is an S-NetSAAnQ for every S C{2,...,n}. O

By Proposition 3.10, part 4) of the sketch of the proof of Theorem 7.1
and by Theorem 4.2, we conclude that the following proposition holds:
7.4. Theorem: Let n > 3, let (Q, A) be an n-group, (Q, {-,¢,b}) its asso-
ciated nHG-algebra, e the neutral element of the group (Q,-) and let A be
at least two element subset of the set Q, such that for every a € Q the
following holds:

ac AYpa)=an(Vz e Q)((a-b) - z=2-(a-b)A(a-b) (a-b) =e).

Let also ¥ be the set of n-ary operations in Q) such that for every B the
following holds:

B e Eng(a:'f) =x1-p(x3) ... @ Hzp1)-b-a-b-z, Na € A.
Then, (Q,X)is an w-NetSAAnQ for every w € .

8. On a description of the case n = 3 by Yu. M. Movsisyan

Nontrivial super associative algebras with 3-quasigroup operations were
described firstly by Yu. M. Movsisyan [: [9], p. 152-158].

In this section we compare one proposition of Yu. M. Movsisyan [: [9],
p. 152, direction ”=>" of Theorem 2.2.37] with the corresponding proposition
from 7 for n = 3 [:Theorem 7.2 for n = 3]. Therefore, we advance the following
definition:
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8.1: Let (Q, {o, B8, 7,8,t}) be an algebra, where o is a binary operation in Q, 8
is a permutation of the set Q, and r, s,t fized elements of the set Q. Then we
say that (@, {0, B,1,5,t}) is a SM-algebra sz the following statements hold:
(1) (Q,0) is a group;
(2) B € Aut(Q, );
(8) B(sor) =rosot™V where (=1) 45 the inversing operation in the group
(@,0); and
(4) (¥ € Q)F%(z) o (B(r~D) 0 5) = (B(rV) 0 5) 0. D

Using Definition 8.1, Theorem of Movsisyan corresponding Theorem?7.2
for n =3 [: [9], p- 152, direction ”=" of Theorem 2.2.37], can be formulated
in the following way:
8.2: Let (Q,X) be an S-NetSAAnQ and n = 3. Then there is 3M-algebra
(@, {0, B,7,5,t}) such that the following statement holds: for every B € £
there is exactly one p € Q) such that for every x, x:f € Q the following equalities
are satisfied:
(a) B(z$) = 21 070 () 0 0 po g
(b) pox=zop and
(c) B(p) =top.

Using 2.3.5, Theorem 7.2 can be formulated in the similar way for n = 3:
8.3: Let (Q,X) be an S-NetSAAnQ and n = 3. Then there is SHG-algebra
(@, {-, ¢, b}) such that the following statement holds: for every B € X there is
ezactly one a € @ such that for every x,z‘i’ € @ the following equalities are
satisfied:
(@) B(z}) = 21 - p(x2) -0-a-b- x3,
(b) (a-b)-z==z-(a-b) and
(¢) pla) =a. O

By 8.2 and 8.3, using the statements connected with (a) and (a), re-
spectively, from 8.2 and 8.3, we conclude that also the following proposition
holds:
8.4. Proposition: Let (Q,%) be an S-NetSAAnQ and n = 3. Let also
(@, {0, B,7,s,t}) and (Q, {-,,b}) be a 8M- and SHG-algebras, respectively,
associated in the sense of 8.2 and 8.3 to the algebra (Q,X). Then there is
ezactly one k € Q such that for every z,y € Q the following equality holds

zoy=zx-k-y.

Finally, by 1.5.3, 8.4, 1.5.5, 7.2, 8.3 and 8.2, we conclude that the fol-
lowing proposition holds:
8.5. Proposition: Let (Q, L) be an S-NetSAAnQ and n = 3. Let also
(@, {0, B,7,5,t}) be a 3M-algebra associated to the algebra (Q, L) in the sense

of 8.2. Then, there is a SHG-algebra (Q, {-,g%, b}) such that the following state-
ments holds: for every B € ¥ there is exactly one p € Q, and ezactly one
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a € Q such that for every T, T3 € Q, together with (a)-(c) from 8.2, also the
following equalities hold
[o] o [¢] -
B(a}) = z1 0 p(zz) oboaobozs, _
[o]

(308)om=x0(8ob),<p(a):3,

0302=r0s0p andp(z) = r o B(z) or(~D,

(= e}

9. References

[1] Dornte W.: Untersuchengen iber einen verallgemeinerten Gruppenbegriff, Math.
Z. 29 (1928), 1-19.

[2] Bruck, R. H.: A survey of binary systems, Springer-Verlag, Berlin-Heidelberg-
Gottingen 1958.

[3] Hosszd, M.: On the explicit form of n-group operations, Publ. math., Debrecen
(10) 1-4 (1963), 88-92.

[4] Gluskin, L. M.: Position operatives, Mat. sb. t. (68) (110) No3 (1965), 444-472.
(In Russian.)

[5] Belousov, V. D.: Systems of quasigroups with generalized identities, Usp. mat.
nauk 20, No 1, 1965, 75-146. (In Russian.)

(6] Szész, C.: Asupra azomelor care la baza definititei unui n-group, ” Lucrari gtint.
Inst. Politehn. Bragov. Fac. Mec.” 7(1965), 43-47. (Ref. Zh. Mat. 12A, 1966,
258.)

[7] Sokolov, E. L.: On Gluskin-Hosszi theorem for Dornte n-group, Math. issl. 39,
”Stiinca”, Kishinev 1976, 187-189. (In Russian.)

[8] Dudek W.A., Glazek K., Gleichgewicht B.: A note on the arioms of n-groups,
Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergrom (Hungary), 1977,
195-202.

[9] Movsisyan, Yu. M.: Introduction to the theory of algebras with hiperidentities,
Izdat. Erevan Univ., Erevan, 1986. (In Russian.)

[10] Usan, J.: Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ.
of Novi Sad, Math. Ser. 18-2 (1988), 117-126. (In Russian.)

[11] Usan, J.: A comment of n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi
Sad, Math. Ser. 24-1 (1994), 281-288.

[12] Usan, J.: On Hosszd-Gluskin algebras corresponding to the same n-group, Rev.
of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-1 (1995), 101-119.

[13] Usan, J.: On n-groups with {i, j}-neutral operation for {i,j} # {1,n}, Rev. of
Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-2 (1995), 167-178.



Description of super associative algebras with n-quasigroup operations 157

[14] Usan J.: n-Groups, n > 2, as Varieties of Type (n,n — 1,n — 2), Algebra and
Model Theory, Collection of papers edited by A.G. Pinus and K.N. Ponomaryov,
Novosibirsk 1997, 182-208.

[15] Denecke K. and Wismath L.S.: Hyperidentities and clones, Goron and Breach
Sci. Publ., Singapore 2000.

[16] Glazek K.: Bibliography of n-groups (polyadic groups) and some group-like n-ary
systems, Proc. of the Synposium "n-ary structures” (Skopje 1982), Macedonian
Academy of Sciences and Arts, Skopje 1982, 253-289.

Institute of Mathematics,

University of Novi Sad

Trg D. Obradovicéa 4, 21000 Novi Sad,
Yugoslavia



