DESCRIPTION OF SUPER ASSOCIATIVE ALGEBRAS WITH n-QUASIGROUP OPERATIONS #### Janez Ušan **Abstract.** Let Σ be a set operation over Q. Let also $w_1 = w_2$ be a law in a description of which variables x_1, \ldots, x_s are included, and also operational symbols X_1, \ldots, X_k , whose set of lengths is a subset of the set of lengths [:arities] of operations from Σ . Then (Q, Σ) is said to be an algebra with the superidentity $w_1 = w_2$ iff for every substitution of the variables x_1, \ldots, x_s with elements of Q and for every substitution of the operational symbols X_1, \ldots, X_k with operations from Σ [with the corresponding lengths $w_1 = w_2$ becomes an equality in (Q, Σ) ; [2]. Quasigroup algebras with associative superlaws were described by V. D. Belousov in [5]. (See also [16].) 3-quasigroup algebras with associative superlaws were primary described by Yu. M. Movsisyan [9], p. 152-158].(Associative superlaws or hyperidentities of associativity; see also [15].) In the present paper, for n-quasigroup algebras with associative superlaws, the author was free to use the name: super associative algebras of n-quasigroup operations [briefly: SAAnQ]. In the paper, primary, in a unique way are described nontrivial SAAnQ [briefly: NetSAAnQ for every $n \in \mathbb{N} \setminus \{1\}$ with an exception of a case for n=2. The crucial role in the mentioned description of NetSAAnQ play the $\{1,n\}$ -neutral and the inversing operations in an n-group. Starting with the mentioned description of NetSAAnQ, these algebras for $n \geq 3$ are finnally described in terms of Hosszú-Gluskin algebras of order n. AMS (MOS) Subject Classification 1991. Primary: 20N15. Key words and phrases: n-semigroups, n-quasigroups, n-groups, $\{1, n\}$ -neutral operations on n-groupoids, inversing operation on n-group, central operation on n-group, nHG-algebras. #### 1. Preliminaries ## 1.1 About the expression a_p^q Let $p \in \mathbb{N}$, $q \in \mathbb{N} \cup \{0\}$ and let a be a mapping of the set $\{i | i \in \mathbb{N} \land i \ge p \land i \le q\}$ into the set S; $\emptyset \notin S$. Then: $$a_p^q \text{ stands for } \left\{ \begin{array}{ll} a_p, \ldots, a_q; & p < q \\ a_p; & p = q \\ \text{ empty sequence } (=\emptyset); & p > q. \end{array} \right.$$ For example: $X(a_j^{j-1}, Y(a_j^{j+n-1}), a_{j+n}^{2n-1}), j \in \{1, ..., n\}, n \in \mathbb{N} \setminus \{1, 2\}, \text{ for } j = n \text{ stands for } X(a_1, ..., a_{n-1}, Y(a_n, ..., a_{2n-1})).$ Besides, in some situations instead of a_p^q we write $(a_i)_{i=p}^q$ [briefly: $(a_i)_p^q$]. For example: $(\forall x_i \in Q)_1^q$ for q > 1 stands for $\forall x_1 \in Q \dots \forall x_q \in Q$ [usually, we write: $(\forall x_1 \in Q) \dots (\forall x_2 \in Q)$], for q = 1 it stands for $\forall x_1 \in Q$, and for q = 0 it stands for an empty sequence $(=\emptyset)$. ### 1.2 About *n*-semigroups, *n*-quasigroups and *n*-groups **1.2.1.** Definitions: Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then: (a) we say that (Q, A) is an n-semigroup iff for every $i, j \in \{1, ..., n\}$, i < j, the following (i, j)-associative law holds $$A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1}) = A(x_1^{j-1}, A(x_i^{j+n-1}), x_{i+n}^{2n-1})$$; (b) we say that (Q, A) is an n-quasigroup iff for every $i \in \{1, ..., n\}$ and for every $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the following equality holds $$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n;$$ and (c) we say that (Q, A) is a Dörnte n-group [briefly: n-group] iff (Q, A) is an n-semigroup and n-quasigroup as well. A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group. **1.2.2. Proposition** [6]: An n-semigroup (Q, A), $n \ge 2$, is an n-group iff for all there is exactly one $x \in Q$ and exactly one $y \in Q$, such that the equalities $$A(a_1^{n-1}, x) = a_n \text{ and } A(y, a_1^{n-1}) = a_n$$ hold. **1.2.3. Proposition** [7]: Let (Q, A) be an n-quasigroup and $n \geq 2$. Then: (Q, A) is an n-group iff there is an $i \in \{1, \ldots, n-1\}$ such that the following law holds $$A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-1})=A(x_1^i,A(x_{i+1}^{i+n}),x_{i+n+1}^{2n-1}).$$ (See, also [8], p.p. 196.) ## 1.3 On the $\{i, j\}$ -neutral operation in an n-groupoid **1.3.1. Definition** [10]: Let $n \geq 2$, let (Q, A) be an n-groupoid and e be an (n-2)-ary operation in Q. Let also $\{i,j\} \subseteq \{1,\ldots,n\}$ and i < j. Then e is an $\{i,j\}$ -neutral operation of the groupoid (Q,A) iff the following formula holds (1) $$(\forall a_i \in Q)_1^{n-2} (\forall x \in Q) \quad (A(a_1^{i-1}, \mathbf{e}(a_1^{n-2}), a_i^{j-2}, x, a_{j-1}^{n-2}) = x \\ \wedge \quad A(a_1^{i-1}, x, a_i^{j-2}, \mathbf{e}(a_1^{n-2}), a_{j-1}^{n-2}) = x)^{1)}$$ - **1.3.2.** Remark: For n = 2 $e(a_1^{n-2})$ [= $e(\emptyset) = e \in Q$] is a neutral element of the groupoid (Q, A). - **1.3.3.** Proposition [10]: Let $n \ge 2$, $\{i, j\} \subseteq \{1, ..., n\}$ and i < j. Then in every n-groupoid there is at most one $\{i, j\}$ -neutral operation. - **1.3.4.** Proposition [10]: In every n-group $[n \ge 2]$ there is a $\{1, n\}$ -neutral operation. (See, also [13].) - **1.3.5. Proposition** [10]: For $n \geq 3$, an n-semigroup (Q, A) is an n-group iff (Q, A) has a $\{1, n\}$ -neutral operation. - **1.3.6. Proposition:** Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation and $n \geq 2$. Then the following formula holds (2) $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) \ A(e(a_1^{n-2}), a_1^{n-2}, x) = A(x, e(b_1^{n-2}), b_1^{n-2}).$$ Proof: 1) for n = 2 the formula (2) reduces to the formula $(\forall x \in Q) A(\mathbf{e}(\emptyset), x) = A(x, \mathbf{e}(\emptyset))$; and $$\begin{split} 2) \ &\text{let} \ n \geq 3. \ F(x,b_1^{n-2}) \stackrel{def}{=} A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(x,A(\mathbf{e}(b_1^{n-2}),b_1^{n-2},\mathbf{e}(b_1^{n-2})),b_1^{n-2}) \Rightarrow \\ A(F(x,b_1^{n-2}),\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) \Rightarrow \\ F(x,b_1^{n-2}) &= x \Rightarrow A(x,\mathbf{e}(b_1^{n-2}),b_1^{n-2}) &= A(\mathbf{e}(a_1^{n-2})),a_1^{n-2},x). \end{split}$$ ## 1.4 On the inversing operation in an n-group - **1.4.1.** Proposition [11]: Let $n \geq 2$ and (Q, A) be an n-semigroup. Then: - a) There is at most one (n-1)-ary operation f in Q such that the following formulas hold - (1) $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q) \ A(f(a_1^{n-2}, a), a_1^{n-2}, A(a, a_1^{n-2}, x)) = x$ and - (2) $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q) \ A(A(x, a_1^{n-2}, a), a_1^{n-2}, f(a_1^{n-2}, a)) = x;$ $[\]overline{\frac{1) \text{For } \{i, j\} = \{1, n\}: (\forall a_i \in Q)_1^{n-2} (\forall x \in Q) (A(e(a_1^{n-2}), a_1^{n-2}, x) = x \land A(x, a_1^{n-2}, e(a_1^{n-2})) = x).}$ - b) If there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) are satisfied, then (Q, A) is an n-group; and - c) If (Q, A) is an n-group, then there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) hold. - **1.4.2. Proposition** [11]: Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation, f its inversing operation and $n \geq 2$. Then the following formula holds $(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (A(f(a_1^{n-2}, a), a_1^{n-2}, a) = e(a_1^{n-2}) \land$ $$A(a, a_1^{n-2}, f(a_1^{n-2}, a)) = \mathbf{e}(a_1^{n-2}).$$ **1.4.3. Proposition** [11]: Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation, f its inversing operation and $n \geq 2$. Then the formula $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) (\forall y \in Q) A(x, b_1^{n-2}, y) = A(A(x, a_1^{n-2}, f(a_1^{n-2}, \mathbf{e}(b_1^{n-2}))), a_1^{n-2}, y)$$ holds. **1.4.4.** Remark: As well as Proposition 1.3.4. and Proposition 1.4.1, for $n \geq 2$, e. g. the following proposition holds [14]: If the laws hold in the algebra $(Q, \{A, f, e\})$ of the type $\langle n, n-1, n-2 \rangle$ $A(A(x^n), x^{2n-1}) = A(x, A(x^{n+1}), x^{2n-1}) A(x, a^{n-2}, e(a^{n-2})) = x$ and $$A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}), A(x, a_1^{n-2}, e(a_1^{n-2})) = x \text{ and } A(a, a_1^{n-2}, f(a_1^{n-2}, a)) = e(a_1^{n-2}),$$ then (Q, A) is an n-group. For n = 2 this is the well known characterizations of groups. ## 1.5 On Hosszú-Gluskin algebras - **1.5.1. Definition** [12]: Let \cdot be a binary and φ a unary operation in Q. Let also b be a (fixed) element of the set Q, and n a (fixed) element of the set $\mathbb{N}\setminus\{1,2\}$. We say that $(Q,\{\cdot,\varphi,b\})$ is a Hosszú-Gluskin algebra of order n [briefly: nHG-algebra] iff the following hold - (1) (Q, \cdot) is a group, - (2) $\varphi \in Aut(Q, \cdot)$, - (3) $\varphi^{n-1}(x) \cdot b = b \cdot x$ for every $x \in Q$, and - (4) $\varphi(b) = b$. - **1.5.2.** Hosszú-Gluskin Theorem [3-4]: Let (Q, A) be an n-group and $n \ge 3$. Then, there is an nHG-algebra $(Q, \{\cdot, \varphi, b\})$ such that for each $x_1^n \in Q$ the equality (5) $$A(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$$ holds. By a simple verification we conclude that the following proposition also holds: **1.5.3.** Proposition: Let $(Q, \{\cdot, \varphi, b\})$ nHG-algebra $[n \ge 3]$. Let also $$A(x_1^n) \stackrel{def}{=} x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$$ for all $x_1^n \in Q$. Then (Q, A) is an n-group. **1.5.4.** Definition [12]: We say that an nHG-algebra $(Q, \{\cdot, \varphi, b\})$ associated to the n-group (Q, A) iff the equality (5) holds for all $x_1^n \in Q$. **1.5.5.** Proposition [12]: Let (Q, A) be an n-group, $n \geq 3$, $(Q, \{\cdot, \varphi, b\})$ an arbitrary nHG-algebra
associated to the n-group (Q, A), $^{-1}$ the inversing operations in (Q, \cdot) , $k \in Q$ and for every $x, y \in Q$ $$x \cdot_k y \stackrel{def}{=} x \cdot k \cdot y,$$ $$\varphi_k(x) \stackrel{def}{=} k^{-1} \cdot \varphi(x) \cdot \varphi(k)$$ and $$b_k \stackrel{def}{=} k^{-1} \cdot \varphi(k^{-1}) \cdot \ldots \cdot \varphi^{n-1}(k^{-1}) \cdot b.$$ Let also $$C_A \stackrel{def}{=} \{ (Q, \{\cdot_k, \varphi_k, b_k\}) | k \in Q \}.$$ Then, C_A is a set of all nHG-algebras associated to the n-group (Q, A). #### 2. Introduction ## 2.1 On n-ary associative laws Let X_1, \ldots, X_4 be n-ary operational symbols and $n \in \mathbb{N} \setminus \{1\}$. Let also Φ be a mapping of the set $\{X_1, \ldots, X_4\}$ into the set $\{X_1, \ldots, X_4\}$, $i, j \in \{1, \ldots, n\}$, i < j and let x_1, \ldots, x_{2n-1} be variables; $\mathcal{R}\Phi = \{\Phi X_1, \Phi X_2, \Phi X_3, \Phi X_4\} \subseteq \{X_1, \ldots, X_4\}$. Then we say that $$\Phi X_1(x_1^{i-1},\Phi X_2(x_i^{i+n-1}),x_{i+n}^{2n-1}) = \Phi X_3(x_1^{j-1},\Phi X_4(x_j^{j+n-1}),x_{j+n}^{2n-1})$$ is a n-ary associative law. ## 2.2 Super associative algebras with n-quasigroup operations **2.2.1.** Definition: Let (Q, Σ) be an algebra in which (Q, Z) is an n-quasigroup for every $Z \in \Sigma$. Then we say that (Q, Σ) is a super associative algebra with n-quasigroup operations [briefly: SAAnQ] iff the following statement holds: there is $$\Phi \in \{X_1, \dots, X_{2n}\}^{\{X_1, \dots, X_{2n}\}}$$ such that for every $i \in \{2, ..., n\}$, for every substitution of the variables $x_1, ..., x_{2n-1}$ by elements of Q and for every substitution of the operational symbols $\Phi X_1, ..., \Phi X_{2n}$ by elements of Σ [keeping the same notion $x_1, ..., x_{2n-1}, \Phi X_1, ..., \Phi X_{2n}$] the following equality holds $$\Phi X_1(\Phi X_2(x_1^n), x_{n+1}^{2n-1}) = \Phi X_{2i-1}(x_1^{i-1}, \Phi X_{2i}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$ **2.2.2.** Remark: The case n=2 was described by V. D. Belousov in [5]. In that occasion SAA2Q were said to be systems of quasigroups with associative superlaws. The case n=3 was described by Yu. M. Movsisian [:the book [9], p.p. 152-158]. \square An immediate consequence of Def. 2.2.1 and of the definition of the *n*-group is the following proposition: **2.2.3.** Proposition: Let $n \in \mathbb{N} \setminus \{1\}$. Then: if (Q, Σ) SAAnQ, then (Q, Z) is an n-group for every $Z \in \Sigma$. #### 2.3 Nontrivial SAAnQ If $|\Sigma| = 1$ or $|\mathcal{R}\Phi| = 1$, then for every set Q and for every $n \geq 2$ there is $SAAnQ(Q, \Sigma)$. **2.3.1. Definition:** Let (Q, Σ) be an SAAnQ; $n \geq 2$. Then (Q, Σ) is a non-trivial SAAnQ [briefly: NetSAAnQ] iff the following conjuction holds $$|\Sigma| > 1 \land |\mathcal{R}\Phi| > 1.$$ **2.3.2. Theorem:** Let (Q, Σ) be an SAAnQ. Then: if (Q, Σ) is NetSAAnQ, then the following statements hold: (1) $$\begin{aligned} |\{\Phi X_1, \Phi X_2\}| &= 2 \Rightarrow \\ (\forall i \in \{2, \dots, n\}) \{\Phi X_{2i-1}, \Phi X_{2i}\} &= \{\Phi X_1, \Phi X_2\}; \text{ and } \\ |\{\Phi X_1, \Phi X_2\}| &= 1 \Rightarrow \end{aligned}$$ (2) $$(\forall i \in \{2, \dots, n\})(|\{\Phi X_{2i-1}, \Phi X_{2i}\}| = 1) \land$$ $$(\exists j \in \{2,\dots,n\})\{\Phi X_{2j-1},\Phi X_{2j}\} \neq \{\Phi X_1,\Phi X_2\}).$$ **Proof.** 1) Let $|\{\Phi X_1, \Phi X_2\}| = 2$. a) Let A, B, C, D, \bar{D} be arbitrary operations from $\Sigma, x_1, \ldots, x_{2n-1}$ arbitrary elements from Q and i an arbitrary element of the set $\{2, \ldots, n\}$ so that $$\begin{split} &A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},D(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and} \\ &A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},\bar{D}(x_i^{i+n-1}),x_{i+n}^{2n-1}). \end{split}$$ Thereby, since Σ is a set of *n*-quasigroup operations, we conclude that $D = \bar{D}$, i.e. that ΦX_{2i} has no free choice for the substitution with operations from the set Σ . Similarly we conclude that ΦX_{2i-1} has no free choice for the substitution with operations from Σ . Hence, for every $i \in \{2, \ldots, n\}$ it is true that $$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 4.$$ b) Let A, B, C, \bar{C} be arbitrary elements from the set $\Sigma, x_1, \ldots, x_{2n-1}$ arbitrary elements from the set Q and i an arbitrary elements from the set $$\{2,\ldots,n\}$$ so that $$A(B(x_1^n),x_{n+1}^{2n-1})=A(x_1^{i-1},C(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and }$$ $$A(B(x_1^n),x_{n+1}^{2n-1})=A(x_1^{i-1},\bar{C}(x_i^{i+n-1}),x_{i+n}^{2n-1}); \text{ or }$$ $$A(B(x_1^n),x_{n+1}^{2n-1})=C(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}) \text{ and }$$ Hence, since Σ is a set of *n*-quasigroup operations, we conclude that with $\Phi X_1 = \Phi X_{2i-1}$ or $\Phi X_2 = \Phi X_{2i}$ $A(B(x_1^n), x_{n+1}^{2n-1}) = \bar{C}(x_1^{i-1}, B(x_i^{i+n-1}), x_{i+n}^{2n-1}).$ $$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 3.$$ In the same way we conclude that with $\Phi X_2 = \Phi X_{2i-1}$ or $\Phi X_1 = \Phi X_{2i}$ it is true that $$|\{\Phi X_1, \Phi X_2, \Phi X_{2i-1}, \Phi X_{2i}\}| < 3$$ for every $i \in \{2, \ldots, n\}$. c) Let A, B be arbitrary elements of the set $\Sigma, x_1, \ldots, x_{2n-1}$ arbitrary elements from Q, and i an arbitrary element of the set $\{2, \ldots, n\}$ so that $$A(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{i-1}, Ax_i^{i+n-1}), x_{i+n}^{2n-1})$$ or $$A(B(x_1^n),x_{n+1}^{2n-1})=B(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}).$$ Hence, since (Q, A) and (Q, B) are n-groups, it follows that A = B, i.e. that ΦX_1 or ΦX_2 has no free choice for the substitution with operations from Σ , which is a contradiction with the assumption that the following equality holds $|\{\Phi X_1, \Phi X_2\}| = 2$. - 2) Let $|\{\Phi X_1, \Phi X_2\}| = 1$. - a) Let A, B, C, \overline{C} be arbitrary elements from $\Sigma, x_1, \ldots, x_{2n-1}$ arbitrary elements from Q and i an arbitrary element from $\{2, \ldots, n\}$ so that $$A(A(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, C(x_i^{i+n-1}), x_{i+n}^{2n-1})$$ and $$A(A(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, \bar{C}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$ Hence, since Σ is a set of n-quasigroup operations, we conclude that ΦX_{2i} has no free choice for the substitution with operations in Σ . Similarly we conclude that ΦX_{2i-1} also has no free choice for the substitution with operations from Σ . Thus, for every $i \in \{2, \ldots, n\}$, it is true that $$|\{\Phi X_{2i-1}, \Phi X_{2i}\}| = 1.$$ b) Finally, taking into account the proposition proved in a) and the assumption that (Q, Σ) is NetSAAnQ, we conclude that there is at least one $j \in \{2, ..., n\}$ such that $$\{\Phi X_{2j-1}, \Phi X_{2j}\} \neq \{\Phi X_1, \Phi X_2\}. \square$$ Theorem 2.3.2 gives the posibility to describe NetSAAnQ: - a) with **not more than** n operational symbols in the case $|\{\Phi X_1, \Phi X_2\}| = 1$; and - b) with **two** operational symbols in the case $|\{\Phi X_1, \Phi X_2\}| = 2$. Consequently, having in mind Theorem 2.3.2, we induce the following two agreements: - **2.3.3.** Definition: Let (Q, Σ) , $|\Sigma| \geq 2$, be an algebra in which the following condition holds: (Q, Z) is an n-quasigroup, $n \geq 2$, for every $Z \in \Sigma$. Let also ω be a mapping of the set $\{1, \ldots, n\}$ into the set $\{1, \ldots, n\}$ such that it satisfies the following conditions: a) $\omega(1) = 1$, and b) $|\mathcal{R}\omega| \geq 2$. In addition, the set of all mappings ω satisfying the conditions a)-b) will be denoted by Ω . Then, we shall say that (Q, Σ) is an ω -NetSAAnQ iff for every $i \in \{2, \ldots, n\}$, for every substitution of variables x_1, \ldots, x_{2n-1} with elements from Q, and every substitution of n-ary operational symbols $X_{\omega(1)}, \ldots, X_{\omega(n)}$ with operations from Σ the following equality holds $$X_1(X_1(x_1^n), x_{n+1}^{2n-1}) = X_{\omega(i)}(x_1^{i-1}, X_{\omega(i)}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$ **2.3.4.** Definition: Let (Q, Σ) , $|\Sigma| \geq 2$, be an algebra in which the following proposition holds: (Q, Z) is an n-quasigroup, $n \geq 2$, for every $Z \in \Sigma$. Let also \hat{S} be a subset of the set $S = \{2, \ldots, n\}$ [including $\hat{S} = \emptyset$]. Then we shall say that (Q, Σ) is an \hat{S} -NetSAAnQ iff for every substitution of the variables x_1, \ldots, x_{2n-1} with elements from Q and for every substitution of n-ary operational symbols X_1, X_2 with operations from Σ the following statement holds $$\bigwedge_{i \in S \backslash \hat{S}} X_1(X_2(x_1^n), x_{n+1}^{2n-1}) = X_1(x_1^{i-1}, X_2(x_i^{i+n-1}), x_{i+n}^{2n-1}) \land$$ $$\bigwedge_{i \in \hat{S}} X_1(X_2(x_1^n), x_{n+1}^{2n-1}) = X_2(x_1^{i-1}, X_1(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$ - **2.3.5.** Remark: If (Q, Σ) is NetSAAnQ, $A \in \Sigma$ and $|\Sigma \setminus \{A\}| \ge 2$, then also $(Q, \Sigma \setminus \{A\})$ is NetSAAnQ. - 2.4 On NetSAAnQ with n=2 For n=2 there are [exactly] the following cases for NetSAAnQ - 1) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ -NetSAAnQ, - 2) Ø-NetSAAnQ and - 3) S-NetSAAnQ, $[S = \{2\}]$, with which are, respectively, connected the following laws $$X_1(X_1(x_1^2), x_3) = X_2(x_1, X_2(x_2^3)),$$ $$X_1(X_2(x_1^2), x_3) = X_1(x_1, X_2(x_2^3))$$ and $$X_1(X_2(x_1^2), x_3) = X_2(x_1, X_1(x_2^3)).$$ All three cases are described by V. D. Belousov in [5]. Among others, there are the following results. - **2.4.1:** Let (Q, Σ) be an NetSAAnQ. Then the following hold: - a) (Q, A) is a group for every $A \in \Sigma$; - b) If A is an arbitrary operation from Σ , then for every $B \in \Sigma$ there is $k \in Q$ such that for all $x, y \in Q$ $$B(x,y) = A(A(x,k),y).$$ Moreover: - b_1) If (Q, Σ) is $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ -NetSAAnQ, then $k \in Q$ is an element from the support of the center of the group
(Q, A) and k is a self inverse element in (Q, A); and - b_2) If (Q, Σ) is \emptyset -NetSAAnQ, then $k \in Q$ is an element from the support of the center of the group (Q, A); and - b_3) If (Q, Σ) is an S-NetSAAnQ, then $k \in Q$ is not limited by (Q, A) $[:A = \cdot, B(x, y) = x \cdot k \cdot y, C(x, y) = x \cdot \bar{k} \cdot y, B(C(x, y), z) = (x \cdot \bar{k} \cdot y) \cdot k \cdot z = x \cdot \bar{k} \cdot (y \cdot k \cdot z) = C(x, B(y, z))].$ - **2.4.2:** If (Q, Σ) is $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ -NetSAA2Q, then (Q, Σ) is \emptyset -NetSAA2Q. - **2.4.3:** If (Q, Σ) is \emptyset -NetSAA2Q, then (Q, Σ) is also an S-NetSAA2Q. - **2.4.4:** There is a NetSAA2Q (Q, Σ) such that it is \emptyset -NetSAA2Q and that it is not $(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array})$ -NetSAAnQ. - **2.4.5:** There is a NetSAA2Q (Q, Σ) such that it is an S-NetSAA2Q and that it is not \emptyset -NetSAAnQ. **Remark:** The analogon of Proposition 2.4.5 with $n \geq 3$ is not satisfied. ## 3. Central operations on *n*-groups **3.1.** Definition: Let (Q, A) be an n-group and $n \in \mathbb{N} \setminus \{1\}$. Let also α be an (n-2)-ary operation in the set Q. We say that α is a central operation of the n-group (Q, A) iff the following formula holds: $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) \ A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}).$$ - **3.2.** Remarks: a) If n = 2, then $\alpha(c_1^{n-2}) \models \alpha(c_1^0) = \alpha(\emptyset) = c \in Q$ is a central element of the group (Q, A); and b) The $\{1, n\}$ -neutral operation e of the n-group (Q, A) is a central operation of that n-group. - **3.3. Proposition:** Let (Q, A) be an n-group, α its central operation and $n \in \mathbb{N} \setminus \{1\}$. Then for every $i \in \{1, ..., n\}$, for every $x_1^n \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, A(x_1^n)) = A(x_1^{i-1}, A(\alpha(b_1^{n-2}), b_1^{n-2}, x_i), x_{i+1}^n).$$ **Proof.** For n = 2 $\alpha(a_1^{n-2})$ $[= \alpha(\emptyset)]$ is an element of the center of the group (Q, A). Let $n \geq 3$. Then: 1) Since, by the assumption, (Q, A) is an n-group [n-semigroup], we conclude that for every $x_1^n \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equalities hold $$\begin{split} A(\boldsymbol{\alpha}(a_1^{n-2}), a_1^{n-2}, A(x_1^n)) &= A(A(\boldsymbol{\alpha}(a_1^{n-2}), a_1^{n-2}, x_1), x_2^n) \\ &= A(A(\boldsymbol{\alpha}(b_1^{n-2}), b_1^{n-2}, x_1), x_2^n); \text{ and} \end{split}$$ 2) Since, by the assumption, (Q, A) is an n-group and α its central operation, we conclude that for every $j \in \{1, \ldots, n-1\}$, for every $x_1^n \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following sequence of equalities hold $$\begin{split} &A(x_1^{j-1},A(\alpha(a_1^{n-2}),a_1^{n-2},x_j),x_{j+1}^n) = \\ &A(x_1^{j-1},A(x_j,\alpha(b_1^{n-2}),b_1^{n-2}),x_{j+1}^n) = \\ &A(x_1^j,A(\alpha(b_1^{n-2}),b_1^{n-2},x_{j+1}),x_{j+2}^n). \end{split}$$ - **3.4. Proposition:** Let (Q, A) be an n-group and $n \in \mathbb{N} \setminus \{1\}$. Let also α be a mapping of the set Q^{n-2} into the set Q. Then the following statements are equalvalent: - (a) α is a central operation of the n-group (Q, A); - (b) The following formula holds $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall c_i \in Q)_1^{n-2} (\forall d_i \in Q)_1^{n-2} (\forall x \in Q) (A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = A(x, c_1^{n-2}, \alpha(c_1^{n-2})) = A(d_1^{n-2}, \alpha(d_1^{n-2}), x);$$ (c) The following formula holds $$(\forall a_i \in Q)_1^{n-2}(\forall b_i \in Q)_1^{n-2}(\forall x \in Q) \quad A(x, a_1^{n-2}, \alpha(a_1^{n-2})) = A(b_1^{n-2}, \alpha(b_1^{n-2}), x).$$ **Proof.** For n=2 the proposition is trivial. Let $n \geq 3$. I: (a) \Leftrightarrow (b): The statement (a) is an immeediate consequence of the statement (b). By the assumption that (Q, A) is an n-group, α its central operation and by Proposition 3.3, we deduce that the following sequence of implications holds $$\begin{split} F(a_1^{n-2},x) &\stackrel{def}{=} & A(x,a_1^{n-2},\alpha(a_1^{n-2})) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(A(x,a_1^{n-2},\alpha(a_1^{n-2})),a_1^{n-2},z) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(x,a_1^{n-2},A(\alpha(a_1^{n-2}),a_1^{n-2},z)) \Rightarrow \\ A(F(a_1^{n-2},x),a_1^{n-2},z) &= & A(A(\alpha(b_1^{n-2}),b_1^{n-2},x),a_1^{n-2},z) \Rightarrow \\ F(a_1^{n-2},x) &= & A(\alpha(b_1^{n-2}),b_1^{n-2},x), \end{split}$$ and hence we conclude that the formula (1) $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) A(x, a_1^{n-2}, \alpha(a_1^{n-2})) = A(\alpha(b_1^{n-2}), b_1^{n-2}, x)$$ holds. By the similar arguments, considering also the formula (1), we conclude that the following sequence of implications holds $$\begin{split} \Phi(a_1^{n-2},x) &\stackrel{def}{=} & A(a_1^{n-2},\alpha(a_1^{n-2}),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(a_1^{n-2},\alpha(a_1^{n-2}),x)) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},A(z,a_1^{n-2},\alpha(a_1^{n-2})),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},A(\alpha(b_1^{n-2}),b_1^{n-2},z),x) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(\alpha(b_1^{n-2}),b_1^{n-2},x)) \Rightarrow \\ & A(a_1^{n-2},z,\Phi(a_1^{n-2},x)) &= & A(a_1^{n-2},z,A(x,\alpha(b_1^{n-2}),b_1^{n-2})) \Rightarrow \\ & \Phi(a_1^{n-2},x) &= & A(x,\alpha(b_1^{n-2}),b_1^{n-2}), \\ & \text{and hence we conclude that also the formula} \end{split}$$ (2) $$(\forall a_i \in Q)_1^{n-2} (\forall b_i \in Q)_1^{n-2} (\forall x \in Q) A(a_1^{n-2}, \alpha(a_1^{n-2}), x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2})$$ holds. Considering the formulas (1) and (2) and the definition 3.1, we conclude that the implication (a) \Rightarrow (b) holds. II: If α satisfies the formula in the statement (c), then for every $i \in$ $\{1,\ldots,n\}$, for every $x_1^n\in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$A(A(x_1^n),a_1^{n-2},\boldsymbol{\alpha}(a_1^{n-2}))=A(a_1^{i-1},A(x_i,b_1^{n-2},\boldsymbol{\alpha}(b_1^{n-2})),x_{i+1}^n).$$ Proposition II can be proved by a simple imitation of the proof of Proposition 3.3. III: (b) \Leftrightarrow (c): The statement (c) is an immediate consequence of the statement (b). The implication (c) \Rightarrow (b) can be proved imitating the proof of the implication (a) \Rightarrow (b), where instead of Proposition 3.3 Proposition II is used. See Remark 3.11. □ A direct consequence of Proposition 3.4 is the following proposition: **3.5. Proposition:** Let (Q, A) be an n-group and $n \in \mathbb{N} \setminus \{1\}$. Let also α and β be central operations of the n-group (Q, A). Then for every sequence a_1^{n-2} over Q the following equality holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(a_1^{n-2})) = A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})).$$ **3.6.** Proposition: Let (Q, A) be an n-group, α its central operation and $n \in \mathbb{N} \setminus \{1\}$. Then there is a permutation α of the set Q such that for every $x \in Q$, a_1^{n-2} , $b_1^{n-2} \in Q$ the following conjunction of equalities holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = \alpha(x) \wedge A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = \alpha(x).$$ **Proof.** Let k_1^{n-2} be an arbitrary **choosen** sequence over the set Q. Then, α , where $$\alpha(x) \stackrel{def}{=} A(x, \alpha(k_1^{n-2}), k_1^{n-2})$$ for every $x \in Q$, is a permutation of the set Q, since (Q, A) is an n-quasigroup. Hence, by the Definition 3.1, we conclude that the proposition holds. \square An immediate consequence of Proposition 3.3 and Proposition 3.6 is the following proposition: **3.7. Proposition:** Let (Q, A) be an n-group, α its central operation, α a permutation of the set Q such that for every $x, a_1^{n-2} \in Q$ the equality $$A(\boldsymbol{\alpha}(a_1^{n-2}),a_1^{n-2},x)=\alpha(x)$$ holds, and $n \in \mathbb{N} \setminus \{1\}$. Then for every $i \in \{1, ..., n\}$ and for every $x_1^n \in Q$ the following equality holds $$\alpha A(x_1^n) = A(x_1^{i-1}, \alpha(x_i), x_{i+1}^n). \quad \Box$$ A consequence of Proposition 3.6 and of Hosszú-Gluskin theorem is the following proposition: **3.8. Lemma:** Let $n \in \mathbb{N} \setminus \{1\}$, (Q, A) an n-group and $(Q, \{\cdot, \varphi, b\})$ an nHG-algebra associated to the n-group (Q, A) [:1.5.4]. Then: if α is a central operation of the n-group (Q, A), then there is exactly one constant $a \in Q$ such that for every sequence a_1^{n-2} over Q, the equality $$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_1^{n-2})=a$$ holds. **Proof.** Let c_1^{n-2} be an arbitrary [fixed] sequence over Q. Then, by Proposition 3.6, for every $x \in Q$ and for every sequence a_1^{n-2} over Q the equality $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(\alpha(c_1^{n-2}), c_1^{n-2}, x)$$ holds, from which, by Hosszú-Gluskin Theorem, we conclude that for every $x \in Q$ and for every sequence a_1^{n-2} over Q the equality $$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})\cdot b\cdot x=\alpha(c_1^{n-2})\cdot\varphi(c_1)\cdot\ldots\cdot\varphi^{n-2}(c_{n-2})\cdot b\cdot x$$ holds, i.e., $$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})=\alpha(c_1^{n-2})\cdot\varphi(c_1)\cdot\ldots\cdot\varphi^{n-2}(c_{n-2})$$ holds. Hence, since by the assumption, c_1^{n-2} is a fixed sequence over Q, by the convention that the constant $\alpha(c_1^{n-2}) \cdot \varphi(c_1) \cdot \ldots \cdot
\varphi^{n-2}(c_{n-2})$ is denoted by a, we conclude that for every sequence a_1^{n-2} over Q the following equality holds $$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})=a.$$ - **3.9. Proposition:** Let $n \in \mathbb{N} \setminus \{1,2\}$, (Q,A) an n-group, $(Q,\{\cdot,\varphi,b\})$ its associated nHG-algebra and $^{-1}$ the inversing operation in the group (Q,\cdot) . Then: if - a) α is a central operation of the n-group (Q, A); and - b) α is a permutation of the set Q such that for every $x \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $$\alpha(x) = A(\alpha(a_1^{n-2}), a_1^{n-2}, x),$$ then there is exactly one constant $a \in Q$ such that for every $x \in Q$ and for every sequence a_1^{n-2} over Q the following equalities hold - (1) $\alpha(a_1^{n-2}) = a \cdot (\varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1};$ - (2) $\alpha(x) = (a \cdot b) \cdot x;$ - (3) $\varphi(a) = a \text{ and }$ - $(4) (a \cdot b) \cdot x = x \cdot (a \cdot b).$ **Proof.** 1) Since (Q, \cdot) is a group and $^{-1}$ its inversing operation, by Lemma 3.8, we conclude that there is exactly one constant $a \in Q$ such that for every sequence a_1^{n-2} over Q the equality (1) holds. 2) By the assumption of the proposition, by Hosszú-Gluskin Theorem, we conclude that for every $x \in Q$ and for every sequence a_1^{n-2} over Q the equality $$\alpha(x) = \alpha(a_1^{n-2}) \cdot \varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}) \cdot b \cdot x$$ holds, and from there, by Lemma 3.8, we conclude that there is exactly one constant $a \in Q$ such that for every $x \in Q$ the equality (2) holds. 3) Considering the definition 3.1, Hosszú-Gluskin Theorem and by the fact $\varphi \in Aut(Q,\cdot)$, we conclude that for every $x \in Q, a_1^{n-2}, b_1^{n-2} \in Q$, the equality $$\alpha(a_1^{n-2})\cdot\varphi(a_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2})\cdot b\cdot x=x\cdot\varphi(\alpha(b_1^{n-2})\cdot\varphi(b_1)\cdot\ldots\cdot\varphi^{n-2}(a_{n-2}))\cdot b$$ holds, and from there, by Lemma 3.8, we conclude that there is exactly one constant $a \in Q$ such that for every $x \in Q$ the equality $$a \cdot b \cdot x = x \cdot \varphi(a) \cdot b$$ holds, i.e., $$\varphi(a) = a$$, and then that for every $x \in Q$ the equality (4) holds. \square One could check that the following proposition holds: **3.10. Proposition:** Let $n \in \mathbb{N} \setminus \{1, 2\}$, (Q, A) an n-group, $(Q, \{\cdot, \varphi, b\})$ its associated nHG-algebra and $^{-1}$ the inversing operation in the group (Q, \cdot) . Let also a be a fixed element of the set Q such that $$\varphi(a) = a$$ and $$(a \cdot b) \cdot x = x \cdot (a \cdot b)$$ for every $x \in Q$. Then: if for every $x \in Q$, $a_1^{n-2} \in Q$ we have that $$\alpha(a_1^{n-2}) \stackrel{def}{=} a \cdot (\varphi(a_1) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1} \text{ and}$$ $$\alpha(x) \stackrel{def}{=} a \cdot b \cdot x,$$ then α is a central operation of the n-group (Q, A) and α is a permutation of the set Q such that for every $x \in Q$, $a_1^{n-2}, b_1^{n-2} \in Q$, the following equalities hold $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = \alpha(x)$$ and $A(x, \alpha(b_1^{n-2}), b_1^{n-2}) = \alpha(x)$. **3.11. Remark:** A direct consequence of Proposition 3.4 is the following proposition. Let $n \geq 3$, let (Q, A) be an n-group and let α be an (n-2)-ary operation in the set Q, If for every $x \in Q$, a_1^{n-2} , $b_1^{n-2} \in Q$, the following equality holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, \alpha(b_1^{n-2}), b_1^{n-2}),$$ then for every $x \in Q$, every sequence a_1^{n-2} over Q and every sequence b_1^{n-2} over Q there holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x) = A(x, b_1^{n-2}, \alpha(b_1^{n-2})).$$ However, the converse does not hold. For example: Let ($\{1, 2, 3, 4\}$,) be the Klein's group (Tab.1) and $^{-1}$ the corresponding inversing operation. Further on, let φ be the permutation of the set $\{1, 2, 3, 4\}$ defined in the following way $$\varphi \stackrel{def}{=} \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array} \right).$$ In addition, let $$A(x_1^3) \stackrel{def}{=} x_1 \cdot \varphi(x_2) \cdot x_3 \cdot 2$$ and $\alpha(c) \stackrel{def}{=} 3 \cdot (\varphi(c))^{-1}$. Then: (i) $(\{1,2,3,4\}, \{\cdot, \varphi, 2\})$ is a 3HG-algebra associated to the 3-group $(\{1,2,3,4\},A)$; and (ii) for every $x \in \{1,2,3,4\}$ and for every $c \in \{1,2,3,4\}$ the following equalities hold ## 4. A description of ω -NetSAAnQ **4.1. Theorem:** Let ω be an arbitrary mapping from the set Ω . Let also (Q, Σ) be an ω -NetSAAnQ, $n \geq 2$, A an arbitrary operation from Σ and f_A the inversing operation in the n-group (Q, A). Then, for every $B \in \Sigma$ there is exactly one central operation α of (Q, A) such that for each $x_1^n, a_1^{n-2} \in Q$ and for every sequence a_1^{n-2} over Q the following equalities hold $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) \text{ and }$$ $$f_A(a_1^{n-2}, \alpha(a_1^{n-2})) = \alpha(a_1^{n-2}).$$ **Proof.** Let A and B be **arbitrary** operations from Σ . By Proposition 2.2.3, (Q, A) and (Q, B) are n-groups. By Proposition 1.3.2, (Q, A) and (Q, B) have $\{1, n\}$ -neutral operations, denoted, respectively, by \mathbf{e}_A and \mathbf{e}_B . Let also the inversing operation in (Q, A) be denoted by f_A . 1) By Definition 2.3.3 and by Proposition 2.2.3, for every $x_1^{2n-1} \in Q$ the following equality holds $$B(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})),$$ hence, by the substitutions $x_{n+1}^{2n-1} = a_1^{n-2}$ and $x_{2n-1} = \mathbf{e}_B(a_1^{n-2})$, where a_1^{n-2} is an arbitrary sequence over Q, we conclude that for every $x_1^n, a_1^{n-2} \in Q$ the following equality holds (1) $$B(x_1^n) = A(x_1^{n-1}, A(x_n, a_1^{n-2}, e_B(a_1^{n-2}))).$$ 2) Since (Q, B) is an n-group, for every $x_1^{2n-1} \in Q$ the following equality holds $$B(B(x_1^n),x_{n+1}^{2n-1})=B(x_1,B(x_1^{n+1}),x_{n+2}^{2n-1}),$$ hence, by the statement concerning (1), we conclude that for every x_1^{2n-1} , a_1^{n-2} , $b_1^{n-2} \in Q$, the following equality holds $$A(A(x_1^{n-1},A(x_n,a_1^{n-2},\mathbf{e}_B(a_1^{n-2}))),x_{n+1}^{2n-2},A(x_{2n-1},a_1^{n-2},\mathbf{e}_B(a_1^{n-2})))=$$ $$A(x_1, A(x_2^n, A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2}))), x_{n+2}^{2n-2}, A(x_{2n-1}, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))),$$ that is, since (Q, A) is an n-semigroup, also the following equality holds $$A(x_1,A(x_2^n,A(a_1^{n-2},\mathbf{e}_B(a_1^{n-2}),x_{n+1})),x_{n+2}^{2n-2},A(x_{2n-1},a_1^{n-2},\mathbf{e}_B(a_1^{n-2})))=$$ $$A(x_1, A(x_2^n, A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2}))), x_{n+2}^{2n-2}, A(x_{2n-1}, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))).$$ Hence, since (Q, A) is an n-quasigroup, we conclude that for every $x_{n+1} \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equalty holds $$A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}), x_{n+1}) = A(x_{n+1}, b_1^{n-2}, \mathbf{e}_B(b_1^{n-2})),$$ hence by Proposition 3.4, we conclude that e_B is a central operation of the n-group (Q, A). 3) Starting with the statement concerning (1), with the substitutions $x_2^{n-1} = a_1^{n-2}$, $x_1 = e_B(a_1^{n-2})$ and $x_n = x$, we conclude that for every $x \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $$x = A(\mathbf{e}_B(a_1^{n-2}), a_1^{n-2}, A(x, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))),$$ hence, by Proposition 1.4.1, we conclude that for every $x, a_1^{n-2} \in Q$ the following equality holds $$A(f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})), a_1^{n-2}, x) = A(x, a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})).$$ Hence, by the substitution $x = \mathbf{e}_A(a_1^{n-2})$, we conclude that for every sequence a_1^{n-2} over Q the following equality holds $$f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})) = \mathbf{e}_B(a_1^{n-2}).$$ 4) By the assumption that for every $x_1^n \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $$A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) = A(x_1^{n-1}, A(\hat{\alpha}(a_1^{n-2}), a_1^{n-2}, x_n),$$ and since (Q, A) is an *n*-quasigroup, we conclude that $\alpha = \hat{\alpha}$. \square **4.2. Theorem:** Let (Q, A) be an n-group, f_A its inversing operation, $n \geq 2$ and let (Q, A) has at least twoelement set of central operation C_A such that for every $\alpha \in C_A$ the following formula holds (1) $$(\forall a_i \in Q)_1^{n-2} f_A(a_1^{n-2}, \alpha(a_1^{n-2})) = \alpha(a_1^{n-2}).$$ Let also $\hat{\mathbf{C}}_A$ be at least twoelement subset of the set \mathbf{C}_A and let (2) $$B \in \Sigma \stackrel{def}{\Leftrightarrow} (\exists \alpha \in \hat{\mathbf{C}}_A) (\forall a_i \in Q)_1^{n-2} (\forall x_i \in Q)_1^n B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$ Then, (Q, Σ) is an ω -NetSAAnQ for every $\omega \in \Omega$. **Proof.** 1) Let B be an **arbitrary** operation from Σ and α its corresponding operation from $\hat{\mathbf{C}}_A$. Then, by Proposition 3.6, there is a permutation α of the set Q such that for every $x_1^n \in Q$ the following equality holds (a) $$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n)),$$ hence immediately we conclude that (Q, B) is an n-quasigroup. Further, starting with the statement concerning (a), by Proposition 3.7, we conclude that for every $x_1^{2n-1} \in Q$, the following sequence of equalities holds $$B(B(x_1^n), x_{n+1}^{2n-1}) = \alpha A(A(x_1^{n-1}, \alpha(x_n)), x_{n+1}^{2n-1})$$ $$= \alpha A(x_1, A(x_2^{n-1}, \alpha(x_n), x_{n+1}), x_{n+2}^{2n-1})$$ $$= B(x_1, B(x_2^{n+1}), x_{n+2}^{2n-1}),$$ i.e. $$B(B(x_1^n), x_{n+1}^{2n-1}) = B(x_1, B(x_2^{n+1}), x_{n+2}^{2n-1}).$$ Hence, since (Q, B) is an n-quasigroup, by Proposition 1.2.3, we conclude that (Q, B) is an n-group. 2) A consequence of the condition (1)
is the following statement $$(b) \qquad (\forall x \in Q)\alpha(\alpha(x)) = x.$$ Further, starting with the statement concerning (a) and the statement (b), by Proposition 3.7, we conclude that for every $x_1^{2n-1} \in Q$ the following equality holds $$B(B(x_1^n), x_{n+1}^{2n-1}) = A(A(x_1^n), x_{n+1}^{2n-1}).$$ Hence, since B is an arbitrary operation from Σ and since (Q, B) is an n-group, we conclude that for **every substitution** of variables x_1, \ldots, x_{2n-1} with elements from Q and for **every substitution** of operational symbols $X_{\omega(1)}, \ldots, X_{\omega(n)}$, by operations from Σ the following conjunction of equalities holds $$\bigwedge_{i=2}^{n} X_1(X_1(x_1^n), x_{n+1}^{2n-1}) = X_{\omega(i)}(x_1^{i-1}, X_{\omega(i)}(x_i^{i+n-1}), x_{i+n}^{2n-1}).$$ Hence, by the assumption $|\hat{\mathbf{C}}_A| \geq 2$, we conclude that (Q, Σ) is an ω -NetSAAnQ for every $\omega \in \Omega$. By Theorem 4.1 and by Theorem 4.2, we conclude that the following proposition holds: - **4.3. Proposition:** For every $\omega \in \Omega$ and for every $\bar{\omega} \in \Omega$ the following statement holds: (Q, Σ) is an ω -NetSAAnQ $[n \geq 2]$ iff (Q, Σ) is an $\bar{\omega}$ -NetSAAnQ. - **4.4. Proposition:** For every $\omega \in \Omega$ and for every $\hat{S} \subseteq \{2, ..., n\}$ the following statement holds: If (Q, Σ) is an ω -NetSAAnQ then (Q, Σ) is an \hat{S} -NetSAAnQ. - **Proof.** 1) Let (Q, Σ) be an ω -NetSAAnQ and $n \geq 2$. Let also A, B, C be arbitrary operations from Σ . Then, by Theorem 4.1, there are central operations α and β of the n-group (Q, A) such that for every $x_1^n, a_1^{n-2} \in Q$ the following equalites hold (1) $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n))$$ and (2) $$C(x_1^n) = A(x_1^{n-1}, A(\beta(a_1^{n-2}), a_1^{n-2}, x_n)).$$ Starting with the statement concernig (1) and (2) and by Proposition 3.6, we conclude that there are permutations α and β of the set Q such that for every $x_1^n \in Q$ the following equalities hold $$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n))$$ and $$C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$$ hence, by Proposition 3.7, we conclude that for every $x_1^{2n-1} \in Q$ the following equality holds (3) $$B(C(x_1^n), x_{n+1}^{2n-1}) = \alpha(\beta(A(A(x_1^n), x_{n+1}^{2n-1}))).$$ 2) The consequence of the Proposition 3.5 and Proposition 3.6 is the following statement (4) $$(\forall x \in Q)\alpha(\beta(x)) = \beta(\alpha(x)).$$ [Sketch of the proof: $\alpha(\beta(x)) = A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(x)) = A(\alpha(a_1^{n-2}), a_1^{n-2}, A(\beta(a_1^{n-2}), a_1^{n-2}, x)) = A(A(\alpha(a_1^{n-2}), a_1^{n-2}, \beta(a_1^{n-2})), a_1^{n-2}, x) = A(A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})), a_1^{n-2}, x) = A(A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(a_1^{n-2})), a_1^{n-2}, x) = A(\beta(a_1^{n-2}), a_1^{n-2}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x)) = A(\beta(a_1^{n-2}), a_1^{n-2}, \alpha(x)) = \beta(\alpha(x)).$ Finally, starting with the statement concerning (3) and (4), since (Q, A) is an n-group, we conclude that for every $i \in \{2, \ldots, n\}$ and for every $x_1^{2n-1} \in Q$ the following equalities hold $$B(C(x_1^n), x_{n+1}^{2n-1}) = B(x_1^{i-1}, C(x_i^{i+n-1}), x_{i+n}^{2n-1}) =$$ $$=C(x_1^{i-1},B(x_i^{i+n-1}),x_{i+n}^{2n-1}).$$ Thus, we have proved that (Q, Σ) is an \hat{S} -NetSAAnQ for every $\hat{S} \in \{2, \dots, n\}$. By Theorem 4.1, Proposition 3.6 and Proposition 3.7, we conclude that also the following proposition holds: **4.5. Proposition:** Let (Q, Σ) be an ω -NetSAAnQ, A and B **arbitrary** operations from Σ , let α be a central operation of (Q, A) and α be an permutation of the set Q such that for every $x_1^n \in Q$, every $x \in Q$ and every sequence a_1^{n-2} over Q the following equalities hold $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)) \text{ and}$$ $$\alpha(x) = A(\alpha(a_1^{n-2}), a_1^{n-2}, x).$$ Let also n = 2m and $m \in \mathbb{N}$. Then α is an isomorphism from the n-group (Q, B) onto the n-group (Q, A). ## 5. Description of Ø-NetSAAnQ **5.1. Theorem:** Let (Q, Σ) be an \emptyset -NetSAAnQ, $n \geq 2$ and A an arbitrary operation from Σ . Then, for every $B \in \Sigma$ there is exactly one central operation α of the n-group (Q, A) such that for every $x_1^n, a_1^{n-2} \in Q$ the following equality holds $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$ **Proof.** Let A and B be two arbitrary operations from Σ . By Proposition 1.3.4, (Q, A) and (Q, B) have $\{1, n\}$ -neutral operations, which will be denoted, respectively, with \mathbf{e}_A and \mathbf{e}_B . Let also the inversing operation in the n-group (Q, A) be denoted by f_A . 1) By Definition 2.3.4, since this is the case when $\hat{S} = \emptyset$, for every $x_1^{2n-1} \in Q$ the following equality holds $$A(B(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{n-1}, B(x_n^{2n-1})),$$ hence, by the substitutions $x_{n+1}^{2n-2} = a_1^{n-2}$ and $x_{2n-1} = \mathbf{e}_A(a_1^{n-2})$, where a_1^{n-2} is an arbitrary sequence over Q, we conclude that for every $x_1^n, a_1^{n-2} \in Q$ the following equality holds (1) $$B(x_1^n) = A(x_1^{n-1}, B(x_n, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))).$$ Starting with the statement connected with (1), by the substitutions $x_2^{n-1} = a_1^{n-2}$ and $x_1 = \mathbf{e}_B(a_1^{n-2})$, the following equality holds $$x_n = A(\mathbf{e}_B(a_1^{n-2}), a_1^{n-2}, B(x_n, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))),$$ hence, by Proposition 1.4.1, we conclude that for every $x_n, a_1^{n-2} \in Q$ the following equality holds (2) $$B(x_n, a_1^{n-2}, e_A(a_1^{n-2})) = A(f_A(a_1^{n-2}, e_B(a_1^{n-2})), a_1^{n-2}, x_n).$$ Further, by the statements connected with (1) and (2), we conclude that for every $x_1^n, a_1^{n-2} \in Q$, the following equality holds (3) $$B(x_1^n) = A(x_1^{n-1}, A(f_A(a_1^{n-2}, e_B(a_1^{n-2})), a_1^{n-2}, x_n)).$$ 2) Let (4) $$\alpha(a_1^{n-2}) \stackrel{\text{def}}{=} f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2}))$$ for every sequence a_1^{n-2} over Q. [By the substitutions (4), the formula (3) reduces to $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).]$$ In the following we prove that α is a central operation of the n-group (Q, A). By Definition 2.3.4, since this is the case $\hat{S} = \emptyset$, for every $x_1^{2n-1} \in Q$ the following equality holds $$A(x_1^{n-2}, B(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, B(x_n^{2n-1})),$$ hence, by the statements connected with (3) and (4), we conclude that for every $x_1^{2n-1} \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$A(x_1^{n-2},A(x_{n-1}^{2n-3},A(\alpha(a_1^{n-2}),a_1^{n-2},x_{2n-2})),x_{2n-1})=$$ $$A(x_1^{n-1}, A(x_n^{2n-2}, A(\alpha(b_1^{n-2}), b_1^{n-2}, x_{2n-1})),$$ i.e., since (Q, A) is an n-semigroup, the following equality also holds $$A(x_1^{n-2}, A(x_{n-1}^{2n-3}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_{2n-2})), x_{2n-1}) =$$ $$A(x_1^{n-2},A(x_{n-1}^{2n-3},A(x_{2n-2},\alpha(b_1^{n-2}),b_1^{n-2})),x_{2n-1}).$$ Hence, since (Q, A) is an n-quasigroup, we conclude that $x_{2n-2} \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$A(\alpha(a_1^{n-2}), a_1^{n-2}, x_{2n-2}) = A(x_{2n-2}, \alpha(b_1^{n-2}), b_1^{n-2}),$$ hence, by Definition 3.1, we conclude that α is a central operation of the n-group (Q, A). 3) α is uniquely determined by B: part 4) of the proof of Theorem 4.1. **5.2. Theorem:** Let (Q, A) be an n-group, $n \geq 2$ and let (Q, A) has at least two central operations. Let also \mathbb{C}_A be at least two element subset of the set of all central operations of the n-group (Q, A), and $$B \in \Sigma^{def} \quad (\exists \alpha \in \mathbf{C}_A)(\forall a_i \in Q)_1^{n-2}(\forall x_i \in Q)_1^n B(x_1^n) =$$ $$= A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n)).$$ Then, (Q, Σ) is an \emptyset -NetSAAnQ. **Proof.** 1) Let B and C be arbitrary operations from Σ . Let also α and β be central operations of the n-group (Q, A) from \mathbf{C}_A such that for every sequence a_1^{n-2} over Q, the following equalities hold $$B(x_1^n) = A(x_1^{n-1}, A(\alpha(a_1^{n-2}), a_1^{n-2}, x_n))$$ and $C(x_1^n) = A(x_1^{n-1}, A(\beta(a_1^{n-2}), a_1^{n-2}, x_n)).$ Then, by Proposition 3.6, there are permutations α and β of the set Q such that for every $x_1^n \in Q$ the following equalities hold (1) $$B(x_1^n) = A(x_1^{n-1}, \alpha(x_n))$$ and (2) $C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$ (2) $$C(x_1^n) = A(x_1^{n-1}, \beta(x_n)),$$ hence immediately we conclude that (Q, B) and (Q, C) are n-quasigroups. 2) Starting with the Propositions connected with (1) and (2), by Proposition 3.7 and by assumption that (Q, A) is an n-group, we conclude that for every $i \in \{2, ..., n\}$ and for every $x_1^n \in Q$ the following sequence of equalities holds $$\begin{split} &B(C(x_1^n),x_{n+1}^{2n-1}) = A(A(x_1^{n-1},\beta(x_n)),x_{n+1}^{2n-2},\alpha(x_{2n-1})) = \\ &\alpha A(\beta A(x_1^n),x_{n+1}^{2n-1}) = \alpha(\beta A(A(x_1^n),x_{n+1}^{2n-1})) = \\ &\alpha(\beta A(x_1^{i-1},A(x_i^{i+n-1}),x_{n+1}^{2n-1})) = \alpha A(x_1^{i-1},\beta A(x_i^{i+n-1}),x_{n+1}^{2n-1}) = \\ &B(x_1^{i-1},C(x_i^{i+n-1}),x_{n+1}^{2n-1}), \end{split}$$ i.e., the equality $$B(C(x_1^n),x_{n+1}^{2n-1})=B(x_1^{i-1},C(x_i^{i+n-1}),x_{n+1}^{2n-1}),\\$$ also holds. \square For α and β from the proof of Theorem 5.2 the following statement holds: $$(\forall x \in Q)\alpha(\beta(x)) = \beta(\alpha(x)).$$ Starting with Theorem 5.1, by the above statement and by the proof of Theorem 5.2, we conclude that the following proposition holds: **5.3. Proposition:** If (Q, Σ) is an \emptyset -NetSAAnQ, $n \geq 2$, then (Q, Σ) is also an
\hat{S} -NetSAAnQ for every $\hat{S} \subseteq \{2, ..., n\}$. By Theorem 5.1, Proposition 3.6 and Proposition 3.7, we conclude that the following proposition holds: **5.4. Proposition:** If (Q, Σ) is an \emptyset -NetSAAnQ, $n \ge 2$, then for every $A, B \in$ Σ there is a permutation α of the set Q such that for every $x_1^n \in Q$ the following equality holds $$\alpha^{n-1}B(x_1^n) = A(\alpha(x_1), \dots, \alpha(x_n)).$$ # 6. A description of \hat{S} -NetSAAnQ **6.1. Theorem:** Let $n \in \mathbb{N} \setminus \{1, 2\}$, $\hat{S} \subseteq \{2, ..., n\}$ and $\hat{S} \neq \emptyset$. Then, the following statement holds: if (Q, Σ) is an \hat{S} -NetSAAnQ, then (Q, Σ) is an \emptyset -NetSAAnQ. **Proof.** Let A and B be two **arbitrary** operations from Σ . By Proposition 2.2.3, (Q, A) and (Q, B) are n-groups. By Proposition 1.3.2, (Q, A) and (Q, B) have $\{1, n\}$ -neutral operations, denoted, respectively, by \mathbf{e}_A and \mathbf{e}_B . Let also the inversing operation in (Q, A) be denoted by f_A , and the inversing operation in (Q, B) be denoted by f_B . 1) By Definition 2.3.4, since $\hat{S} \neq \emptyset$, we conclude that there is an $i \in \{1, \ldots, n-1\}$ such that for every $x_1^{2n-1} \in Q$ the following equality holds (1) $$A(x_1^{i-1}, B(x_i^{i+n-1}), x_{i+n}^{2n-1}) = B(x_1^i, A(x_{i+1}^{i+n}), x_{i+n+1}^{2n-1}).$$ Starting with the statements connected with (1), with the substitutions $x_{i+1}^{i+n-2}=a_1^{n-2}$ and $x_{i+n-1}=\mathbf{e}_A(a_1^{n-2})$, where a_1^{n-2} is an arbitrary sequence over Q^2 , we conclude that for every $x_1^i, a_1^{n-2}, x_{i+n}^{2n-1} \in Q$ the following equality holds $$A(x_1^{i-1}, B(x_i, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2})), x_{i+n}^{2n-1}) = B(x_1^i, x_{i+n}^{2n-1}),$$ whence, since for every $a_1^{n-2}, u, x_i \in Q$ the equivalence $$B(x_i, a_1^{n-2}, \mathbf{e}_A(a_1^{n-2})) = u \Leftrightarrow x_i = B(u, a_1^{n-2}, f_B(a_1^{n-2}, \mathbf{e}_A(a_1^{n-2}))),$$ we conclude that for every $y_1^n, a_1^{n-2} \in Q$ also the following equality holds (a) $$A(y_1^n) = B(y_1^{i-1}, B(y_i, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_{i+1}^n),$$ where (b) $$\alpha_B(a_1^{n-2}) \stackrel{def}{=} f_B(a_1^{n-2}, e_A(a_1^{n-2})).$$ Similarly, if we put in (1) $x_{i+2}^{i+n-1} = a_1^{n-2}$ and $x_{i+1} = \mathbf{e}_B(a_1^{n-2})$, we conclude that for every $y_1^n, a_1^{n-2} \in Q$ the equality $$(\bar{a}) B(y_1^n) = A(y_1^i, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}), y_{i+2}^n),$$ holds, where $$(\bar{b})$$ $\alpha_A(a_1^{n-2}) \stackrel{def}{=} f_A(a_1^{n-2}, \mathbf{e}_B(a_1^{n-2})).$ 2) Since $n \geq 3$ and since the present \hat{S} -NetSAAnQ satisfy the condition $\hat{S} \neq \emptyset$, arbitrary $A, B \in \Sigma$ satisfy not only the statement connected with (1), but also at least one of the following statements a_1^{n-2} is not an empty sequence, since $n \ge 3$. I: There is an $j \in \{1, \dots, n-1\}$, satisfying the condition $j \leq i-1$ or $j \geq i+2$, such that for every $x_1^{2n-1} \in Q$ the following holds (2) $$A(x_1^{j-1}, B(x_j^{j+n-1}), x_{j+n}^{2n-1}) = A(x_1^j, B(x_{j+1}^{j+n}), x_{j+n+1}^{2n-1});$$ II: There is an $j \in \{1, \ldots, n-1\}$, satisfying the condition $j \leq i-2$ or $j \geq i+1$, such that for every $x_1^{2n-1} \in Q$ the following holds (3) $$B(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}) = B(x_1^j, A(x_{j+1}^{j+n}), x_{j+n+1}^{2n-1});$$ and III: For every $x_1^{2n-1} \in Q$ the following equalities hold (1₁) $$A(B(x_1^n), x_{n+1}^{2n-1}) = B(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1})$$ and (4) $$B(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}) = A(x_1^2, B(x_3^{n+2}), x_{n+3}^{2n-1})$$ 3) In the following we prove that for an arbitrary $C \in \Sigma$, for every $D \in \Sigma$ there is a central operation α_C of the *n*-group (Q, C) such that for every $x_1^n \in Q$ and for every sequence a_1^{n-2} over Q the equality $$D(x_1^n) = C(x_1^{n-1}, C(\alpha_C(a_1^{n-2}), a_1^{n-2}, x_n))^{3)}$$ holds, whence, since (Q, Σ) is an NetSAAnQ, by Theorem 5.2, it follows that (Q, Σ) is an \emptyset -NetSAAnQ. Case I: Let the statement I holds together with the statement concerning (1). Starting with the statement with (2), (\bar{a}) and (\bar{b}) , by the substitution $x_j^{j+n-1}=y_1^n$, we conclude that for every $x_1^{i-1},y_1^n,x_{j+n}^{2n-1}\in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$\begin{split} &A(x_1^{j-1},A(y_1^i,A(\alpha_A(a_1^{n-2}),a_1^{n-2},y_{i+1}),y_{i+2}^n),x_{j+n}^{2n-1}) = \\ &A(x_1^{j-1},y_1,A(y_2^{i+1},A(\alpha_A(b_1^{n-2}),b_1^{n-2},y_{i+2}),y_{i+3}^n,x_{j+n}),x_{j+n+1}^{2n-1}), \end{split}$$ i.e., since (Q, A) is an n-semigroup, also the following equality holds $$A(x_1^{j-1}, A(y_1^i, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}), y_{i+2}^n), x_{j+n}^{2n-1}) = A(x_1^{j-1}, A(y_1^i, A(y_{i+1}, \alpha_A(b_1^{n-2}), b_1^{n-2}), y_{i+2}^n), x_{i+n}^{2n-1}),$$ hence, since (Q, A) is an n-quasigroup, we conclude that for every $y_{i+1} \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_{i+1}) = A(y_{i+1}, \alpha_A(b_1^{n-2}), b_1^{n-2}).$$ Hence, by Definition 3.1, we conclude that α_A is a central operation of the n-group (Q, A). Thus, starting with statements connected with (\bar{a}) and (\bar{b}) , ³⁾ In the case I C = A and D = B, and in the cases II and III C = B and D = A. by Proposition 3.3, we conclude that for every $y_1^n \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $$B(y_1^n) = A(y_1^{n-1}, A(\alpha_A(a_1^{n-2}), a_1^{n-2}, y_n)).$$ Case II: Let the statement II holds together with the statement connected with (1). Starting with the statements concernig (3), (a) and (b), by the substitution $x_j^{j+n-1} = y_1^n$, similarly to the case I [using Proposition 3.4 instead of Definition 3.1], we conclude that α_B is a central operation of the n-group (Q, B) and that for every $y_1^n \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $$A(y_1^n) = B(y_1^{n-1}, B(\alpha_B(a_1^{n-2}), a_1^{n-2}, y_n)).$$ Case III: Let III holds. The equality (1_1) is the equality (1) for i = 1. Also [for i = 1], te statement connected with (a) reduces to the following statement: for every $y_1^n, a_1^{n-2} \in Q$ the following equality holds (a₁) $$A(y_1^n) = B(B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_2^n)$$ $$[= B(B(y_1, b_1^{n-2}, \alpha_B(b_1^{n-2})), y_2^n)].$$ Starting with the statements concerning (4), (a_1) and (b), by the substitution $x_2^{n+1} = y_1^n$, we conclude that for every $x_1, y_1^n, x_{n+2}^{2n-1} \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$B(x_1, B(B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), y_2^n), x_{n+2}^{2n-2}) =$$ $$B(B(x_1, b_1^{n-2}, \alpha_B(b_1^{n-2})), y_1, B(y_2^n, x_{n+2}), x_{n+3}^{2n-1}),$$ i.e., since (Q, B) is an n-semigroup, the following equality also holds $$B(x_1, B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})), B(y_2^n, x_{n+2}), x_{n+3}^{2n-1})$$ $B(x_1, B(b_1^{n-2}, \alpha_B(b_1^{n-2}), y_1), B(y_2^n, x_{n+2}), x_{n+3}^{2n-1}),$ whence, since (Q, B) is an n-quasigroup, we conclude that for every $y_1 \in Q$, for every sequence a_1^{n-2} over Q and for every sequence b_1^{n-2} over Q the following equality holds $$B(y_1, a_1^{n-2}, \alpha_B(a_1^{n-2})) = B(b_1^{n-2}, \alpha_B(b_1^{n-2}), y_1).$$ Hence, by Proposition 3.4, we conclude that α_B is a cental operation of the n-group (Q, B). Thus, starting with the statements connected with (a_1) and (b), by Proposition 3.3, for every $y_1^n \in Q$ and for every sequence a_1^{n-2} over Q, the following equality holds $$A(y_1^n) = B(y_1^{n-1}, B(\alpha_B(a_1^{n-2}), a_1^{n-2}, y_n)).$$ ### 7. A description NetSAAnQ - **7.1. Theorem:** Let (Q, Σ) be an ω -NetSAAnQ and $n \geq 3$. Let also A be an arbitrary operation from Σ and $(Q, \{\cdot, \varphi, b\})$ an nHG-algebra associated to the n-group (Q, A). Then, for every $B \in \Sigma$ there is exactly one $a \in Q$ such that for every $x, x_1^n \in Q$ the following equalities hold: - (a) $B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n;$ - (b) $(a \cdot b) \cdot x = x \cdot (a \cdot b);$ - (c) $\varphi(a) = a \text{ and }$ - $(a \cdot b) \cdot (a \cdot b) = e,$ where e is a neutral element of the group (Q, \cdot) . The sketch of the proof: 1) $$B(x_{1}^{n}) = A(x_{1}^{n-1}, A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, x_{n}))$$ $$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, x_{n})$$ $$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot \alpha(a_{1}^{n-2}) \cdot \varphi(a_{1}) \cdot \ldots$$ $$\varphi^{n-2}(a_{n-2}) \cdot b \cdot x_{n}$$ $$= x_{1} \cdot \varphi(x_{2}) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_{n}$$ $$[:4.1, 1.5.2, 3.9].$$ 2) $$(\forall x \in Q)(a \cdot b) \cdot x = x \cdot (a \cdot b) [:4.1, 3.9].$$ 3) $$\varphi(a) = a [:4.1, 3.9].$$ 4) $$f_{A}(a_{1}^{n-2}, \alpha(a_{1}^{n-2})) = \alpha(a_{1}^{n-2}) \Leftrightarrow$$ $$e_{A}(a_{1}^{n-2}) = A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, \alpha(a_{1}^{n-2}));$$ $$e_{A}(a_{1}^{n-2}) = b^{-1} \cdot (\varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1};$$ $$A(\alpha(a_{1}^{n-2}), a_{1}^{n-2}, \alpha(a_{1}^{n-2})) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$ $$\alpha(a_{1}^{n-2}) \cdot \varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}) \cdot b \cdot \alpha(a_{1}^{n-2}) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$ $$a \cdot b \cdot \alpha(a_{1}^{n-2}) = e_{A}(a_{1}^{n-2}) \Leftrightarrow$$ $$a \cdot b \cdot a \cdot (\varphi(a_{1}) \cdot \ldots \cdot \varphi^{n-2}(a_{n-2}))^{-1} = b^{-1}(\varphi(a_{1}) \cdot \ldots
\cdot \varphi^{n-2}(a_{n-2}))^{-1} \Leftrightarrow$$ $$a \cdot b \cdot a = b^{-1} \Leftrightarrow$$ $$(a \cdot b) \cdot (a \cdot b) = e \Box$$ The statements 1)-3) from the sketch of the proof of Theorem 7.1 are valid also if 6.1, 5.1, 1.5.2, 3.9; 6.1, 5.1, 3.9 and 6.1, 5.1, 3.9 are used respectively instead of propositions listed in the brackets. Thereby, with the mentioned substitutions of used propositions 1)-3) is the sketch of the proof of the following proposition: - **7.2. Theorem:** Let (Q, Σ) be an \hat{S} -NetSAAnQ and $n \geq 3$. Let also A be an arbitraty operation from Σ and $(Q, \{\cdot, \varphi, b\})$ an nHG-algebra associated to the n-group (Q, A). Then, for every $B \in \Sigma$ there is exactly one $a \in Q$ such that for every $x, x_1^n \in Q$ the following equalities hold: - (a) $B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n;$ - (b) $(a \cdot b) \cdot x = x \cdot (a \cdot b)$ and - (c) $\varphi(a) = a$. \square By Proposition 3.10, Theorem 5.2 and Proposition 5.3, we conclude that the following proposition holds: **7.3.** Theorem: Let $n \geq 3$, let (Q, A) be an n-group, $(Q, \{\cdot, \varphi, b\})$ its associated nHG-algebra and let A be at least two element subset of the set Q, such that for every $a \in Q$ the following holds: $$a \in \mathcal{A} \stackrel{def}{\Leftrightarrow} \varphi(a) = a \land (\forall x \in Q)(a \cdot b) \cdot x = x \cdot (a \cdot b).$$ Let also Σ be the set of n-ary operations $(n \geq 3)$ in Q such that for every B $$B \in \Sigma \stackrel{def}{\Leftrightarrow} a \in \mathcal{A} \land (\forall x_i \in Q)_1^n B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n.$$ Then (Q, Σ) is an \hat{S} -NetSAAnQ for every $\hat{S} \subseteq \{2, \dots, n\}$. \square By Proposition 3.10, part 4) of the sketch of the proof of Theorem 7.1 and by Theorem 4.2, we conclude that the following proposition holds: **7.4.** Theorem: Let $n \geq 3$, let (Q, A) be an n-group, $(Q, \{\cdot, \varphi, b\})$ its associated nHG-algebra, e the neutral element of the group (Q, \cdot) and let A be at least two element subset of the set Q, such that for every $a \in Q$ the following holds: $$a \in \mathcal{A} \stackrel{def}{=} \varphi(a) = a \wedge (\forall x \in Q)((a \cdot b) \cdot x = x \cdot (a \cdot b) \wedge (a \cdot b) \cdot (a \cdot b) = e).$$ Let also Σ be the set of n-ary operations in Q such that for every B the following holds: $$B \in \Sigma \stackrel{def}{\Leftrightarrow} B(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-2}(x_{n-1}) \cdot b \cdot a \cdot b \cdot x_n \wedge a \in \mathcal{A}.$$ Then, (Q, Σ) is an ω -NetSAAnQ for every $\omega \in \Omega$. # 8. On a description of the case n=3 by Yu. M. Movsisyan Nontrivial super associative algebras with 3-quasigroup operations were described firstly by Yu. M. Movsisyan [: [9], p. 152-158]. In this section we compare one proposition of Yu. M. Movsisyan [: [9], p. 152, direction " \Rightarrow " of Theorem 2.2.37] with the corresponding proposition from 7 for n=3 [:Theorem 7.2 for n=3]. Therefore, we advance the following definition: - **8.1:** Let $(Q, \{\circ, \beta, r, s, t\})$ be an algebra, where \circ is a binary operation in Q, β is a permutation of the set Q, and r, s, t fixed elements of the set Q. Then we say that $(Q, \{\circ, \beta, r, s, t\})$ is a 3M-algebra iff the following statements hold: - (1) (Q, \circ) is a group; - (2) $\beta \in Aut(Q, \circ)$; - (3) $\beta(s \circ r) = r \circ s \circ t^{(-1)}$, where $^{(-1)}$ is the inversing operation in the group (Q, \circ) ; and - (4) $(\forall x \in Q)\beta^2(x) \circ (\beta(r^{(-1)}) \circ s) = (\beta(r^{(-1)}) \circ s) \circ x. \square$ Using Definition 8.1, Theorem of Movsisyan corresponding Theorem 7.2 for n=3 [: [9], p. 152, direction " \Rightarrow " of Theorem 2.2.37], can be formulated in the following way: - **8.2:** Let (Q, Σ) be an \hat{S} -NetSAAnQ and n=3. Then there is 3M-algebra $(Q, \{\circ, \beta, r, s, t\})$ such that the following statement holds: for every $B \in \Sigma$ there is exactly one $p \in Q$ such that for every $x, x_1^3 \in Q$ the following equalities are satisfied: - (a) $B(x_1^3) = x_1 \circ r \circ \beta(x_2) \circ s \circ p \circ x_3$ - (b) $p \circ x = x \circ p$ and - (c) $\beta(p) = t \circ p$. Using 2.3.5, Theorem 7.2 can be formulated in the similar way for n = 3: 8.3: Let (Q, Σ) be an \hat{S} -NetSAAnQ and n = 3. Then there is 3HG-algebra (Q, $\{x_0, h\}$) such that the following statement holds: for every $R \in \Sigma$ there is $(Q, \{\cdot, \varphi, b\})$ such that the following statement holds: for every $B \in \Sigma$ there is exactly one $a \in Q$ such that for every $x, x_1^3 \in Q$ the following equalities are satisfied: - $(\bar{a}) B(x_1^3) = x_1 \cdot \varphi(x_2) \cdot b \cdot a \cdot b \cdot x_3,$ - $(\bar{b}) (a \cdot b) \cdot x = x \cdot (a \cdot b)$ and - $(\bar{c}) \varphi(a) = a. \square$ By 8.2 and 8.3, using the statements connected with (a) and (\bar{a}) , respectively, from 8.2 and 8.3, we conclude that also the following proposition holds: **8.4.** Proposition: Let (Q, Σ) be an \hat{S} -NetSAAnQ and n=3. Let also $(Q, \{\circ, \beta, r, s, t\})$ and $(Q, \{\cdot, \varphi, b\})$ be a 3M- and 3HG-algebras, respectively, associated in the sense of 8.2 and 8.3 to the algebra (Q, Σ) . Then there is exactly one $k \in Q$ such that for every $x, y \in Q$ the following equality holds $$x \circ y = x \cdot k \cdot y.$$ Finally, by 1.5.3, 8.4, 1.5.5, 7.2, 8.3 and 8.2, we conclude that the following proposition holds: **8.5.** Proposition: Let (Q, Σ) be an \hat{S} -NetSAAnQ and n = 3. Let also $(Q, \{\circ, \beta, r, s, t\})$ be a 3M-algebra associated to the algebra (Q, Σ) in the sense of 8.2. Then, there is a 3HG-algebra $(Q, \{\cdot, \overset{\circ}{\varphi}, \overset{\circ}{b}\})$ such that the following statements holds: for every $B \in \Sigma$ there is exactly one $p \in Q$, and exactly one $\overset{\circ}{a} \in Q$ such that for every $x, x_1^3 \in Q$, together with (a)-(c) from 8.2, also the following equalities hold $$B(x_1^3) = x_1 \circ \mathring{\varphi}(x_2) \circ \mathring{b} \circ \mathring{a} \circ \mathring{b} \circ x_3,$$ $$(\mathring{a} \circ \mathring{b}) \circ x = x \circ (\mathring{a} \circ \mathring{b}), \varphi(\mathring{a}) = \mathring{a},$$ $$\mathring{b} \circ \mathring{a} \circ \mathring{b} = r \circ s \circ p \ and \mathring{\varphi}(x) = r \circ \beta(x) \circ r^{(-1)}.$$ #### 9. References - Dörnte W.: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19. - [2] Bruck, R. H.: A survey of binary systems, Springer-Verlag, Berlin-Heidelberg-Göttingen 1958. - [3] Hosszú, M.: On the explicit form of n-group operations, Publ. math., Debrecen (10) 1-4 (1963), 88-92. - [4] Gluskin, L. M.: Position operatives, Mat. sb. t. (68) (110) No3 (1965), 444-472.(In Russian.) - [5] Belousov, V. D.: Systems of quasigroups with generalized identities, Usp. mat. nauk 20, No 1, 1965, 75-146. (In Russian.) - [6] Szász, C.: Asupra axomelor care la baza definititei unui n-group, "Lucrări ştint. Inst. Politehn. Braşov. Fac. Mec." 7(1965), 43-47. (Ref. Zh. Mat. 12A, 1966, 258.) - [7] Sokolov, E. I.: On Gluskin-Hosszú theorem for Dörnte n-group, Math. issl. 39, "Stiinca", Kishinev 1976, 187-189. (In Russian.) - [8] Dudek W.A., Glazek K., Gleichgewicht B.: A note on the axioms of n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergrom (Hungary), 1977, 195-202. - [9] Movsisyan, Yu. M.: Introduction to the theory of algebras with hiperidentities, Izdat. Erevan Univ., Erevan, 1986. (In Russian.) - [10] Ušan, J.: Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18-2 (1988), 117-126. (In Russian.) - [11] Ušan, J.: A comment of n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24-1 (1994), 281-288. - [12] Ušan, J.: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-1 (1995), 101-119. - [13] Ušan, J.: On n-groups with $\{i, j\}$ -neutral operation for $\{i, j\} \neq \{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25-2 (1995), 167-178. - [14] Ušan J.: n-Groups, $n \geq 2$, as Varieties of Type (n, n-1, n-2), Algebra and Model Theory, Collection of papers edited by A.G. Pinus and K.N. Ponomaryov, Novosibirsk 1997, 182–208. - [15] Denecke K. and Wismath L.S.: Hyperidentities and clones, Goron and Breach Sci. Publ., Singapore 2000. - [16] Glazek K.: Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, Proc. of the Synposium "n-ary structures" (Skopje 1982), Macedonian Academy of Sciences and Arts, Skopje 1982, 253-289. Institute of Mathematics, University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia