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ON MONOTONE POLYNOMIAL
INTERPOLATION

Nicolae Todor

Abstract. An older demonstration of the existence of an interpola-
tory piecewise monotone function is revisited. A new strategy to decrease
the degree of interpolation polynomial is presented.

1. Introduction

Let, as in [4] P, be the set of polynomials of degree n, n > 1, P € P,
z € R, P(z) € R. Let the sequence of real numbers

(1) g <2y < - < Ty

and an arbitrary sequence of real numbers

(2) Y0, Y1s - - - » Un
with
(3) Yici F Y, 1=1,...,n.

The problem of piecewise interpolation [1-3,5] asks to find a polynomial
P € P,, which satisfy

(4) P(lz;)=vy, i=0,1,...,n
and
(5) P is monotone on [z;_1,2;], t=1,...,n.
Let a set of indexes {41,...,4,} € {1,...,n} so that the polynomial
(6) lz)=(z—zy)...(x — zi,)
satisfies
(7) Uz)(yi — yi—1) > 0, for z € (zi—1,2;) andi=1,...,n.

and has minimal degree.
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To solve the problem given-at (1)-(4), following the idea from [2], we
construct the polynomials

_ (x—-:z:i_l)(a;i——x)' .
(8) Li(z)=1+ (20— 2.)? it=1,...,n
A linear combination [2] of these polynomials at convenient powers con-
stitutes one of the solutions. Unfortunately the powers could be very high.
Decreasing the powers of the polynomials which verify (1)-(4) is a serious

practical challenge. We prove in the next sections that the polynomials

hi(z) =14+ (z — zi-1)(zs — ) X

1 i i1+ X xo+ T

9) (2 — o) (Zic1 — zp) 2 2
1 i Ti— + T; >.’I:0+:I:n

(%; ~ 20)(zi—1 — Z0) 2 - 2

are a better choice than (8). These polynomials can substitute the polynomials

li(z), i=1,...,n, in the proof and offer a solution with a power smaller than
in [2]. '

The next section follows the skeleton of proof from [2]. For the sake of
the presentation we take lemmas 1., 4., 5., 6. and theorem 1. almost identical
from [2] and we add the results concerning the use of hi(z), i =1,...,n.
Theorem 2. states that choosing A;(z), i = 1,...,n is a better practical
strategy. The third section gives a numerical example and the forth contains
a short dis¢ussion concerning algebras of functions presented in [2].

2. Main results

Lemma 1. [2] The polynomials l;(z), i =1,...,n satisfy:

(a) li(z) > 0, Vz € (g, 2], i=1,...,m;

(b) lLi(z) <1, Vz € [x0, zi-1] Uz, zn], i=1,...,7;

(c) there are intervals [a;, b} C [zi-1,2i], 2 = 1,...,n, and numbers
¢ >1, i=1,...,n, so that li(z) > ¢;, Yz € a;,bi}, 1=1,...,n.

Proof. [2] The proof is elementary. The polynomial (z — z;_1)(z; — x)
is positive on [z;_j, ;] hence (c) is true.

The inequalities [z — z;_1| < zn—z¢ and |z; — z| < T, —x0, T € [T, Tn),
imply

(& — 1) (2 — )] < (@n — 20)?, therefore (= i) (@i — )

(xn - "EO)z

<1,

ie., (a).
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Relation (b) is easy to prove because the second term of /;(z) from (8)
is negative and l;(z) > 0 on x € [zg, zi—1) U [zi,24), i = 1,...,7n.

Since l;(z;—1) = li(z;) = 1 and l;(z) > 1 for = € (z;—1, z;), property (c)
is obvious. '

An example of such a polynomial is presented in Figure 3 for lo(z) =

-2z -4
@) =2, z;=4, 10=0, zn=10.
100
i
0.8
0.6
0.4
0.2
2 4 6 8 10
—2)(z—4
Figure 3 la(z)=1-— %——)
Below we substitute the functions l;(z), i = 1,...,n with other more
adequate.
The resemblance between the functions I;(z) and h;(z), i=1,...,nis
evident. This functions satisfy also Lemma 1.
Lemma 2. For z € [zg,z,] and i = 1,...,n, the polynomials h;(x)
satisfy:
(a) hi(z) > 0,Vz € [xg,z,), i=1,...,n;
(b) hi(z) < 1,Vx € [zo, zi—1| U [zs5,24), ¢ =1,...,1;
(c) there is an interval a;, b;| C [z:-1, i) and a real number ¢; > 1 so
that hi(z) > ¢;, for z € [a;,b;] andi=1,...,n.
Proof. Almost the same with that from Lemma 1.
The polynomials h;(z), i =1,...,n vanish at least in z¢ or z,,. Figure

4 contains such a polynomial with the points as in Figure 3 i.e., ho(z) =
1 (z - 2)(z —4)

Figu%g 5 shows both graphic from figure 3 and 4. One remarks that
he(z) is under l3(z) on [zg, zn] — (zi—1,2:) = [0,10] — (2,4) = [0,2] U [4, 10]
and ho(z) is over lp(z) on (z;-1,z;) = (2,4).

We have following lemma.

Lemma 3. Forz € [zo,z,] and i =1,...,n, the polynomials l;(z) and
hi(z) satisfy:
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(a) li(z) < hi(z), Vz € [zi-1,24], i=1,...,m;
(b) lLi(z) > hi(z), Yz € [z, zi—1) U (zi,zp], fori=2,...,n—1 and
Vz € (21, Zn), for i =1 and Yz € [xg, Tp—1) fori=mn.
Ti—1 + Z; zg+ Zn
2 2
1 1
(s —~ Tn) (Ti1 — ZTn) B (zo — CL‘n)z .

Proof. There are two cases. First, for

hl(x) - lt(.’li) = (l‘ - .’L‘i_l) (iL‘i - :E) X

The factor from the right side is positive because

1 _ 1 N
(@i ~ @p) (Tic1 — Tn)  (Tn — T3) (Tn — Ti1)

1 S 1
(.’En - l'()) (xn - mi—-l) (-'I:n - xo)z -

>

Hence the sign of difference is the sign of (z — z;-1) (z; — z) and then
(a) and (b) is true.



On monotone polynomial interpolation 123

i1+ > o+ Tn

The second case when 5 > 5

implies
1 1
(zi — x0) (xie1 — T0) (zr, — x0)*
As before, the sign of difference is the sign of (z — z;—1) (z; — z) because
1 1 1
(@i — 20) (@1 — @)~ (Zn — 20) (%11~ 50) (2 — 20)°.
Lemma 4. [2] Fork=1,...,n

hi(z) — li(z) = (z — zi—1) (zi — z) X

zk
lim /l(m)l,’c"(x)d:c = 00.
m—o0

Tk-1

= mfk |1(z)| 17 (z)dx > 7: |l(z)|dz —

Th—1 Tr~1

Tk
Proof. [2] | [ l(z)iP(z)dz
Th-1
oo because ¢, > 1, k=1,...,n.

Corollary 3. Fork=1,...,n, the polynomials hi(z) satisfy Lemma 4.
Poof. By Lemma 3. the proof is obvious.
Lemma 5. [2] For i#k, i=1,...,n, k=1,...,n,

T @)y (@) de

lim 9’;;1 =0
m—00
J Uz)M(z)dz
Tho1

Proof. [2] Let’s take an arbitrary k. For k # ¢, by Lemma 1, therefore

? l(z)[M(z)dz| < 7 ()| I (z)dz < 7 |l(z)|dz. Since l(z) is con-

Ti—-1 Zi-1 Ti—1

z;
tinue [ |l(z)|dzx, is finite. By Lemma 4, the proof is completed.
Ti_1

Let without proof

Lemma 6. [2]| If the numbers ay, i=1,...,n, k=1,...,n, satisfy:
ark =1 fork=1,...,n, and

1
laik] < o if i # k, then exists positive real numbers vy, ... ,r, such

n
that Y rraix =1, 1=1,...,n.
k=1

Theorem 1. [2] There exists a polynomial P such thai:
P(z:)=wy, 1=1,...,n, and
P(x) is monotone on each interval [x;_y,z;),i=1,...,n.
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Proof. Without loss of generality we can take yg = 0. We search a
solution in the form of

(10) Pa) = [10stdt,
0
where
(11) g(t) > 0,Vt € [z0, za] -
In (2] a solution of the form
(12) 9(t) = > rrgx(t)
k=0

is found, where

(13) re>0,k=1,...,n,

and

(14) ge(t) =0, Vt € [zo,z,), k=1,...,n
P must satisfy

(15) Plz:)=vi,1=1,...,n

that is

(16) }:rk/ Do)t =g, i=1,...,n

or equivalent

n

(17) Zrk/ gk(t =Yi — VYi-1, i = 17 y Ty
k=1 .
Ti-1
i.e.,
T Ut)gx(t)at
Il 1 R
18 rg—————=1,1=1,...,n.
(18) 2: —

To satisfy lemma 5. we need

T 16)gu(t)dt

(19) e 1, k=1,...,n,
Ye — Yk-1
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and

z

J Ht)gr(t)dt

Z,-1 . .
20 — | <=, k=1,...,n,i=1,...,n, i # k.
(20) Yi — ¥i-1 2n #

To satisfy (19) we substitute g(t) by
Yk — Yk—
(21) () ge(t), k=1,...,n,
J Ut gr(t)dt
Tk—1

then (20) is

T 1)t

- — i— 1 .
(@) [T Sgmi=loomk=l..,n ik
VT8 T gu(t)dt
Tg—1
Let’s take
(23) gk (t) = IF'(t),

where m is an integer and note that for m large enough conditions (19) and
(22) are satisfied, i.e., the polynomial g(¢) from (12) is completely determinate.
The value of integer m from the proof is very large. We point out that
the polynomials h;(t), ¢ = 1,...,n, from Lemma 2 verify all the lemmas
implied in the proof of Theorem 1. By substituting l;(z) by h;(z), for i =
1,...,n, the value of m is decreased.
Let the polynomial

(24) H(z) = / LE)h(t)dt,

where [(t) was defined before,

n
Yk — Yk-1
(25) hz) =Y rim————U(2)h(z),
k=1 [ I(t)hP(t)de
Tk-1
and ry,...,r, are positive real numbers.
Theorem 2. There exist positive real numbers ry,...,r, such that the

polynomial H is piecewise monotone polynomial and its degree is less than the
degree of polynomial in Theorem 1.
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Proof. First part is identic with the proof of Theorem 1 because the
polynomials h;(z) and l;(z), ¢ = 1,...,n, satisfy the same lemmas.

For the second part we take ¢ # k and an integer m.

As one can see that the key of the proof is the set of inequalities (22).
We show that the substitution of {;(z) by h;(z) in (22) imply a smaller number
in the left side. Let take the ratio

f L) (t)dt f LA (t)de
pi= z/k :zl.c’: I;;I . Yk _zk 11 T , therefore
A W €T 1 - f l(t)hm(t)dt

Zp—1 . Tk—-1
z; 7
J @ @)dt [ L)hRt)dt

(26) p= ==

Jimrp@ae [ ioed
Ti-3 Th~1

For i # k, from Lemma 3 we have IJ*(t) > h7*(t) for t € [x;—y, zi), i.e.,

T 1) de

Ti~1
f It
Ti 1

From Lemma 3 too {*(t) < A (t) for t € [zk~1, zk] i.e.

>1.

f Lt)hP(t)de

Tk-1

(28) >1

Tz
J i tdt
Tk—1
From (27) and (28), we obtain p > 1 and consequently h;(t), ¢
1,...,n, satisfy condition (22) for a smaller value of m.

3. Numerical examples

The examples below are realized by a program in MATHEMATICA
which can be obtained from the author. We take n = 6,

(29) ro=0,21=1,22=2,23=3,24=4,25 = 6,26 = 7,
and

(30) Yo = 0,y1 = .25, Y2 = -38,313 = .23, Ya = -44,1/5 = .58,ys = .62.
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The first method applied for this set of data gives a solution of power

Ti
J Ut gw(t)dt
Yk — Yk-1 =i

WV iy ge(t)a

Tk-1

, 1=1,...,mn,

m = 220. The corresponding matrix

1 0.077 3.19x 107% 5.71 x 10715 3.23 x 1073% 1.07 x 10~
0.077 1 0.077 3.19x 106 3.98 x 10~2! 5.01 x 10~%
3.19 x 1076 0.077 1 0.77 6.52 x 10710 1.55 x 1029
5.71 x 107 3.19x 10~ 0.077 1 0.001 5.71 x 10715
1.55 % 10729 5.71 x 10~1% 3.19x 10~¢ 0.077 1 0.077

1.07 x 10=93 5.01 x 10733 1.55 x 1072° 5.71 x 1015 0.001 1

We can see that the absolute values of all entries excepting the main

1
diagonal are less than = 12 ~ (.08 as stated in theorem 1..
n
The second method using the functions h;(z), i = 1,...,n gives a
matrix satisfying the conditions of theorem 2. for m = 185.

1 0.04 1.92 x 10711 6.39 x 10759 7.66 x 10-8° 5.97 x 10104
0.08 1 0.02 1.94 x 10718 3.05 x 10738 6.82 x 10~9%
3.78 x 107%  0.04 1 2.84 x 108 4.20 x 107 6.69 x 10730
719 x 10715 4.56 x 10~8 (.02 1 493%x107% 7.19%x 10°18
9.69 x 10730 9.85 x 10~2! 1.92x 107! 2.84x 1073 4.93x 107° 7.19x 1015
5.97 x 107194 1.05 x 1079 2.62x 10”77 6.39x 10790 4.93x 10~% 1

4. Remarks

In [2] the whole proof is built for an algebra of functions i.e., the set
of polynomials are replaced by the smallest algebra G containing a set A of
nondecreasing functions on [zg, z,] possessing the property of separation for
the points of the interval [zg, z,]. Without proof we present the following

Lemma 7. (2] There exist a nondecreasing function f € G such that

(31) flzic1) < flag) < f(bs) < f(zq),
where
(32) OD=xp<a1<bhi<z1<... <21 <0y <b, <z,.

By this lemma we can construct similar functions

(f(=) = flzi-1))(f(25) = f(z))

(33) Lz =1+ (f(1) - £(0))2

,t=1,...,n,
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and hi(z) = 1+ (f(z) — f(zim1))(f(zi) — fz))x

1 if Ti—1+ x; <ZL‘0+:L‘n
(f(zi) = fzn)) (lf(xi—l) —flzn) 2 2
; Ti—1 +Zi Lo+ Tn
(f(z:) = f(z0)) (f(zi-1) — f(z0)) 2 T2
for i=1,...,n.

All lemmas of paragraph 1 and Theorems 8 and 9 are maintained.

With some supplementary conditions one can obtain better estimates
of the degree of the monotone interpolation polynomials [1,4].

The result is general and offer us a simple solution with an important
decrease of the degree of polynomial used in the proof of Theorem 1. In our
example it was a decrease with 16%, from 220 to 185.

Acknowledgements

I would like to thank to professor Elena Popoviciu for his precious advice
and to professor Dumitru Mircea Ivan for his carefully reading of the entire
paper and important help in removing the errors.

5. References

[1] M. Ivan: Asuprae interpolarii prin functii monotone, Sem. itin. ec. func. aprox.
conv., Cluj-Napoca (1981), 181-186.

[2) M. Ivan: Polinoame de interpolare monotone, Sem. itin. ec. func. aprox. conv.,
Cluj-Napoca (1980), 119-123.

[3] G. Iliev: Ezact estimates for monotone interpolation, J. Approx. Th. 28(1980),
101-112.

[4] E. Popoviciu: Teoreme de medie i legdtura lor cu teoria interpoldrii, Ed. Dacia,
Cluj-Napoca 1972.

(5] R. Precup: Estimates of the degree of comonotone interpolating polynomials,
L’Analyse Num. et la Th. de ’Aprox. 11(1982), 139-145.

Institute of Oncology ”I. Chiricuta”
Str. Gheorghe Bilascu 34-36

3400 Cluj-Napoca

Romania

todor@onco.codec.ro



