DYNAMICS ON $(P_{cp}(X), H_d)$ GENERATED BY A FINITE FAMILY OF MULTI-VALUED OPERATORS ON (X, d)

Adrian Petruşel and Ioan A. Rus

Abstract. The main purpose of this paper is to give some partial answers to the following problem: If F_i , $i \in \{1, ..., m\}$ is a finite family of weakly Picard multi-valued operators, is the operator $T_F: P(X) \to P(X)$, $T_F(Y) := \bigcup_{i=1}^m F_i(Y)$ a weakly Picard operator too?

1. Introduction

Let (X, d) be a complete metric space and P(X) the space of all nonempty subsets of X. Denote by $P_p(X)$ the space of all nonempty subsets of Xhaving the property (or properties) p (where p could be cp = compact, cl =closed, b = bounded, etc.). If H_d is the Hausdorff-Pompeiu functional, it is well known that $(P_{b,cl}(X), H_d)$ is a complete metric space. If $F: X \to P(X)$ is a multi-valued operator then $x^* \in X$ is a fixed point for T if and only if $x^* \in F(x^*)$.

By definition (see [14]), the operator $F: X \to P(X)$ is a multi-valued weakly Picard operator (briefly m.w.P.o.) if and only if for each $x \in X$ and each $y \in F(x)$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that:

- i) $x_0 = x$, $x_1 = y$
- ii) $x_{n+1} \in F(x_n)$, for all $n \in \mathbb{N}$
- iii) the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent and its limit is a fixed point of F.

Let $F_1, \ldots, F_m : X \to P_{cp}(X)$ be a finite family of u.s.c. multi-valued operators. We define the following fractal operator(see [1], [6], [12]) generated by $F = (F_1, \ldots, F_m)$:

(1)
$$T_F: P_{cp}(X) \to P_{cp}(X), \quad T_F(Y) = \bigcup_{i=1}^m F_i(Y).$$

AMS (MOS) Subject Classification 1991. Primary: 47H10, 37H15.

Key words and phrases: Weakly Picard operator, Hausdorff-Pompeiu generalized functional, generalized contraction.

Problem 1. (see [13]) If F_i , $i \in \{1, ..., m\}$ are m.w.P. operators, is T_F a w.P. operator?

The following problems are in connection with Problem 1.

Problem 1.a. If F_i , $i \in \{1, ..., m\}$ are generalized contractions, is T_F a generalized contraction?

Problem 1.b. If $F_i: X \to P_{cl}(X)$ are a-contractions, is $T_F: P(X) \to P_{cl}(X)$ P(X) an a-contraction?

Problem 1.c. Let (X,d) be a complete generalized metric space (in Luxemburg-Jung'sense, i.e., $d(x,y) \in \mathbb{R}_+ \cup \{+\infty\}$). If $F_i : X \to P_{cl}(X)$, $i \in \{1, ..., m\}$ are a-contractions, is $T_F: P(X) \to P(X)$ an a-contraction?

The purpose of this paper is to give some partial answers to these problems.

2. Main results

Let (X, d) be a metric space and $\mathcal{P}(X)$ be the space of all subsets of X. Let us consider now some functionals on $\mathcal{P}(X) \times \mathcal{P}(X)$ (see for example [2], [14]).

(i) the gap functional D defined by:

$$D: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+$$

$$D(A, B) = \begin{cases} \inf\{d(a, b) | \ a \in A, \ b \in B\}, & \text{if } A \neq \emptyset \neq B \\ 0, & \text{otherwise} \end{cases}$$

(ii) the excess generalized functional ρ defined by:

$$\rho: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\},$$

$$\rho(A, B) = \begin{cases} \sup\{D(a, B) | \ a \in A\}, & \text{if } A \neq \emptyset \neq B \\ 0, & \text{if } A = \emptyset \\ +\infty, & \text{if } B = \emptyset \neq A \end{cases}$$

(iii) the Hausdorff-Pompeiu generalized functional H defined by:

$$H: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\},$$

$$(\max\{\rho(A,B), \rho(B,A)\}, \text{ if } A \neq \emptyset \neq B)$$

$$H(A,B) = \begin{cases} \max\{\rho(A,B), \rho(B,A)\}, & \text{if } A \neq \emptyset \neq B \\ 0, & \text{if } A = \emptyset = B \\ +\infty, & \text{if } A = \emptyset \neq B \text{ or } A \neq \emptyset = B. \end{cases}$$

The following lemma is an easy consequence of (iii).

Lemma 1. Let (X, d) be a metric space and $A_k, B_k \in P(X)$ for $k \in \{1, 2, ..., m\}$. Then

$$H\left(\bigcup_{k=1}^m A_k, \bigcup_{k=1}^m B_k\right) \leq \max\{H(A_k, B_k)|\ k \in \{1, \dots, m\}\}.$$

Definition 2. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be:

- a) a comparison function iff φ is monotone increasing and $(\varphi^n(t))_{n\in\mathbb{N}}$ converges to 0 for all $t\geq 0$.
- b) a strict comparison function iff φ is a continuous comparison function and $t \varphi(t)$ converges to $+\infty$, as $t \to +\infty$.

Let us recall now some contractivity type conditions for multi-valued operators (see [3], [4], [8], [10], [13], [14]).

Definition 3. Let (X, d) be a metric space.

i) The multi-valued operator $F: X \to P(X)$ is an a-contraction iff $a \in [0,1[$ and

$$H(T(x), T(y)) \le ad(x, y)$$
, for each $x, y \in X$.

ii) The multi-valued operator $F: X \to P(X)$ is a φ -contraction iff φ is a comparison function and

$$H(T(x), T(y)) \le \varphi(d(x, y))$$
, for each $x, y \in X$.

iii) The multi-valued operator $F: X \to P(X)$ is a **Meir-Keeler type** operator iff:

for each $\eta > 0$ there is $\delta > 0$ such that $\eta \leq d(x,y) < \eta + \delta$ implies $H(F(x),F(y)) < \eta$.

iv) The multi-valued operator $F: X \to P(X)$ is an ε -locally Meir-Keeler type operator (where $\varepsilon > 0$) iff:

for each $\eta \in]0, \varepsilon[$ there is $\delta > 0$ such that $\eta \leq d(x,y) < \eta + \delta$ implies $H(F(x),F(y)) < \eta.$

v) The multi-valued operator $F: X \to P(X)$ is contractive iff:

$$H(F(x),F(y)) < d(x,y)$$
, for each $x,y \in X, x \neq y$.

If Y is a nonempty set and $f: Y \to Y$ is an operator, then a fixed point of f is an element $x^* \in Y$ such that $x^* = f(x^*)$. The set of all fixed points for the operator f will be denoted by Fixf.

Remark 4. In[9] the notion of a-contraction is given for a multi-valued operator $F: X \to P_{b,cl}(X)$. For example, $F: \mathbb{R}_+ \to \mathbb{R}_+$, $F(x) = 2^{-1}x + 2^{-1}x$

 \mathbb{R}_+ is a multi-valued contraction in the sense of Definition 3., but is not a multivalued contraction in Nadler'sense.

Our first result is:

Theorem 5. Let (X, d) be a metric space and $F_1, \ldots, F_m : X \to P(X)$ be a-contractions. Then the operator $T_F : (P(X), H) \to (P(X), H)$ defined by (1) is an a-contraction.

Proof. Suppose that for each $x, y \in X$

$$H(F_i(x), F_i(y)) \le ad(x, y), \text{ for } i \in \{1, ..., m\},\$$

(where $a \in [0,1[)$). Then for $Y_1, Y_2 \in P(X)$ we deduce successively (see also Lemma 1)

$$H(T_F(Y_1), T_F(Y_2)) = H\left(\bigcup_{i=1}^m F_i(Y_1), \bigcup_{i=1}^m F_i(Y_2)\right) \le$$

$$\le \max\{H(F_1(Y_1), F_1(Y_2)), \dots, H(F_m(Y_1), F_m(Y_2))\} \le aH(Y_1, Y_2). \square$$

Remark 6. See [9] for the case $F: X \to P_{b,cl}(X)$. (see also [4]) An existence and data dependence theorem for T_F is the following:

Theorem 7. Let (X,d) be a complete metric space and $F_i, G_i : X \to P_{cp}(X)$, $i \in \{1, ..., m\}$ be a-contractions. Then:

- a) $FixT_F = \{A^*\}$ and $FixT_G = \{B^*\}$.
- b) If $H(F_i(x), G_i(x)) \leq \eta$ for each $x \in X$ and $i \in \{1, ..., m\}$ then

$$H(A^*, B^*) \le \frac{\eta}{1-a}.$$

Proof. From Theorem 5 we have that $T_F: (P_{cp}(X), H) \to (P_{cp}(X), H)$ is an (single-valued) a-contraction. From Banach fixed point principles $FixT_F = \{A^*\}$. An identical approach can be made for T_G and hence $FixT_G = \{B^*\}$.

For the second part, we have successively:

$$H(A^*, B^*) = H(T_F(A^*), T_G(B^*)) \le H(T_F(A^*), T_F(B^*)) + H(T_F(B^*), T_G(B^*)) \le aH(A^*, B^*) + H(T_F(B^*), T_G(B^*)).$$

On the other hand, if $u \in T_F(B^*)$ there exist $k \in \{1, ..., m\}$ and $a \in B^*$ such that $u \in F_k(a)$.

For this we can choose $v \in G_k(a)$ such that

$$d(u, v) \le H(F_k(a), G_k(a)) \le \eta.$$

Hence for each $u \in T_F(B^*)$ there is an element $v \in T_G(B^*)$ such that $d(u,v) \leq \eta$. Interchanging the roles of $T_F(B^*)$ and $T_G(B^*)$ we obtain that for each $u \in T_G(B^*)$ there is $v \in T_F(B^*)$ such that $d(u,v) \leq \eta$.

It follows that $H(T_F(B^*), T_G(B^*)) \leq \eta$ and hence $H(A^*, B^*) \leq \frac{\eta}{1-a}$.

Remark 8. By definition, the set A^* is called the attractor of the system $F = (F_1, F_2, ..., F_m)$. Hence, Theorem 7 is a data dependence result of an attractor. (see also [6], [11])

By a similar way we have:

Theorem 9. Let (X,d) be a complete metric space and $F_i, G_i : X \to P_{cp}(X)$, $i \in \{1,\ldots,m\}$ be φ -contractions, where φ is a strict comparison function. Let $t_{\eta} := \sup\{t | t - \varphi(t) \leq \eta\}$ Then:

- a) $FixT_F = \{A^*\}$ and $FixT_G = \{B^*\}$
- b) If $H(F_i(x), G_i(x)) \leq \eta$ for each $x \in X$ and $i \in \{1, ..., m\}$ then

$$H(A^*, B^*) \le t_{\eta}.$$

Another fixed point principle for the operator T_F is:

Theorem 10. Let (X,d) be a complete metric space and $F_1, \ldots, F_m: X \to P_{cl}(X)$ be a-contractions such that for each nonempty closed set Y of X, the set $F_i(Y) \in P_{cl}(X)$, for every $i \in \{1, \ldots, m\}$.

Then:

- a) If there exists $A \in P_{cl}(X)$ such that $H(A, T_F(A)) < \infty$, then the operator $T_F : P_{cl}(X) \to P_{cl}(X)$, has fixed point.
- b) If $H(A, T_F(A)) < \infty$, for all $A \in P_{cl}(X)$, then the operator $T_F : P_{cl}(X) \to P_{cl}(X)$ is a m.w.P.o.

Proof. If it well known that $(P_{cl}(X), H)$ is a complete generalized metric space. The conclusions follow from Theorem 5 and Luxemburg-Jung fixed point principle (see [7]). \square

Some other results of this type are the following:

Theorem 11. Let (X,d) be a complete metric space and $F_i: X \to P_{cp}(X)$, $i \in \{1,\ldots,m\}$ be a finite family of multi-valued Meir-Keeler type operators. Then the operator $T_F: P_{cp}(X) \to P_{cp}(X)$ defined by (1) is a (singlevalued) Meir-Keeler type operator an has a unique fixed point.

Proof. Let us suppose that for each $\eta > 0$ there exists $\delta > 0$ such that $\eta \leq d(x,y) < \eta + \delta$ implies

(2)
$$H(F_i(x), F_i(y)) < \eta \text{ for } i \in \{1, ..., m\}.$$

From (2), it follows that F_i is contractive and hence F_i is upper semi-continuous, for $i \in \{1, ..., m\}$. As consequence $T_F : P_{cp}(X) \to P_{cp}(X)$.

Let us consider $\eta > 0$ and $Y_1, Y_2 \in P_{cp}(X)$ such that $\eta \leq H(Y_1, Y_2) < \eta + \delta$. We will prove that $H(T_F(Y_1), T_F(Y_2)) < \eta$.

For this purpose, let $u \in T_F(Y_1)$ be arbitrary. Then there exist $k \in \{1, \ldots, m\}$ and $y_1 \in Y_1$ such that $u \in F_k(Y_1)$. For this $y_1 \in Y_1$ there is $y_2 \in Y_2$ such that $d(y_1, y_2) \leq H(Y_1, Y_2) < \eta + \delta$.

If $d(y_1, y_2) \ge \eta$, then from (2) we get that $H(F_k(y_1), F_k(y_2)) < \eta$. It follows that there is $v \in F_k(y_2)$ such that $d(u, v) < \eta$ and hence $D(u, T_F(Y_2)) \le d(u, v) < \eta$.

On the other hand if $0 < d(y_1, y_2) < \eta$ the from (2) we deduce that

$$H(F_k(y_1), F_k(y_2)) < d(y_1, y_2) < \eta$$

and as before $D(u, T_F(Y_2)) < \eta$.

Because $T_F(Y_1)$ is a compact set, we have that $\rho(T_F(Y_1), T_F(Y_2)) < \eta$. Interchanging the roles of $T_F(Y_1)$ and $T_F(Y_2)$ we obtain $\rho(T_F(Y_2), T_F(Y_1)) < \eta$ and the conclusion $H(T_F(Y_1), T_F(Y_2)) < \eta$ follows.

So $T_F: P_{cp}(X) \to P_{cp}(X)$ is a Meir-Keeler type operator and by Theorem in Meir-Keeler [8] has a unique fixed point, i.e. $A^* \in P_{cp}(X)$ such that $T(A^*) = A^*$. \square

Corollary 12. Let (X,d) be a complete metric space and $F_i: X \to P_{cp}(X)$, $i \in \{1,\ldots,m\}$ be a finite family of multi-valued Meir-Keeler type operators. Then the operator $T_F: P_{cp}(X) \to P_{cp}(X)$ is a w.P.o.

Proof. The conclusion follows from Theorem 11 and the Theorem in Meir-Keeler [8]. \Box

Recall that a metric space (X, d) is said to be ε -chainable if for every $x, y \in X$ there exists a finite set of elements $x = x_0, x_1, \ldots, x_n = y$ in X such that $d(x_{k-1}, x_k) < \varepsilon$ for $k \in \{1, \ldots, n\}$.

Theorem 13. Let (X, d) be a complete ε -chainable metric space (where $\varepsilon > 0$) and $F_i : X \to P_{cp}(X)$, $i \in \{1, ..., m\}$ be a finite family of multi-valued ε -locally Meir-Keeler type operators.

Then the operator $T_F: P_{cp}(X) \to P_{cp}(X)$ given by (1) is an (singlevalued) ε -locally Meir-Keeler type operator, having a fixed point. **Proof.** The proof runs exactly as in Theorem 11, but instead of using Theorem in Meir-Keeler [8], the conclusion follows from Proposition 1 in M.K. Xu [15]. \square

Using an ε -locally Boyd-Wong type condition (see [3] and [15]) one can also prove:

Theorem 14. Let (X, d) be a complete ε -chainable metric and let $F_i: X \to P_{cp}(X)$, $i \in \{1, ..., m\}$ be multi-valued operators such that

(3)
$$H(F_i(x), F_i(y)) \le k(d(x, y))d(x, y), \text{ for all } x, y \in X$$

with $0 < d(x,y) < \varepsilon$, where $k : (0,\infty) \to (0,1)$ is a real function with the property:

(P)
$$\begin{cases} For \ each \ 0 < t < \varepsilon \ there \ exist \ e(t) > 0 \ and \ s(t) < 1 \\ such \ that \ k(r) \le s(t) \ provided \ t \le r < t + e(t). \end{cases}$$

Then, the operator $T_F: P_{cp}(X) \to P_{cp}(X)$ given by (1) satisfy the condition:

$$H(T_F(Y_1), T_F(Y_2)) \le k(H(Y_1, Y_2))H(Y_1, Y_2),$$

for all $Y_1, Y_2 \in P_{cp}(X)$ with $0 < H(Y_1, Y_2) < \varepsilon$ and has a fixed point.

Proof. Let
$$Y_1, Y_2 \in P_{cp}(X)$$
 such that $0 < H(Y_1, Y_2) < \varepsilon$. Then $H(T_F(Y_1), T_F(Y_2)) \le \max\{H(F_k(Y_1), F_k(Y_2)) | k \in \{1, ..., m\}\} \le \le k(H(Y_1, Y_2))H(Y_1, Y_2)$.

The conclusion follows now from Theorem 2 in H.K. Xu [15]. \square

3. References

- [1] M.F. Barnsley: Lecture note on iterated function systems, Proc. of Symposia in Appl. Math., 39 (1989), 127-144.
- [2] G. Beer: Topologies on closed and closed convex sets, Kluwer Acad. Publ., Dordrecht, 1994.
- [3] D.W. Boyd, J.S.W. Wong: On nonlinear contractions, Proc. A.M.S., 20 (1969), 458-464.
- [4] H. Covitz, S.B. Nadler jr.: Multi-valued contraction mapping in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
- [5] J. Jachymski: Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293-303.
- [6] J. Jachymski: Continuous dependence of attractors of iterated function systems,J. Math. Anal. Appl., 198 (1996), 221-226.

- [7] C.F.K. Jung: On generalized complete metric spaces, Bull. A.M.S. 75 (1969), 113-116.
- [8] A. Meir, E. Keeler: A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329.
- [9] S.B. Nadler jr.: Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
- [10] A. Petrusel: Dynamical systems, fixed points and fractals (to appear)
- [11] S. Reich: A fixed point theorem for locally contractive multi-valued functions, Rev. Roum. Math. Pures et Appl., 17 (1972), 569-572.
- [12] I.A. Rus: Stability of attractors of a φ -contractions systems, Seminar on Fixed Point Theory, 1998, 31-34.
- [13] I.A. Rus: Some open problems of fixed point theory, Seminar on Fixed Point Theory, 1999, 19-39.
- [14] I.A. Rus: Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
- [15] H.K. Xu: ε-chainability and fixed points for set-valued mappings in metric spaces, Math. Japonica, 39(1994), 353-356.

Babeş-Bolyai University, Department of Applied Mathematics, 3400 Cluj-Napoca, Romania