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TAUBERIAN THEOREMS FOR
CONVERGENCE AND SUBSEQUENTIAL
CONVERGENCE WITH MODERATELY
OSCILLATORY BEHAVIOR

Filiz Dik

Abstract. In the classical Tauberian theory, the main objective
is to obtain convergence of a swquence {u,} by imposing conditions
about the oscillatory behavior of {u,} in addition to the existence of
certain continuous limits. However, there are some conditions of con-
siderable interest from which it is not possible to obtain convergence
of {u,}. This situation motivates a different kind of Tauberian theory
where we do not look for convergence recovery of {u,}, rather we are
concerned with the subsequential behavior of the sequence {u,}. The
first section includes definitions, notations and an overview of classical
results. Succincet proofs of the Hardy-Littlewood theorem and the gener-
alizad Littlewood theorem are given using the corollary to Karamata’s
Hauptsatz. In the second section subsequential Tauberian theory is in-
troduced and some related Tauberian theorems are proved. Finally, in
the last section we study convergence and subsequential convergence of
regularly generated sequences.

1. Introduction

1.1 Definitions and notations

The classical Tauberian theory studies convergence of sequences {un}
for which

(1) lim (1 —z) iunz‘”
n=0

z—1—

exists. If we denote the class of all sequences {u,} for which (1) exists by U,
then the main objective of the theory is identifying subclasses U, of U such
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that {un} € U, implies
(2) hm up = lim (1 -2) Zun:z

1_
= n=0 -

The subclasses U, are defined by requiring additional information about {u,} €
U. The Kronecker identities

- o (u) = VO (Au)
(3) o{" Y (U) — oy (u) = V"V (Aw),

n
form > 1, wherecr() (u)= n+1 Z Uk, O ( ) =1y, (0)(Au) j-l > kAwuy,
k=0

u = {un,} and Aup, = up — up—1, u—1 = 0, are extensively used in the classical
and neoclassical theory. From (3) and

n (0
V.7 (Au
() I PR U
k=1
we have the following representation of {un}
(5) {tn} = {(VO(Au) + > e “)+uo}
k=1

in terms of the sequence {Vn(o)(Au)}. The closer look at the above identity

gives an idea how to set conditions on the generator sequence {V,SO) (Au)} of
{un} and consequently how to define subclasses of U for which (2) holds. For
example, Tauber [1] proved that, if for a sequence {u,} € U we assume that

(6) ViO(Au) = o(1), n— oo,

then (2) holds. That is, the condition (6) defines a subclass of U for which
(2) holds. Since nAu, = o(1), n — oo implies (6), we see that determining
of subclasses U, of U in the early theory is obtained by restricting the order
of magnitude of the sequence {nAu,}. Littlewood [2] succeeded in replacing
nAu, = o(l), n — oo by nAu, = O(1), n — oo, and together with (1) he
obtained (2). However, the condition

(7) VO(Au) =0(1), n—oo

alone is not sufficient to construct a subclass U,. Even

(8) VO (|Au|) = Zk |Aug| = O(1), n— o0
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is not sufficient as shown in [3, 4, 5, 12]. But it is shown in [3, 4, 5] that (8)

and the existence of
oo

9 lim (1~ O (w)z™

©) Jim (=2 3o

imply

(10) hm el (u) = lim (1 - z) Za,(})(u)z",

a:—»l“

and consequently u, = O(1), n — co.

In addition to (7), if we assume that for every positive € there exists a
positive integer ng(e) and 6(5) > 0 such that for all integers n > ng(e) and
every k € {1,2,3,... ,[no(e).0(¢)]}

(11) V,f_"gk(Au) - V,$0>(Au)( <e

then together with the existence of (1) we have (2). The above concept found
by Landau [6] is known as slow-oscillation of { V,SO)(Au)}. From the represen-
tation (5), we observe that {V,Eo)(Au)} is bounded and slowly-oscillating if
and only if {un} is slowly-oscillating. See [11] for the proof. Later Schmidt [7]
defined the slow-oscillation of {u,} as follows:

A sequence {u,} is slowly-oscillating if
(12) 1\}1>n11u(uN —upm) =0.

-1

Since (12) is a restricted Cauchy property of {un}, it is clear that every
convergent sequence is slowly-oscillating. But the converse is not true. For

n
example, the sequence {3 %} is slowly-oscillating, but it does not converge.

From the definition of slko:;;ly-oscillating sequences, it is also clear that if we
have a slowly-oscillating sequence {u,}, then Au, = 0(1), n — 0.

Throughout this work a different definition of slow-oscillation is better
tailored for our purposes. In [8], the following definition of slow-oscillation is
proposed:

Definition 1. A sequence {u,} is slowly-oscz'llating if

lim lim max Au;| = 0.

A1 T nb1Ske]in) _Xnil g
From this definition and the representation (5), it follows that the sequence
{e*»} where {u,} is slowly-oscillating has a special property given by Kara-
mata in [9] as follows:
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Definition 2. A positive sequence {R(n)} is regularly varying if for
A>1

. R[A\n] )
= > 0.
bm 2y =2 »20

n
Consider a slowly-oscillating sequence {u,},i.e., un = Bp+ %& where
k=1
{B.} is bounded and slowly-oscillating. Let R(n) = e**. Then

[An]
. R[)\n] lim(B[,\n]—Bn+ > Ekh)
lim —e” k1 _
n R(n)

; - ]
Jm(Ban =B +C IS _ 04C1gA _ \C.

That is, slowly-oscillating sequences are logarithms of certain regularly vary-
ing sequences.

With Definition 1. it is also easy to show that the Hardy-Littlewood
[10] condition

1 n
(13 VO(Au,p) = —= > K |Awl = 0(1), n—oo, p>1
k=0

implies that {u,} is slowly-oscillating. The proof is given in [11]. Recall that
if {un} is slowly-oscillating and the limit (1) exists, then (2) holds. That is,
the Hardy-Littlewood condition for p > 1 defines another subclass U, of U.
However, for p = 1 (13) is no longer a Tauberian condition, i.e., a condition
on {u,} that together with (1) implies (2). In other words, the existence of
the limit (1) and

1 n
VO(|Au)) = n—HZk |Aug| = O(1), n— o0
k=0

do not imply (2). Rényi [12] showed that if lim v (|Au|) exists, then lim u, =
n n

lir? (1—-z) > upz™. In this case, the sequence {V,SO)(|Au| ,p)} for p > 1 does
=17 n=0
not have to be bounded as shown in the following example by Rényi:

Let
D7 g k=2", n=12,...
Auy, = n
0 otherwise

o0
The sequence {u,} converges by Leibnitz’s test, and so hr? 3 Augzk exists.
z—1~ k=0

Now we show that li’rln v (|Awul) exists and in particular for this example that
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the limit is zero. It is enough to consider v (|Au|) for indices n = 2%:
j [s/2]
0) il 97 J
o= 32 250 gl S
j=[s/2]+1
23
25.s

EI

=owﬂ%+ )= o(1), s— 0.

But for p > 1

1 2P
23 -
ji=1

That is, the sequence {u,} is convergent even though {V,SO)(|Au| ,0)} is not
bounded for p > 1.

As we mentioned on page 4, the Hardy-Littlewood condition for p =1
(8) is not a Tauberian condition for the convergence recovery of {un}. It
is shown in [3, 4, 5] that (8) is a Tauberian condition for the recovery of

convergence of {an )(u)} from the existence of 111{1 (1-2z) Z o ( )z™. Also
z— n=0

Renyi [12] showed that sequences satisfying the condition (8) are not slowly-
oscillating but it is possible that they are an extension of the slowly-oscillating

k
sequences. Indeed, consider  max Y. Au,|, compute and estimate as
n+1<k<[An] | j=nt1
follows:
k
nt1<Ee ] Xn: - n+1<k<[,\n] Z A
[An] [An] [An] [An]
J lAu |1 . 1 _
< Z |Au;| = Z : _n+1 Z J|Auj|Sn—_|_12]|A“j|
j=n+1 j=n+1 j=n+1 j=1
[An] (An]
1 [An] [/\ 1
—n+1pm§: +1pm§:” uil-
Taking limsup in 7 of both sides we obtain,
k [An]

_ | bl
lim n+llgl?‘§[)\n] Z Ayl < Tim Z A
(An]

< lim D) H—LZjIAUjISIim An hm[/\—]ZJIAuJ[
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where C is an absolute constant that comes from (8).
The important special case of the Hardy-Littlewood condition (8) mo-
tivates the following definition [8].

Definition 3. A sequence {un} is moderately oscillatory if

lim A A> 1.
l’rrtnn+1<k<[,\n] Xn;l | < %0

In the case of moderately oscillatory behavior of {u,}, we cannot con-
clude in general (2), however we can obtain some information about subse-
quential behavior of {u,}. This will be discussed in details in the following
sections.

The definition of slow-oscillation in [8] is designed to suit a version of
de la Vallee Poussin mean of {u,}, (8],

[An]
1
Tn,[an] = (/\ un) [)\TL] — n Z ug, A>1
=n+1
and its relations to {u,} and {an (w)}.
For A > 1 we have
1 [An] 1 [An] k
Un = T [An] — [)\n]—__n Z (Uk - un) = To,an] — [/\n] —n Z Z AU’J
k=n+1 k=n+1j=n+1
[An) k
=72l = o0 + o) — ¢ M] raD DRD DAL
k n+1j=n+1
From
. [An]
(n] + Dol () = (n+ DoPw) = 3w,
k=n+41
we have
1 % (W] + 1o ()= (n + Do (u)
n]—n n oo e = T, wn] = [/\n] -n

and

An|+1
oo = 7800) = 5 (00 0) = o w),
This is an important relation between {7, [xn(v)} and {a,(,l)(u)}. From
[An] k

Z Z Auj,

k=n+1j=n+1

= o = 0800 + 00 0) — i
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we obtain the first important identity

[An] k
(1) w=o W+ TR W - o) 3 D A

k=n+1j=n+1
To obtain the second important identity, for 1 < A < 2 consider our

version of de la Vallee Poussin mean
n

1
Tn—[(A=n],n = Tn—[()\—l)n],n(u) = [()\ — 1)7’1,] +1 Z U-
k=n—[(A-1)n]
Notice that n — [(A — 1)n] < n because 1 < A < 2, and compute

n

1
Un = Tn—[(A-1)n],n + m k_ _%—l)n] (un — uk)

1 n n
= Ton—[(A-1)n]n T [()\ _ l)n] 11 Z Z Au]"

k=n—[(A-1)n] j=k+1
Observe that
1 1
(n -+ Dor’ (@) = (0= [(A = D)o sy (w) _
[(A=1)n]+1

n

1
[ —1)n] + 1 2.

k=n—[(A—1)n]
and

Tn—[(A-1)n]n — 057,1—)[()\—1)71.]—1(”)
(n+ 1ot (@) = (n = [(A = D) + [(A = Dl + Dol 1y ()
(A= Dn] +1
(n+1)

= = 710 0 = oo ()

From
Un = To—[(A=1)n)n = 0,(11_)[(,\ 1)n] ,(w)

(1) 1
R A R Py Z Z Avj,

k=n—[(A—1)n] j=k+1
it follows that
_ () _ . n+1l (1 _ .
“n—an_[(x—1)n]-1(“) [(/\_1)n]+1(0n—[(,\—1)n]—1(“) o’ (u))
(15) ] n S
HEEHDESY 2 2 b

=n—[(A-1)n] j=k+1
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the second important identity. This identity is similar to the identity obtained
in [11] and it is also obtained by the author in the Graduate Research Seminar
[21].

1.2 Overview of classical theory

In the classical Tauberian theory, the main objective is determining
subclasses U, of U by setting certain conditions on {Awuy,} such that (2) holds.
For example, the condition

(16) nAu, =o(l), n-— oo
oo

where {u,} € U implies limu, = liril (1 —z) ) unz™ This is a corollary
n r—1= n=0

to the original Tauber theorem [1]. The following proof of this result can be
found in [4].
For every € > 0, choose a positive integer N such that for every n > N

(17) [nAu,| < %,
1 — €
(18) ;Z|kAuk| <3
k=1
and
2 1 €
— — k — —_—
(19) I;OAuk(l —)F s <3,

o0
where lim Y Awugz® = s. Consider the difference

T—=17 k=0

n o0 n [e o]
ZAuk—s=ZAukxk—s+ZAuk(l —zF) - Z Augz®
k=0 k=0 k=1 k=n+1

for every n. > N and z < 1. Observe that 1 —z* = (1—2)(1+z+4...+ 2% 1) <
k(1 — z) and |Aug| = |kAk“’°' < 5%~ Next, for all z in (0,1), we have

n oo
ZAuk—s ZAukrz:k—s
k=0 k=0

Since (17), (18), and (19) hold, we may choose z = 1 — % to obtain that

n
Y Aug — 8| < % + g + % = ¢ for every n > N. This completes the proof
k=0

that (16) and the existence of the limit (1) imply (2). Different proofs can be
found in [8, 11, 13, 14].

e )
< 1- kA
< +(1-2)) | uk| + 3

Pt (1—-1z)
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A generalization of (16) was given by Tauber [1]. He proved that if for
any sequence {u,} € U we assume

(20) VO(Au) = o(1), n— oo,

then (2) holds. The proof is given in [14] as follows:
Denote v, = E kAu, = (n + l)Vno)(Au) We have
: k=1

o 0]
Vi
(1-2)) Z SIS
k=1k+1 n+1 kk+1) W +1I<:Ic+1
J ety Ve NN % NS Y%k
LS P kzzlk(k+1)+,;k(k+1)
o0
(k4 1)(vg — ve—1) — vk &
’“’Z kk+1) ¥
k=2
(¥ i Vi 2 Vi
n_ k
P ;k(k+1)+:{;k(k+1)x
_ Au +§:A ey Bu,  Un n Uk
Ty TS 2 " a1l Zk(k+1)
[0 e] n
v 1 1
=ZAuk$k__n’__ Uk__—)
P n+ puet k. k+1
> v n_lvk——vkl v
=ZAukmk——"—Au1— + =
Pt n+1 =1 k+1 n+1
o0 o0
A (k+1)
=ZAukmk—Au1 Z_“k_;;lf_ ZAukw —ZAuk

k=1 k=1

Hence we obtain the following identity:

00 X n o]
n
kgoAukx —;Aukz(l §k+1 n+1

n
VL k
gk(kﬂ —D+ Z kk+1)

k=n-+1

(21)

Without loss of generality, assume that lim Z Augz® = 0. Since v, = o(n),
T—17 —p

n — oo and |z* — 1| < (1 — z)k, it follows from (21) that for each & > 0, for
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some positive integer N = N(¢), and n > ny,

0o n N fos)
ZAukzk — ZAuk <C(1- x)sz +e(1 - x)Zxk +
k=0 k=0 k=1 k=1

- - €k
e+ C(l—2z)N+en(l—2)+ 1 k_il:v
€
< — — —
<2CN(1—-z)+2+en(l —z)+ CESETS

where C'is an absolute constant from (20). As before, we may choose 1—z = %,

then the sum of the second, third and fourth terms in the last inequality reduce

to 4e, and the first term becomes %Q Hence

o 1 n
> Au(l - ;)’c - > Au
k=0

k=0

C
S2£—+4€
n

n
S Augzk
k=0

o0 —
Recalling that lim ) Aug(l — %)k = 0, we have lim < 4e, and
n k=0 n

(3
since € can be made arbitrarily small, we finally obtain lim ), Aug = 0.
" k=0
After the original Tauber Theorem many significant generalizations of
sufficient conditions for the convergence recovery of {u,} have been obtained.
One of them is Littlewood’s [2] result. He considerably weakened the condition

(16) to obtain the following theorem:
Theorem 1. (Littlewood [2]) Let {u,} € U and

(22) nAu, = 0(1), n — oo.
Then limu, = lim (1 —z) Y u,z™.
n z—17 n=0

Hardy and Littlewood [10] conjectured that a generalization of (22),
(23) VO(Aul,p) = 0(1), n—oo, p>1,
might be a Tauberian condition. Szsz [15] proved that Hardy and Little-
wood’s conjecture was correct. However Szsz’s proof is rather complicated.
Using Landau’s definition of slow-oscillation [6], the proof becomes simple by
showing that the condition (23) implies the slow- oscillation of {u,}. Glanc-
ing through the references, one wonders about the time gap between Landau’s
publication [6] of his very general Tauberian condition slow-oscillation and the
Hardy-Littlewood conjecture [10].

Assuming that {uy,} is slowly-oscillating and {u,} € U, Schmidt [7] tried
to prove a general Tauberian theorem. Vijayaraghavan [16] gave a corrected
proof of so-called generalized Littlewood Tauberian theorem.
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Theorem 2. (Generalized Littlewood Tauberian Theorem) Let {u,} €
U.If :
Syl = ) =0

N
b7 Aty

then (2) holds.

Notice that all previous conditions, namely (16), (22), and (23) are
special cases of the slow-oscillation.

Landau [6] discovered that the oscillatory behavior of {u,} can be con-
trolled by one-sided boundedness of the sequence {nAu,}. That is, {nAu,} is
one sidedly bounded if for some C > 0 and all positive integers n, nAu, > —C.
Clearly, one sided boundedness is applicable to real sequences.

Theorem 3. (Landau [6]) For a real {u,}, let lim a,(tl)(u) exist and
(24) nAu, > —-C

for some C > 0 and all n. Then limu, = lim 07(11)(u).

One sided boundness is one of many legacies of the classical Tauberian
theory. Hardy and Littlewood [10] proved that the existence of the limit (1)
and the condition (24) imply (2). That is, they generalized Theorem 3. The
proof of Hardy-Littlewood’s [10] theorem is complicated. A simpler proof will
be given later in this section.

Karamata’s [17] significant corollary to his Hauptsatz led to various
generalizations of the classical Tauberian theorems and provided a deeper
insight into the classical Tauberian theory.

Theorem 4. (Karamata [17]) For a real {u,}, let the limit (1) exist.
If for some C > 0 and all nonnegative integers n

u, > —C
then
[e o]
(25) li7rln e (u) = Il_i'ril_ (1-2x) Z Up ™.

n=0

In 1952, Wielandt [18] proved a version of this theorem. For the original
proof see [11].

The proof of the generalized Littlewood Tauberian Theorem in [16] is
very long and complicated. However, using a version of corollary to Kara-
mata’s Hauptsatz, the proof becomes quite transparent. To this end, we shall
use the following theorem.
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Theorem 5. (Corollary to Karamata’s Hauptsatz) For a real sequence
{Bn}, let

oo
(26) lim (1 - 1) Z%an" =0

If for some C>0 and all nonnegative integers n B, > —C, then lim 07(11) (B)=
0.

The proof of the generalized Littlewood Tauberian Theorem

Proof 1. (The proof for real case). Since {u,} is slowly-oscillating,
the generator sequence {Véo)(Au)} is slowly-oscillating and bounded, and

therefore there exists C' > 0 such that V,fo)(Au) > —C for all nonnegative
integers n. From the existence of the limit (1), it follows that

lim (1 - W (u)z™ = lim (1 - A"
zibnll‘( :z:);an (u)z zlf?—( z)gu x
and

lim (1 —z) Z VO(Au)z" = lim (1 — z) Z (tn, — oD (w))z™ = 0.

z—1~ n=0 g1 n=0

Then by the corollary to Karamata’s Hauptsatz, we have

1 n
1)y (0 = (0) —yQ = ,
(VO (Au)) = 1 kE=0 Vi (Au) = VA (Au) =o(1), n— oo.

Since {Vn(o)(Au)} is slowly-oscillating and (C, 1)-summable, from the identity
(14), it follows that v (Au) = o(1), n — oo. Using the identity
o (w) ~ o (u) = n(6f) (w) — 0, (u)) = V(M)

o0
we have that lima,(f)(u) = lim (1 —z) > ,(11)(u)x" and consequently
n z—1-

n=0
lim o (u) exists. Finally from the Kronecker identity Un—0 D) (u) = A (Au),
n

it follows that
o0
zl_lgl_ (1-x) ; Unz™.
Proof 2. (The proof for complex case) Since {u,} is slowly-oscillating,
{Vn(o) (Aw)} is bounded and slowly-oscillating, i.e., un—o,(})(u) = nAo*,(Ll)(u) =
O(1), n — oco. The existence of the limit (1) implies that
oo oo
lim (1 - z) Z e (w)z" = lim (1 —2) Z Unz™.
n=0

T—1" z—1~

limu,, =
n

n=0
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Then by the Littlewood Theorem, we obtain

li7rlna£11)(u) zl_lgl 1-=z Za(l) (u)z™.
n=0

Since {un} is slowly-oscillating and (C, 1)-summable, again from“the‘i'déntity
w. .

(6) it follows that limu, = li 1

limit (1) exist. If for someC > 0 and all nonnegatw.e zﬁiegefs n, nAun > —-C,

then hm Up = l1m (1= :1:) E Un ™
—1- n=0

Proof. Since {nAu,} is one sidedly bounded, we have that Vn(o)(Au) >
—C for some C > 0 and all nonnegative integers n. From the existence of the
limit (1), it follows that

Il_lf{l_ (1-2) g:o VO (Au)z™ =
By the corollary to Karamata’s Hauptsatz, we obtain that
VD (Au) = o(1), n— .
Using the identity ol )( ) — 07(12)( )= nAa(2)(u) = ,fl)(Au), we have
nAo? (u) = o(1), n — 0.
By the corollary to the original Tauber theorem, we obtain
hma 2)(u) = lim (1- .'I:) Zunx
: n=0

n:——;l‘

and consequently

limo{) (u) = hr? (1—2z) Z UnZ"
n . z—1— =

Next we need following identities that were introduced in the previous section:

for A>1
[An] k
. _ An]+1, (1 e _ 1 j
Q) up =i (u) + [/\n]_n(o[,\n](u) oy’ (u)) [,\n]—nk;rlj;,;l By

forl<A<?2
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e n+1 1
Un = 9o 0 1n1 (W)~ T 51 O lo-ni-1 () - oD (u))

n

y 1 "
(ii) +m Z Z Au;

k=n—[(A-1)n] j=k+1

From the identity (i) we get

lim up < imel(u) + X i 1 lim(o () (w) — ol (u))

Tian]
[An] k
+1lim ———— Z Z —Auy)
" [/\n] -n k=n+1j=n+1

In the above inequality, the second term on the right hand side vanishes
because hm ol )( ) exists. Since —Awu; < -?—, we get

[An] k
mu, < imo® (u +hm —

< Tmo® T 1
pe) + Oln e, 3 Z

(An]
< ImoP(u) + C.Iim g 1 <TmoM(u) + C.lg A
n n o j n
j=n+1

Thus

(1)
/\13{1 hrrlnun < /\1_1}111+ hrxlna (u).

Neither of the limits depend on A, therefore hm Up < hm ol )( ). From the
identity (ii) we have

. . 1 1 .
lim up, > ll_Trl_n_U,(,_)[(,\_l)n]_l(“) ] h_mw,(iz[(,\_l)n]_l(u) - Ur(zl)(u))

1
+lim — Z Z Au;.
n (A= 1)n] +1, —[(A=1)n) j=k+1

Again as in the case before, the second term on the right side of the above
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inequality vanishes, thus

. . 1

n

=n—[(A—1)n] j=k+1
> limo{) (1) — C'lim ﬁ Z (%)
n T e=nl[O—1)n)

Finally,

lim limu, > lim limo{)(u),
A—=1t A—=lt g

ie., limu, > lim 0511)(“)- Combining both estimations we obtain
n n
lim oM (u) < lim u, < Tmuy, < lim, o) ()
n n n n
therefore

limu, = limeP(w) = lim (1 - z) Zuna;

2. Subsequential Tauberian theorems

2.1 Introduction

In the first chapter we pointed out that in order to obtain convergence
of a sequence {u,} we need to impose certain conditions on {u,} in addition

to the existence of the limit lim (1 — z) Z un,x™. Finding such conditions is
z—1~ n=0

the basic problem of the classical Tauberian theory. However, there are some
conditions of considerable interest from which it is not possible to infer con-
vergence of {u,} from the existence of the limit (1). This situation motivates
a different kind of Tauberian theory. For the rudimentary examples of this
kind of Tauberian theorems, see [3, 4, 5, 8]. In the theory we propose, conver-
gence of {u,} out of the existence of the limit (1) does not necessarily follow
even if we assume some of the classical Tauberian conditions. Hence we are
concerned with the following questions:

(i) What kind of divergence of {u,} may we expect ?

(i) How is the structure of {u,} related to the manner {u,} diverges?

The main objective of this chapter and to some extent of chapter 3 is

to study Tauberian problems described in (i) and (ii).
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Recall from page 2 that the condition V,L(O)(Au) = O(1), n — oo is not
sufficient to identify sequences in the class I/ for which (2) holds. Nevertheless,
some information about the subsequential behavior of {u,} can be obtained

assuming an additional mild condition AV,SO)(Au) = v (Au) — Vrg(i)l(Au) =
0(1), n — oo. Indeed, for a real sequence {un} if V,fo)(Au) = 0(1), n — oo,
then from the Kronecker identity u, — oy, )(u) =y )(Au) it follows that
Up — an)(u) = O(1), n - o0, ie., for some C > 0 and all nonnegative
integers n,

U — o () = n(oP (u) - o, (w) > —C.

o0
Also, the existence of lim (1 —z) ) u,z™ implies that
z—1~ n=0

lim (1-2) ) ol (u)z”
n=0

r—1-

exists and

lim (1 - z) Za(l) w)z" = lim (1 — z) Zunm".

.'z:—»l‘ x—»l‘ ne0

Applying corollary to Karamata s Hauptsatz, we obtain that

Z k(a,&l)( a,(cl)l( ) =o0(1), n— oo

n+1 =
This is the original Tauber condition on {a,(ll)(u)}. Hence
[o.¢}
lim oM (u) = lim (1 - z) > upz”
g n=0

Consequently, u, = O(1), n — oco. The assumption AV (Au) = o(1),
n — oo implies Au, = o(1), n — oo. Now we shall show that u, = O(1),
n — oo and Au, = o(l), n — oo imply that every point in the interval
(lim %, limu,) is an accumulation point of {u,}.
n n

Here we outline the proof of the above observation [21].
Let hm un =1, and hm un, = L. If ] = L, there is nothing to prove. As-

sume that (l L)isnot a smgleton and that z € (I, L) is not an accumulation
point of {u,}. Then (i) there exist distinct numbers b and ¢ such that

. I<b<z<e< L,

(ii) there exists a positive integer n; such that for all n > nj, in [b, ¢ there
are no points of {u,}.
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From the assumption u, — un—1 = 0(1), n — o0, it follows that there is
a positive integer ns such that for all n > ngy

[n — tn-1| < c—b.

Since I and L are two distinct accumulation points, there is a positive integer
m > max(ny,ny) such that

Uy < b.
Hence for some n > m u,, < b, because there is no point of {u,} in [b, c]. Then
Unt1 < Up + |[Unp1 —un| <b+c—b=c.

Thus Up+1 < ¢ but Uns1 € [b,¢|. So up+1 < b. By the finite induction on n,
we have that for all n > m u,, < b. Hence

mun=L§b<c<L,

which is a contradiction. Consequently every point in (llm un,hm U,) is an
accumulation point of {u, }. That is, for every z € (hm Un, hm Up,) there exists
a subsequence {u,(;)} of {u,} such that

311(13 Un(z) = 2-

It is clear that every non-convergent bounded sequence contains a con-
vergent subsequence. If AVéO)(Au) = o(1), n — oo is not assumed but
u, = O(1), n — oo, then we still have at least one convergent subsequence
of {un}. A natural question is that under what conditions {u,} would be
bounded. For instance, as we proved in this section that for a sequence
{un} € U, V,SO)(Au) = O(1), n — oo implies that u, = O(1), n — oo.
Recalling the definition of moderately oscillatory behavior of {u,}, we can
have u,, = O(1), n — oo provided that the sequence {u,} in U is moderately-
oscillatory. Observe that, if {u,} € L{ and it is moderately oscillatory, then
{an)(u)} is convergent and since Vi )(Au) = 0O(1), n — oo consequently

= O(1), n — oo. Indeed, we do not need to assume that {u,} is mod-
erately oscillatory to have boundedness of {u,}. If the generator sequence
{V,go)(Au)} is moderately oscillatory, then we still have bounded {u,}.

The following three-way generalization of Canak’s Theorem [5] is needed
for our main result.

Theorem 7. For a real sequence {u,}, let the limit
oo
(27) lim (1—2)) oM (u)z"

z—1- a0
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exist. If{V,SO)(Au)} is moderately oscillatory and AV (Au) = o(1), n — oo,
then there ezists an interval I such that for every z € I there is a subsequence
{un(z)} of {un} converging to 2, i.e., li(rr; Un(z) = 2-

nz

Proof. Since {V,fo)(Au)} is moderately oscillatory, we have

(28) VO(Au) - VI (Au) = O(1), n—
and
(29) VIO(Au) - VD (Au) = 0(1), n— oo

i.e., for some C' > 0 and all nonnegative integers n
(30) V. (Au) - VO (Au) = n(VO(Au) — VI (Au) > —C.
From the existence of the limit (27), it follows that

(31) hm (1- z)ZV(l) (Au)z™ = hm L (1-z Z(G(l)(u) @ (u))z" =0

n=0 n=0
and
lim (1— VD (Au)e™ = - 2 o® (u))z"™ = 0.
I—1'1{1_( T Z (Au)z™ hm (1 .’E)Z(O’ (u) — (u))x 0

By the corollary to Karamata’s Hauptsatz, it follows from (30) and (31) that

—11- ik(v,f”(Au) -V (Aaw) =o(1), n— oo,

This is the original Tauber condition on {V,fz)(Au)}. Hence V7£2)(Au) = o(1),
n — oo. Since {V,fl) (Au)} is slowly-oscillating, from the identity

An| +1
v (80) = V(o + EHEL (0 8u) - (8w
{An] k a o
T, 2 (e -y
n+lj=n

it follows that V,Sl)(Au) = o(1), n — co. Consequently VTSO)(AU) = 0(1),
n — oo. Notice that

(32) o) - P ) = (e (u) — ¢ () = VI (Au) = o(1), n — oo.

n

Since the existence of the limit (27) implies that hm (1-z) Z a u)x

n=0

exists, by the corollary to the original Tauber theorem we have hm a ( ) =
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o0
lim (1—x) ) u,2™. Hence, it follows from (32) that lim aﬁl)(u) = lim (1-—
z—1- n=0 n z—1-

[o ]
z) Y upz™. Finally from u, — a,(})(Au) = 0(1), n — oo, we get u, = O(1),

n=0
n — o00. The assumption A n(o)(Au) = o(1), n — oo is equivalent to Au, =

o(1), n — oco. As we proved earlier, u, = O(1), n — oo and Au, = o(1),
n — oo imply that every point in the interval (lim u,,limu,) is an accumu-
n n .

lation point of {u,}. Therefore, for every z € (limup,limu,) there exists a
n n

subsequence {u,(;)} of {un} such that

lim uy, () = 2.
n(z) (2)

The above theorem could be proved for restricted complex {u,} if the defini-
tion of monotonicity in Petrovic angle given in [22] is used.

One might ask is it possible to have unbounded sequence and still obtain
some information about certain subsequences of {u,}. In other words, is there
any way to get subsequential information about unbounded sequences? To
answer these questions, assume that {u,} is slowly-oscillating, not belonging
to U and unbounded. Since {un} is slowly-oscillating, {o,(ll)(u)} is slowly-
oscillating too, and the sequence {un—a,(ll)(u)} is bounded. From (3) it follows
that {V,,(O)(Au)} is slowly-oscillating and therefore AV,EO)(AU) =o(1), n —
oo. Hence A(u, — aﬁl)(u)) = o(1), n — oco. Now by the fact that has been
proved earlier, there exists an interval I such that for every z € I there exists
a subsequence {up(;) — 07(11()2) (w)} of {un — a,(})(u)} such that

"lli(lg(un(z) - 0,(11()1) (w) = 2.
In other words, by knowing just the slow-oscillation of a sequence, we obtain
subsequential information about the behavior of the difference between the
sequence and its average.

In the next theorem we introduce another condition which implies sub-
sequential information about the sequence {V,-L(O)(Au)}.

Theorem 8. For a real {V,SO)(Au)} let lim V,fl)(Au) ezist. If
n

AVO(Au) = o(1), n — 00
and
[An] k

— 1
(33) e Yo Y av®aw)| <o, A>1
n nk=n+1 j=n+1
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then there exists an interval I such that for every z € I there is a subsequence
{V(O) (Au)} of {Vn(o) (Au)} such that h(rr; V( ) o (Au) = 2.

Proof. First we need the following identities:

for A>1
. An]+1
(i) VO (Au) = VO(Au) + [[/\ ]] (V&zl( u) —
n] &
v (Aw) — N Z 3 av@(aw)
[ n] k—n+1] n+1
Cforl< A< 2
(i) VO (Au) =V (A —
n+1
GO T n‘i’m pojr (Bw) = ViD(Aw)

n

1
-+ 1 2 Z AV} (au)

k=n—[(A-1)n] j=k+1
From identity (i), we have

VO (Au) < VD (Aw) [A"] +1 [V[;,Z](Au)—
1 [An] k 0
(1) .
VD (Au) * > .Z AV (Aw)).
k=n+1 [j=n+1

Taking limsup in 7 of both sides of the above inequality, we get

I V(&) < Em VO (aw) + 12 T V) (8w - VO ()|

[An) k
1 ©
+hrrln Dl =7 E E AV (Au))|.
k=n+1|j=n+1

Since hm V )(Au) exists, the second term in the above inequality vanishes.
Thus,

[An] k
1
hm VO(Au) < hm v (Au) + hm o pv g Z Z AVj(O)(Au) .
k=n+1 [j=n+1

Hence
En—V,fo)(Au) < lim VW (Aw) + K,
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[An] k
where K = hm [m_n P DY AV(O)(Au)
k=n+1 [j=n+1

From identity (ii), we have

= O]+ 10 - (-nm-1(A%) - Vi (Bu)

Z AV}.(O) (Au)|.

j=k+1

ViO(Au) 2 VD sty (B) =

n

1
(A =Dn]+1 2

k=n—[(A—1)n]

Taking liminf in n of both sides of the above inequality, we obtain

0
hm VO (Au) > hmV [(/\ 1)) _1(Au) -

hm(V O 1>n]~1(Au)—V51)(Au>)

,\ —pm
_ 1 " & 0
+lim(-———— AVO Aw)).
T( [(A - l)n] + 1 k=n—%—1)n] _7;-1 ! ( ) )

Since lim V,Sl)(Au) exists, the second term in the above inequality vanishes. -
n
Thus,

lim V9 (Au) > lim V.V (Au) +

n

k
3 avO(aw)

1
(- > )
no (=1l +1 k=n—[(A—1)n] |j=n+1
n k
. Fo 1 0)
> lim V.Y (Aw) — Tim( Z Z AV! (Au)|).
" " [(/\ - l)n] +1 k=n—[(A-1)n |j=n+1 ’
Hence
lim VO (Av) > lim VM (Aw) — M,
n n
where

n

1
M_hﬁn[( A—1)n] + 1 >

k=n—[(A~1)n]

Y AavO(Aw)| < oo
j=k+1

Consequently,
lim VD (u) — M < lim VO (Aw) < Tm VO (Aw) < lim V) (Au) + K.

n
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That is, Vn(o)(Au) = 0(1), n — oo. Since AVn(O)(Au) = 0o(1), n — oo and
{0) (Au) = O(1), n — o0, it follows from the previous results that there exists
an interval I such that for every z € I there is a subsequence { V( (Au)} of

(V9 (Au)} such that lim VO (Au) = 2.

As a generalization of this theorem, if we assume that limit (27) exists,
we obtain subsequential information about {u,}.

Theorem 9. For a real sequence {u,}, let the limit (27) and lim Vn(l)(Au)

exist. If AV,SO)(Au) =0(1), n — o0 and
1 [An] k -
k=n+1 |j=n+1
then there exists an interval I such that for every z € I there is a subsequence
{tn(z)} of {un} such that 11(11; Un(z) = 2-
nz

Proof. The proof follows the lines of the proof of Theorem 8. How-
ever, we need the existence of 1im 09)( ). Since lim V,El)(Au) exists, from

the identity ol )( ) — 0,(12)( )= V,fl)(Au), it follows that nAc? )( ) = O(l),
n — o0o. The existence of the limit (27) implies that hm (1-z) Z o2 u)x

exists. By the Littlewood Theorem, hm on )(u) hm (1-2z) Z 0(1)( Y™

n=0

Consequently, hm ol )( ) exists.

2.2 Subsequential Tauberian theorems for sequences with mod-
erately oscillatory moduli

In the previous section we proposed a new approach to the Tauberian
theory by pointing out that if the conditions for the oscillatory behavior of
{un} are considerably weakened, then the existence of the limit (1) does not
necessarily imply (2). That is, from some weaker conditions we may not con-
clude convergence of {u,} € U but we may obtain a deeper insight into the
structure of the sequence. Also we can obtain some other asymptotic subse-
quential information. For example, we showed that if {u,} € U, u, = O(1),
n — oo and Au, = o(1), n — oo then for every z € (li_mun,mrﬁun) there ex-

n

ists a subsequence {uy,(;)} of {u,} such that li(rr; Un(z) = 2, Later, we observed
nz

that the conditions
(i) Vi%(Au) = 0(1), n - oo,
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(1) {un} is moderately-oscillatory,

(ii) {V,SO) (Au)} is moderately-oscillatory
together with Au, = o(1), n — oo are also examples of conditions that
imply some kind of subsequential convergence. Namely, from (i), (ii) or (iii),
and from the existence of the limit (1), it is not difficult to obtain that for
every z € (lim uy,, lim u,) there exists a subsequence {un(z)} of {uy} such that
n n

li(ms Un(z;) = Z. The above examples and other results suggest a new kind of
ni(z
convergence given in the following definition [21].

Definition 4. A real sequence {u,} converges subsequentially if there
exists a finite interval I(u) such that all accumulation points of {u,} are in
I(u) and every point of I(u) is an accumulation point of {un}.

It is clear from Definition that subsequential convergence implies bound-
edness of the sequence. However, the converse is not true. Namely, there
are bounded sequences which do not converge subsequentially. For instance,
{(=1)"} is a bounded sequence but it is not subsequentially convergent. Since
boundedness is a necessary condition for subsequential convergence, we might
think of it as some kind of summability. This situation is analogous to the
classical one. The existence of the limit (1) which is a necessary condition for
the existence of the limit (2) is called Abel’s summability.

As we discussed earlier, conditions for convergence or subsequential con-
vergence of {u,} were based on the order of magnitudes of {V,so)(Au)} or the
classical modulo denoted by wgo)(u) = nAu,. Now we propose a new modulo
of the oscillatory behavior of order one [19]. Namely,

W (W) = w? (W) - o (WO (u)) =
= nAu, — VO (Au) = nAVO) (Au) = O (VO (Aw))

which controls the oscillatory behavior of {u,} via {wﬁ,o) (VO (Au))}, the clas-

sical modulo of { v (Au)}. This leads to new results and more succinct proofs
of the classical theorems. For example, if {w,(ll)(u)} is moderately oscillatory
and the limit Il_igl_(l —z) n§0 a,(ll)(u)x" exists, then we have convergence of
{un}. See [11] for the proof. Since

oW (@) = VO(Au) - VI(Au) = nAVD(Aw) = D (VD (Aw)),

assuming that {a,(ll)(w(l)(u))} is moderately oscillatory, we cannot conclude

convergence of {u,} from the existence of the limit (1). But we can obtain
subsequential information about {u,}.
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In the previous examples of Tauberian theorems, the conditions of

Tauberian nature were placed either on {u,} or on {0(1)(w(0) (w))}. In the
following theorem we are going to place correspondlng Tauberian conditions

on {on ()}
Theorem 10. For a real sequence {un} let the limit (27) exist, and
let AV,SO)(AU) =o(l), n — oo. If
(35) oD@ () =0(1), n— oo
then {u,} is subsequentially convergent.
Proof. From (35) we have
(36) VO (Au) - VD (Au) = nAVI (Au) = O(1), n— oo.
The existence of the limit (27) implies that

(37)
lim (1—z E:V(I)Auz = lim 1_332:0(1)“_0(2),“ z" = 0.
xll‘l o ( ) :1:11—( )n O(n() n()) 0

Applying the Littlewood Theorem, we obtain from (36) and (37) that
V) (Au) = o(1), n — 00.

Hence we have

(38) oD (W) — o (u) = VP (Aw) = o(1), n— oo
ie.,

(39) nAc®(u) = o(1), n— .

The existence of the limit (27) implies the existence of the limit
4 lim (1 - @

(40) Ei)nll_ z) Za (u)z™.

Applying the corollary to the orlglnal Tauber theorem, we obtain from (39)
and (40) that

hma(2)( )= lim (1 - z) Za(z) (w)z™.
n=0

:1:—»1‘

The identity (38) yields that hrn an)(u) = hrn (1-1x) Z oﬁ)(u)z Since

n=0
V(l)(Au) = 0(1), n — oo, from (36) it follows that Vi 0)(Au) O(1), n — oo.
Finally, from the Kronecker identity u, — ol ( ) = V(O)(Au) we obtain
u, = O(1), n — o0. Since Au, = o(1), n = oo and u, = O(1), n — oo from
the previous results it follows that {u,} is subsequentially convergent.
Next, we propose a generalization of the above theorem by weakening
the boundedness of {07(11) (w (w))} to moderately oscillatory behavior.
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Theorem 11. For a real sequence {un} such that AvO (Au) = o(1),
n — 00, let the limit

(41) lim (1 — ) i ol (w)z™
n=0

T—1-

exist. If {07(11) (wM (w))} is moderately oscillatory, then {u,} is subsequentially
convergent.

Proof. Since {oﬁl)(w(l) (uw))} is moderately oscillatory, i.e., {V,fo)(Au) -
A (Au)} is moderately oscillatory, {Vn(l) (Au) i 740 (Au)} is slowly-oscillating,
(42)  VO(Aw) - VN (Au) - (VD (Aw) = VI (Au) = O(1), n — oo,
and
(43)  ViV(Aw) - VO (Aw) - (VP (Aw) ~ VI (Aw) = 0(1), n— co.
That is,
(44) nA(VD(Au) — V(M) > -C
for some C' -> 0 and all nonnegative integers n. On the other hand, the
existence of the limit (41) implies that

oo [o o]
(45) lim (1-2) ZO Vi (Aw)a" = lim (1 - 2) }_:0 (oD ()=o) (u))z" =0
and consequently,

46 lim (1 - Vi (Au)a™ = lim (1 - Vi (Au)z™ = 0.
(46) z_lg’l_ x);:;) u)z"™ zinla_ a:); (Au)z™

Applying the corollary to Karamata’s Hauptsatz, from (44), (45) and (46) it
follows that

Zk (VP (aw) — v (aw) - (v, (Bw) -

v (Au) = o(1), n— o,

But this is the original Tauber condition. Hence, we obtain

Vn(2)(Au) — V,Ss)(Au) = 0(1), n — co. From (43), it follows that

V,Sl)(Au) — V7$2)(Au) = 0(1), n — oo. Consequently, from (42) we
obtain

V,fo)(Au) - V,fl)(Au) = 0O(1), n > oo. The rest of the proof follows
from the proof of Theorem 10. We would like to remark that Theorem 11.
could have been proved had we used the generalized Littlewood Theorem.
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Notice that if we assume that {V,fo) (Au)— 1) (Aw)} is slowly-oscillating,
then we obtain convergence of {u,}. For the proof see [11]. Recall that

wO(u) = nAuy,
wiP (W) = WO W) — oM (WO (1) = nAuy, — VO (Au).
A close analysis of the previous theorems shows that there is another mod-

ulo of oscillatory behavior whose part we have used in the above theorems.
Namely,

WP (u) = w(w) - oD (WD (w)) =
nAu, — VO (Au) — (VO (Au) — VIO (Aw)).

This suggests that we have to go on with different orders of oscillatory be-
havior. In general, we have

wi™ (w) = WV () — o (W™D () for m > 1 [19].
In Theorems 10. and 11. we set conditions on
e 1wV () = nAV D (Aw).
In the next theorem we will use {nAV,Sl)(AV(O) (Au))} as a modulo of oscil-
latory behavior of {u,}.

Theorem 12. For real {un} such that AVn(O)(Au) =0(1), n — oo, let
the limit (1) exist. If {Vn(o)(AV(O)(Au)) — V,El)(AV(O)(Au))} is moderately
oscillatory, then {un} is subsequentially convergent.

Proof. Since {Vn(o)(AV(O)(Au)) - V,Sl)(AV(O) (Au))} is moderately os-
cillatory, {V,fl)(AV(O)(Au)) - V,Sz)(AV(O)(Au))} is slowly-oscillating, and

VOAVO (Aw) — VIV (AVO (Au))

) ~ VD (AvO(Aw) ~ VP (AVO (Aw))] = 0(1),n — oo
i.e.,
(48) VA(AVO (Aw) - V(AVO) (Aw))

~[VHAVO(Aw) - VI (AVO (Aw)] > —C
for all C > 0 and all nonnegative integers n.
From the existence of the limit (1), we have

Jm 0 =2) D 8" = i (123 ool w)a” =0

and

oo
lim (1 - VI (Aw)z™ = 0.
i ( z);) W(Au)z
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Hence N
lim (1 —2) n;‘) VOAVO (Au))z" =
(49) Jim (1~ w)g (VO(Aw) - VD (Au))z™ = 0,
(50) im (1-2) i VOAVO(AL)) — VAV O(Au))z™ =0
and "
(61)  lim (1-2) 2 VAV (aw) - VP (avO (au))z" =0,

Applying the corollary to Karamata’s Hauptsatz, we obtain from (48), (50)
and (51) that

1
n+1

an KAV (AVO(Aw) - VP (AVO(Aw)] = o(1), 7 — oo
k=0

But this is the original Tauber condition. Hence we have
VAV O (Aw)) — VAV O(Au)) = 0(1), 7 — oco.
From (47) we obtain

(52) vOAVO(Auw)) - vVIIAVO(AW) = 0(1), n—
ie.,
(53) vOAVO(Av) - vIAVO(AW)) > —C

for all C > 0 and all nonnegative integers n.

Applying again the corollary to Karamata’s Hauptsatz, we obtain from
(50) and (53) that

1 1 1
—1 2R (AvOaw) - v avO(au) = of1), n - co.

k=0

But this is the original Tauber condition. Hence we have Vi) (AVO (Aw)) =
o(1), n — oco. From (52) we obtain

VOAVO(AR) = VO(AW) - V(Aw) = 0(1), n — oo.
The rest of the proof follows from the proof of Theorem 10.
Replacing the moderately oscillatory condition for

{VOavO(aw) - vI(AVO(Au)}

by a stronger condition, VO (AV©® (Aw)) -V (AVO) (Aw)) = O(1), n — oo,
we obtain a corollary to Theorem 12.
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Corollary 1. For a real sequence {u,} such that AVn(O)(Au) = o(1),

n — 00, let the limit (1) exist. If
vO(AVO(Aw)) - vI(AVO(AW) = O(1), n— oo,
then {un} is subsequentially convergent.

In the next theorem we will use {nAV,EI)(AG(l)(w(l)(u)))} to control
the oscillatory behavior of {u,}.

Theorem 13. For a real {u,} such that AV,gO)(Au) = 0(1), n — oo,
let the limit (1) ezist. If {Vi2 (Ao (WD (1)) - Vi (Ac® (WD (1))} is mod-
erately oscillatory, then {u,} is subsequentially convergent.

Proof. Since {Vn(o)(Ad(l) (D () — VI (AcD (D ()} is moder-
ately oscillatory, {V,Sl) (Ao (W) (u)))——Vn(Z) (Ao (W (u)))} is slowly-oscillating
and
Va2 (80D (D (w))) = Vi (A0 (D (w)))

(54) D (A (oM C) (Ao (oD (w)))] =
—[Va (AW (P (w))) = V¥ (Ao (W (u)))] = O(1),n — o0
ie.,
(55) AV (20D (WM (W) - VP (AP (V)] = 0@1), n— .
From the existence of the limit (1), we have

o0

lim (1 - O (Au)z™ =
Ilf{l—(l z) nz:;) V' (Au)z
oo
im (1 — e no_
Jm (=93 i = of w)e" =0

b 0
lim (1-2) ) o (w®(u)z™ = lim (1 - ) > VO(Au) - VI (Au)z™ =0

z—1~

n=0 n=0
Jim (1-2) 5 VO (A0 WO w))e”
(56) - n=0
=lim (1-2) > VO (Aw) - VO (Au) — (VD (Bu) - VB (Aw))lz™ =0
ol n=0
and
(57) Jim (1-2) 7;0 VO (A (W (u))z"™ =

lim (1~ V@& AD (1D n_
im ( x)f;} "D(AcD (WD (w)z™ =0
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By the Littlewood Theorem, it follows from (55) and (57) that
V080D w0 (W) - V(A0 @D () = o(1), 7 - oo.
From (54), we obtain
(58)  VOAeD (W) - VD (AcD WD) = 0(1), n— oo,
ie.,
(59) nAV) (A (WM (w)) = 0(1), n— .
Again by the Littlewood Theorem, (57) and (59) imply that
V(A (WD (w)) = 0(1), n— oco.
Consequently, it follows from (58) that
(60) VO(AeW (D (w) =
oD (W) - (DWW (W) = O(1), n — oo
ie., '
(61) nAc@ (W) = 0(1), n— oco.
Applying the Littlewood Theorem once more, we obtain o) (W (u)) = o(1),
n — oo. It follows from (60) that
62) oWV w)) = VO(Au) -V (Au) =nAVI(Au)=0(1), n— .
By the same argument, Vn(l)(Au) = 0(1), n — 0. Finally, from (62) we obtain
,fo)(Au) = 0(1), n — oo. As we showed earlier, V,SO)(Au) =0(1),n —> o0
and AV,SO)(Au) = 0(1), n — oo, together with the existence of the limit (1)
imply subsequential convergence of {u,}.
Replacing the moderately oscillatory condition for { v (Ac® (WM (1)) -
Vi) (Ac® (wD(u)))} by a stronger condition,
VO(AeW (Wl (W) - V(AW (WD (w))) = 0(1), n— oo,
we obtain a corollary to Theorem 13.
Corollary 2. For a real sequence {u,} such that AV,SO)(A'U.) = o(1),
n — 00, let the limit (1) exist. If
V(A (V@) - VD (AcW (D) = 0(1), n— oo
then {un} is subsequentially convergent.

We will close this section by the following observation and restating
some of the results we have already proved. By doing this we shall gain a new
insight about our results.
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Recall that w (u) = nAu,. If we do not look necessarily at the classical
modulo of the sequence {u,} but rather the classical modulo of the (C,1)-
mean of the sequence, then we have

WO (0D (W) = nAoP(w) = n(o () — o, (w) =
=u, — oM () = VO (Av).

Therefore, when convenient {ws,o)(a(l)(u))} and {V,EO)(Au)} may be inter-

changed. By assuming that {w,(lo) (e (w))} is slowly-oscillating, we obtain con-

vergence of {u,} from the existence of the limit (1). For w7(10)(0(1) (u)) = O(1),

n — oo, we do not get convergence but subsequential convergence of {u,}.

Now consider the modulo wg)(a(l) (u)),

wP (oM (W) = (oM (w) - o P (W (6 (w))) =
VO (Au) — V) (Aw).
By replacing o) (W (u)) = 0(1), n — oo with w,(ll)(a(l)(u)) = 0(1),n - oo,
Theorem 10. can be restated as the following.

Theorem 14. For a real {u,} such that AV, (Au) = o(1), n — oo,
let the limit (1) exist. If {wg)(o(l) (u))} is bounded, then {u,} is subsequen-
tially convergent.

In the above theorem, instead of assuming the existence of the limit (1),

we could have assumed that liril_(l - ) i oM (u)z™ exists and still obtain
subsequential convergence ofz{un}. i

Replacing w,(})(a(l) (u)) = O(1), n — oo by moderately oscillatory
{wg)(a(l)(u))}, we obtain a generalization of Theorem 14 which is a restate-
ment of Theorem 11.

Theorem 15. For a real {un} such that AV,SO)(A’U,) = 0(1), n — oo,
let the limit (1) exist. If {w,(,l)(a(l)(u))} is moderately oscillatory, then {un}
is subsequentially convergent.

3. Regularly generated sequences

3.1 Introduction

In this section we will study regularly generated sequences first intro-
duced in [19, 20]. Let £ be any linear space and let B be a class of sequences
{Bn} from L. The class U(B) consisting of sequences defined by

~\ B
u”zB"-}'ZTk’ for all n
k=1
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is the class of all regularly generated sequences {u,} by the class B.

For instance, if B is the class of all bounded slowly-oscillating real se-
quences, then U(B) is the classical class of slowly-oscillating sequences and the
sequence {u,} € U(B) is convergent if the limit (1) exists. In what follows, we
shall sketch a rather brief proof of this classical result based on the corollary
to Karamata’s Hauptsatz.

Since Vn(o)(Au) = 0(1), n — oo, there exists C' > 0 such that v (Au) >
—C for all nonnegative integers n. The existence of the limit (1) implies that

[o ) o0

(63) lim (1-z) Z VO (Au)z"= lim (1 — z) Z (tn — oV (u))z" =0.

r—1- z—1—

n=0 n=0

Then by the corollary to Karamata’s Hauptsatz ol )(V(O) (Au)) = v (Au) =
0(1), n — oo. Indeed, V0 )(Au) > —C and (63) imply that

hm e (VO (Au)) = lim (1 -z ZV(O (Au)z™ = 0.

:c—»l_ 0

Since {V,SO)(Au)} is slowly-oscillating, from the identity

An] + 1
VI (@) = V() + FEE L () - VD (aa)
& v ©
S Y 100w - V0w
’\n]_nk =n+1j=n+1 .

it follows that V,SO)(Au) = 0(1), n — oo. Hence
up — oM () = nAcH () = VO (Au) = 0(1), n— oo,

By the corollary to the original Tauber theorem, we have

and finally

limu, = lim (1 —x) Zunac

z—1-

However, if B is the class of all slowly—oscﬂlatlng sequences, the class
U(B) is not a classical class, although it is easy to show that if the limit

(64) lim (1 —z) Za(l)

:1:—»1‘
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o0
exists, then lim Uy = lim (1-2z)> 0',(11)(11)1:". From the slow-oscillation of

—1- n=0
{Vi9(Au)}, we have Vn"’(Au) Vi (Au) = 0(1), n — o0, i,
(65) nAV N (Au) = 0(1), n— .

The existence of the limit (64) implies that

(66) lim (1-2) Z V) (Au)z" = lim (1-z Z (e (w)— P (u))z™ =0.
n=0 n=0

In contrast to a similar proof of the previous result, we can not use one sided

boundedness of {nAV,E1 (Au)} although we have it, because we do not know

whether or not the limit hm L (1-2) Z (Vn(o) (Au) — V,fl)(Au))x" exists. Best

n=0

way to avoid this is to apply the Littlewood Theorem. That is, from (65) and
(66) by the Littlewood Theorem we have V(l)(Au) = 0(1), n — oo. Then
V.,,(O)(Au) = 0(1), n — oo, i.e., up — or,(l)(u) = nAod (u) O(1),n —oo. It
seems that we need to use the Littlewood Theorem one more time. However,
this can be avoided in two ways. First, recalling

oD (@) — 6P (w) = VO(Au) = 0(1), 7 — oo,

we have hm ol (u) llm (1-2) Z on )(u):z:" by the corollary to the original
=0
Tauber Theorem, Wthh is more eilementary than the Littlewood Theorem. In

conclusion, hm on )(u) hm L (1-2) E ot )(u) ™. The rest of the proof goes
n=0
as in the previous result.
It is possible to give another proof based on Qanak’s Theorem [4]. Since
{V,SO) (Aw)} is slowly-oscillating, so are {un} and {07(11) (u)}. Using the gener-
alized Littlewood Theorem, we have

o
liyrln oM (w) = lim (1 - 2) Z oD (u)z™.

z—1-

n=0
Since {u,} is slowly-oscillating and (C, 1)-summable, using the identity
An|+1
tn = 90 + G 00 0) - o w)
An] Kk
Z Z (uj — ;1)
[/\n] Ic-n+1 j=n+1

we obtain hm Up= lim (1-=z Z a(l)(u):z:".

z—1~ n=0
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Throughout this dissertation, we shall consider Tauberian conditions.
from which convergence or subsequential convergence are implied from the
limit (1). To this end, we will continue to study the classes U(B) of all regularly
generated sequences {u,} by the class B and obtain corresponding Tauberian
theorems.

For instance, consider {un} from the class U(B) where B is the class of
all bounded sequences { B, }. In this case, we obtain subsequential convergence
of {un}

Theorem 16. For a real sequence {u,} such that AV,EO)(Au) = o(1),
n — oo, let the limit (64) exist. If {un} € U(B) where B is the class of all
bounded sequences {Br}, then {u,} is subsequentially convergent.

Proof. From {u,} € U(B), it follows that for some bounded sequences
{Bn} and all n

"\ B
= Tk
(67) un—Bn+Zk-
k=1
The representation (67) implies that
Bk B,

and
nAu, =n(B, — B,—1) + B, = nAB, + By,.

If we take (C, 1)- means of the last equality, we obtain

VO (Au) = Z Ft ZBk VO(AB) +c()(B) =

Since {B,} is bounded, we have v )(Au) = 0(1), n — oo, and

(68) un = oD () = VO(Au) = O(1), n— oo,
ie.,
(69) nAcH(u) = 0(1), n— .

Applying the Littlewood Theorem, the existence of the limit (64) and (69)
yield

(70) limof)(u) = lim (1 - z) Z 1 (y

-1~
From (68) and (70), we obtain u, = O(1), n — co. The assumption
AVO(Au) = o(1), n — o0
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together with (70) imply that Au, = o(1), n — oo. Since u, = O(1), n —
oo and Au, = o(1l), n — oo, finally we obtain that the sequence {u,} is
subsequentially convergent. _

Taking generators to be moderately oscillatory, we obtain a considerable
generalization of the above theorem.

Theorem 17. For a real sequence {un} such that AV,SO)(AU) = o(1),
n — oo, let the limit (64) exist. If {un} € U(B') where B’ is the class of all
moderately oscillatory sequences { By}, then {un} is subsequentially conver-
gent.

Proof. From {u,} € U(B') it follows that for some moderately oscilla-
tory sequences {B,} and all n

n
From the above representation we obtain Vn(o)(Au) = 27 2 kAu, = By,
k=1

Since {B,} is moderately oscillatory, {V,SO)(Au)} is moderately oscillatory,
and

(712) Vi (Auw) - VD (Au) = 0(1), n— oo,
ie.,
(72) nAVI (Au) = O(1), n — oco.
The existence of the limit (64) implies that
[e o]
- — (1) n_
(73) im (1 - ) > v (Au)z
n=0
o0
lim (1 - z) > (0P (w) ~ oD (w))z™ = 0.
= n=0
Applying the Littlewood Theorem, (72) and (73) imply that
(74) VI(Au) = 0(1), n— oo,

From (71) and (74) it follows that ,SO)(Au) = 0(1), n — co. The rest of the
proof follows from the proof of Theorem 16.
3.2 3.2. Tauberian theorems for regularly generated sequences

In the introduction of this chapter, we defined regularly generated se-
quences and proved corresponding Tauberian theorems. In this section, we
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will continue our study of regularly generated sequences by extending the
class U(B) that we defined earlier.

In the previous section we let £ be any linear space, B be a class of
sequences {Bp} from £, and the class U(B) consist of sequences

"B
u”=B"+ZTk’ for all n.
k=1

Now we define a new class U(8*) [19, 20] as follows:
Definition 5. Let B* be the class of all sequences {B;.} such that for
some {Br} € B and all n
n
By
B = —.
n=0
k=1

The class U(B*) is the class of all regularly generated sequences by B*
if for any {u,} € U(B*) there exists a sequence { B} € B* such that for all n

k
n n n Z El
(75) un= B+ Ok Zﬂ+zj=1]
" k k k
k=1 k=1 k=1
While the class U(B) describes the classical slowly-oscillating series for
all bounded and slowly-oscillating sequences {B,}, the class U(B*) is an ex-
tension of the class U(B). The next theorem is the corresponding Tauberian
theorem for that extended class.

Theorem 18. Let the limit (1) exist. If {un} € (B*), then

o0
lim (1 - z) Zuna:".

z—1- ne0

Proof. The representation (75) implies that

n B* n—1 B*
nAu, = n(tn — Up—1) =N (B,*L + E Tk -B_ - Z 7’“) =

limu, =
n

k=1 k=1
o~ By
. B* n B n—lB Z: %
:n<Bn_B:1_1+—")=n ka_ Tk-i'k_; =
k=1 k=1
Y B n
B, | k=1 By,
—n| 22 =B, Zk
" n n +Z k
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and :
Vi (Au) = of)(B) + o) (B").
Then '
nAu, — V(O)(Au) =B, -0 (B)+ B - (1)(B*) =
=Bn—a,(Ll)(B) — ZkABsz —al( (B)+ —— kf: %’zz
= By - a$1>(B) +0o{(B) =
Since {B,} is bounded, we have
(76) nAu, — VO (Au) = nAVO(Au) = 0(1), n — co.
The existence of the limit (1) implies that
(77)  lim (1-2) 2 (tun — oD (u))z" = im (1- :z:)ni:;)V,So)(Au):c” =0.

Applying the Littlewood Theorem, from (76) and (77) we obtain v (Au) =
0(1), n — oco. Hence

(78) un — oV (u) = VO(Au) = o(1), n— .
Finally by the original Tauber Theorem we have hrn Uy, = hnll (1-z Z UnT
et n=0
The class U(B) is contained in U(B*). Because, if B is the class of all
bounded slowly-oscillating sequences then B* is the class of all sequences {B;;}

n
such that for some {Bn} € B and all n, B = Y Z&. Since {un} € U(B*)
k=1

means that for some slowly-oscillating {B}}
n
B*
e = B4y 2,
k=1
comparing this with the classical case, i.e.,
n
B
Up = B'n, + Z Tk’
=1

for some bounded slowly-oscillating sequence {B,}, we have

UB) GU(B").
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