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AN ALTMAN TYPE GENERALIZATION OF
THE BREZIS-BROWDER ORDERING
PRINCIPLE

Arpéad Szdaz

Abstract. By making use the ideas of M. Altman, we prove a more
natural generalization of the famous ordering principle of H. Brézis and
F.E. Browder.

1. Introduction

The following simple, but important ordering principle was first proved
by Brézis and Browder [2]. (See also [9, p.163].)
Theorem 1. Suppose that @ is an increasing real-valued function of an
ordered set X such that:
(a) for each x € X there exists y € X, with x <y, such that o(z) < o(y);
(b) for any increasing sequence (x,) in X, with sup,cy @(Tn) < 400, the
sequence () is bounded.
Then, supys, w(y) = +oo for allz € X.
As a direct consequence of this theorem, the above authors have also
established the following useful maximality principle.

Corollary 1. If X is an ordered set such that each increasing sequence
in X is bounded, and there exists a strictly increasing real-valued function of
X which is bounded above, then X has a mazimal element.

The above Theorem 1, having in mind the function defined by ®(z,y) =
w(z) — p(y) for all z,y € X, was to some extent generalized by Altman [1] in
the following less satisfactory dual form. (See also [8, p.515].)

Theorem 2. Let X be an ordered set, and suppose that ® is a real-
valued function of X? such that:
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1) —oo < inf &(z,y) for ally € X;
z<y

(1)

(2) ¢(z,y) <0 forallz,y € X withx <vy;

(8) ®(x,y2) < ®(x,y1) for all z,y1,y2 € X with y1 < yo;

(4) every decreasing sequence (z,) in X is bounded below, and moreover
m po 0o ®(Znt1, ) = 0.

Then, there exists a y € X such that ®(z,y) =0 for all x € X withz < y.

As a direct consequence of this theorem, M. Altman has also stated

Corollary 2. Suppose that the hypotheses of Theorem 1 are satisfied,
with the assumption (2) replaced by the one that ®(x,y) < 0 for all z,y € X
with x < y. Then, X has a minimal element.

Actually, the above authors have proved that the family of all maximal
(minimal) elements of X is cofinal upward (downward). However, this state-
ment seems to be of no particular importance. Since, for each z, € X, we
may restrict ourselves to the ordered set Xo = {x € X : z, < z}(Xo = {z €
Xz < 20}).

Therefore, in the sequel, we shall only give some natural generalizations
of Theorem 1 and Corollary 1. For this, we shall have in mind the function
defined by ®(z,y) = ¢(y) — ¢(z) for all z,y € X. Moreover, we shall replace
ordered sets by preordered ones. Applications of our generalizations will be
presented elsewhere.

2. An ordering principle

A reflexive and transitive relation < on a nonvoid set X is called a
preorder on X, and the ordered pair X (<) = (X, <) is called a preordered
set. In the sequel, we shall simply write X in place of X (<).

Now, by making use the ideas of H. Brézis, F.E. Browder and M. Alt-
man, we can easily prove the following generalization of Theorem 1.

"Theorem 1. Let X be a preordered set, and suppose that ® is a real-
valued function of X? such that:

(1) 0 < ®(z,y) forallz,y € X withz <vy;
(2) for each z € X there exists y € X, with z <y, such that 0 < ®(z,y);
(3) ®(z2,y) < ®(z1,y) for all 21,22,y € X with z1 < 29 and 29 < y;
(4) for any increasing sequence (z,) in X, with sup,eny Y(21,2,) < 400,

the sequence (zn) is bounded and lim 00 ®(2n, Tpny1) = 0.

Then, sup,>, ®(z,y) = +oo for allz € X.
Proof. For each z € X, define

p(z) = sup &(z, y).
y2z
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Then, by the condition (2), it is clear that ¢ is a positive function of X.
Moreover, by using the property (3) and the transitivity of the relation <, we
can easily see that ¢ is a decreasing function of X. Namely, if z;,z2,y € X
such that z; < x9 and x9 < y, then we evidently have

®(x2,y) < O(z1,y) < sup 2(z1, 2) = p(z1).

221

And hence, it is already quite obvious that

o(z3) = sup ®(2,9) < o(z1).

y2z2
Now, to prove the required assertion that ¢(z) = +oo for all z € X,
assume on the contrary that there exists an z; € X such that ¢(z;) < +o0.
Then

p(z1) — 1 < p(z1) = sup 2(z1,y).
Y271

Therefore, there exists an x9 € X, with z; < 9, such that
p(z1) — 1 < &(z1, 22).
Moreover, we can also note that ¢(z2) < ¢(z1) < +00. Therefore,

o(z2) — 27" < (z2) = sup (z2,y).
Y232

Thus, there exists an z3 € X, with x5 < z3, such that
o(z2) — 27 < B(x2, z3).
Hence, by induction, it is clear that there exists an increasing sequence
(zr) in X such that
0(xn) =0t < B(2n, Tny1)
for all n € N. Moreover, we can also note that

sup‘I’(zl,zn) < sup ‘I’(xliy) = (p(ml) < -+o0.
neN y2>z)

Therefore, by the property (4), there exist an z € X such that z, <z
for all n € N. Moreover, there exists a strictly increasing sequence (k,) in N
such that

lim (b(xkn,xkn+1) =0.
n-—00

Now, if y € X such that z < y, then by the property (1) and the above
observations it is clear that

0< &(z,y)= gggé(m, z) = p(x) < p(zk,) <

B(zg,, Thpt1) + k! < O(Thyy Thpt1) + 170
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for all n € N. Hence, by letting n — oo, we can infer that 0 < ®(z,y) < 0,
and thus ®(z, y) = 0. However, this is already a contradiction by the property
(2). Therefore, the assertion of the theorem is true.
Now, to demonstrate the appropriateness of the above theorem, we can
also prove
Corollary 3. Suppose that ¢ is an increasing real-valued function of a
preordered set X such that:
(a) for each x € X there exists y € X, with x <y, such that p(z) < p(y);
(b) for any increasing sequence (z,) in X, with sup,cy @(2n) < +o0, the
sequence (z,) s bounded.
Then, sup,>g ¢(y) = +oo for allz € X.
Proof. Define

0(z,y) = o(y) — ¢(z)
for all z,y € X. Then, by the increasingness of ¢ and the property (a), it is
clear that the hypotheses (1) and (2) of Theorem 3 are satisfied.
Moreover, if z1, 22,y € X such that z; < x5, then also by the increas-
ingness of ¢, it is clear that

B(x2,y) = p(y) — p(22) < 0(y) — p(z1) = B(21,9)-
Thus, in particular, the hypothesis (3) of Theorem 3 also holds.
On the other hand, if (z,) is an increasing sequence in X such that
suppen (21, 2n) < 400, then we evidently have

sup ¢(za) = sup(p(zn) — o(z1) + o(z1)) =
néeN neN

sup (®(z1, Ta) + p(1)) < sup &(z1, 25) + p(21) < +00.
neN neN
Therefore, by the property (b), there exists an = € X, such that z, < =z

for all n € N. Hence, by the increasingness of ¢, it is clear that ((p(xn)) is an
increasing sequence in R such that

lim (2n) = sup p(en) < 9(c)-
n—o0

neN
Therefore,
lim @(@n, Tnp) = lim (9(znr1) — o(on)) =

Jim o(zn41) — lim ¢(zn) = 0.
Thus, in particular, the hypothesis (4) of Theorem 3 also holds. There-
fore, by the conclusion of Theorem 3, we necessarily have

+00 = sup ®(z,y) = Zgg(w(y) —o(z)) < sup o(y) — o(z),

and hence sup p(y) = +oo for all z € X.
y2c
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3. A maximality principle

An element z of a preordered set X is called maximal if z < y implies
y < z for all y € X. In particular, we say that z is a strong maximal
element of X if 2 < y implies z = y for all y € X.

Note that thus each strong maximal element of X is also a maximal
element of X. Moreover, if in particular X is a partially ordered set, then the
two notions coincide.

A possible extension of Zorn’s lemma says that if each well-ordered
subset of a preordered set X has an upper bound, then X has a maximal
element. (See [7] and [8, p. 32].)

Therefore, it is of some interest to establish the following generalization
of Corollary 1.

Theorem 1. Let X be a preordered set such that there exists a real-
valued function ® of X2 such that:

(1) sup ®(z,y) < +oo for some x € X;
vz

(2) 0< ®(z,y) forallz,y € X with z < y;
(3) ®(z9,y) < ¥(z1,y) for all 21,20,y € X with 1 < z9 and 22 < y;
(4) for any increasing sequence (z,) in X, with sup,eny (1, 2,) < +00,

the sequence (x,) is bounded and lim 0o ®(Zn, Tns1) = 0.

Then, X has a strong mazimal element.

Proof. The condition (4) implies that ®(z,z) = lim,—®(z,x) = 0
for all z € X. Therefore, the hypothesis (1) of Theorem 3 is also satisfied.
However, the conclusion of Theorem 3 does not hold. Therefore, the hypothesis
(2) of Theorem 3 cannot also hold. Thus, there exists an z € X such that
O(z,y)=0forally e X withz <y.

Now, it remains only to show that z is a strong maximal element of
X. For this, note that if this not the case, then there exists a y € X, with
z < y, such that z # y, and hence < y. Then, by the above property of z,
we necessarily have ®(z, y) = 0. Moreover, by the condition (2), we also have
0 < ®(z,y). And this contradiction proves the required maximality of z.

Now, to demonstrate the appropriateness of the above theorem, we can
also prove

Corollary 4. Let X be a preordered set such that there exists a strictly
increasing real-valued function ¢ of X such that:
(a) supy>; ¢(y) < +oo forsomez € X;
(b) for any increasing sequence (x,) in X, with sup,ey ¢(z,) < +oo, the
sequence (zp,) 1s bounded.
Then, X has a strong mazimal element.
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Proof. Again, define ®(z,y) = ¢(y) — ¢(z) for all z,y € X. Then,
from the proof of Corollary 3, it is clear that the hypotheses of Theorem 4
are satisfied. Therefore, the required assertion is also true.
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