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SOME PROPERTIES SIMILAR TO )
COUNTABLE COMPACTNESS AND LINDELOF
PROPERTY

Dusan Milovangevié

Abstract. In this paper we further investigate the results given
in [7], [8], [9]. In Section 2 we consider spaces X for which the closure
of each countably compact (strongly countably compact, hypercount-
ably compact) subspace of X has countably compact (strongly count-
ably compact, hypercountably compact) property. In Section 3 we study
some notions related to the classical concepts of being a Lindel6f, Menger
or a Rothberger space.

1. Introduction

The closure of a subset A of a space X is denoted by clx(A). In this
paper we assume that all spaces are Hausdorff. For notions and definitions
not given here see [6], [8], [12].

Definition 1.2. A space X is said to be absolutely countably compact
(ACC space) if for every open cover v and every dense subspace Y C X the
cover ¥\ = {St(z,v) : x € Y} has a finite subcover of X (see [10]).

It is clear that every ACC space is countably compact.

Definition 1.3. Let X be a topological space.

(a) A space X tis hypercountably compact (HCC') if every o-compact set in

X has compact closure in X (see [12]).

(b) A space X is strongly countably compact (SCC) if every countable subset
in X has compact closure in X (see [8]).

(¢) A space X is exponentially countably compact (ECC) if the hyperspace
exp(X) of X is a countably compact space (see [13]).
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2. CLCC, CLSC, CLHC, CLC spaces

It can be shown that the closure of every pseudocompact subspace of
a space X is a pseudocompact subspace of X. Since countable compactness
implies pseudocompactness, the closure of every countably compact subspace
of a space X is a pseudocompact subspace of X.

It is known that in the class of normal spaces countable compactness and
pseudocompactness coincide, so that the closure of every countably compact
subspace of a normal space X is a countably compact subspace of X.

In the class of ACC spaces every countably compact space is a closed
subspace of some ACC space (see [10]).

In the class of first countable spaces strongly countable compactness and
hypercountable compactness coincide, and every countably compact (SCC,
HCC) subset of a first countable space X is closed in X. The proof of these
facts is given in [12]. The following example shows that the first countability
cannot be omitted from this assertion.

Let M be the Cartesian product of the interval I = [0, 1] with the usual
topology and [0, w1], where [0,w;] is the space of ordinals less then or equal to

the first uncountable ordinal with the order topology. Let X = M\ {(c,w1)} :

1 27
3 <a< 3 L be a subspace of M. The space X is not countably compact since

2 1
the subset A = {(5 + E’wl) 'ne N} of X has no limit point in X and

X is not first countable. According to Proposition 2.8 in [12] the subspace
Y = [0,1] x [0,w;) of X is a countably compact (SCC, HCC) space and
clx(Y) = X. This example induces the following definition:

Definition 2.1. A topological space X will be caled a CLCC — space
if each countably compact subspace of X has couniably compact closure.

Remark. A : Let X be a countably infinite space with the discrete
topology. It is clear that X is a CLCC space but it is not pseudocompact.

B : The deleted Tychonoff plank X = [0,w;] X [0,wp] \ {(w1,w0)} is
a pseudocompact space which is not countably compact. Furthermore, since
Y = [0,w;) X [0,wo] C X is a countably compact (SCC, HCC) subset such
that clx(Y) = X, it follows that X is not a CLCC space.

The following propositions are straitforward.

Proposition 2.2. (a) Every compact (HCC, SCC, ECC, ACC, se-

quentially compact, countably compact, normal, first countable, metrizable)
space is CLCC.
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(b) Let Y be a countably compact subspace of CLCC - space X and let
cx(Y) = X. Then CLCC property and countable compactness coincide in
the space X.

Proposition 2.3. Let X be a CLCC space and Y be the closed sub-
space of X. Then'Y is a CLC'C space.

Proposition 2.4. The discrete sum @{X; : s € S}, where X; # 0 for
every s € S, has the CLCC property if and only if all spaces Xs have the
CLCC property and the set S is finite.

Proposition 2.5. If X is a CLCC space and Y is a compact space,
then X xY is a CLCC space.

Proof. Let Z be a countably compact subset of X xY and px(Z), py(Z)
the projections of Z onto X, Y. Since the projections px : X XY — X py :
X xY — Y from X xY onto X, Y are continuous mappings, the sets
px(Z), py(Z) are countably compact subsets of X, Y. Since X has the
CLCC property and Y has the compact property, the closure clx(px(Z)) is
a countably compact subset of X and the closure cly (py(Z)) is a compact
subset of Y. It is known that the Cartesian product clx (px(Z)) x cly (py(Z))
of countably compact set clx(px(Z)) and compact set cly (py (Z)) is a count-
ably compact subset of X x Y. Furtrermore, the set clx(px(Z)) x cly (py (Z))
is a closed subset of X xY and Z C clx(px(Z)) xcly (py(Z)). Since the count-
ably compact property is hereditary with respect to closed sets, it is easy to
see that the closure clxxyv(Z) C cx(px(2)) % cly(py(Z)) is a countably
compact subspace of X x Y. R

Remark. Let X be the product of spaces X,, a € A.

A: If every X,, a € A, is ECC space and A is a finite set, then X is a

CLCC space.

B: If every X,, a € A, is sequentially compact space and A is a countable
set, then X is CLCC space.

C: If every X,, a € A, is HCC(SCC) space, then X is a CLCC space.

Proposition 2.6. Let f : X — Y be a perfect mapping of a CLCC
space X onto a space Y. Then'Y is a CLCC space.

Proof. Let P be a countably compact subset of Y. Since countably
compactness is an inverse invariant of perfect mappings, the set f=!(P) is
a countably compact subset of X. By the CLCC property for the space X,
the closure clx (f~!(P)) is a countably compact subset of X. By perfectness,
flelx(f~1(P))) is a countably compact and closed subset of Y. Furthermore,
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the closure cly (P) C f(clx(f~*(P))). Since countably compact property is
hereditary with respect to closed sets, it follows that the closure cly (P) =
cly(ay(r-1(P))) (P) is a countably compact subset of Y. Hence the space Y has
the CLCC property.ll

The following example shows that the continuous image of a CLCC
space need not be a CLCC space.

1 2
Example 2.7. Let X = [0,1]x [0, w;|\{(c, w1)} : z<ac< 5} have the
1 2
discrete topology and let Y = [0, 1] x [0,w1] \ {(e, w1)} : 3 <a< 5} be the

subspace of the product [0, 1] x [0,w1], where [0, 1] is with the usual topology
and [0,w;] is the space of ordinals less then or equal to the first uncountable
ordinal with the order topology. It is clear that the mapping f : X — Y
defined by f(z) =z, for all z € X, is an continuous surjection. The space X
has the CLCC property, but Y is not a CLCC space.

Remark. It is well known and easy to see that the following hold:

A: It is known that every first countable space is a continuous and open
surjection of a metric space. Hence, by Proposition 2.2, every continuous
and open image of a metric space is a CLCC space.

B: Every normal space which has a unique compactification has the CLCC
property.

This is clear since every normal space which has a unique compactifi-
cation is pseudocompact (and locally compact). It is known that in the class
of normal spaces pseudocompactness and countable compactness coincide.

The following definition gives an information when spaces satisfy the
CLCC- property.

Definition 2.8. Let X be a topological space and CC(X) the collection
of all countably compact subsets of X. Then:

(a) The space X is a CLSC — space if each member of CC(X) has strongly
countably compact (SCC) closure.

(b) The space X is a CLHC — space if each member of CC(X) has hyper-
countably compact (HCC') closure.

(c) The space X is a CLC — space if each member of CC(X) has compact
closure.

Remark. A : [t is clear that (¢) = (b) = (a) = CLCC property.

B: Note that in the class of: compact spaces, metrizable spaces, Lindelof
spaces, o-compact spaces, paracompact spaces, first countable spaces,
realcompact spaces these properties coincide.



Some properties similar to countable compactness and Lindeldf property 71

C: Let Y be a countably compact subspaces of a CLSC (CLHC, CLC)
space X and let clx(Y) = X. Then SCC property (HCC property,
compactness) and CLSC (CLHC, CLC') property coincide in the space
X.

D: S.P.Franklin and M.Rajagopalan have constructed in [7] a compactifi-
cation of integers with remainder homeomorphic to [0,w;]. Removing
{wy} gives the space YN \ {w1} which is normal, separable, locally com-
pact, first countable, sequentially compact but not strongly countably
compact.

E: Propositions 2.3, 2.4 and 2.6 are true for (a), (b) and (c) property.

Proposition 2.9. Let X be the product of space X,,a € A. If each
Xg,a € A, is a CLSC(CLHC, CLC) space, then X is a CLSC (CLHC,
CLC) space.

Proof. CLSC case: Let Z be a countably compact subset of X and
the sets p,(Z),a € A, projections of Z onto X,. Since the projections pg :
X — X, from X onto X,,a € A, are continuous and open mappings, the
sets pa(Z),a € A, are countably compact subsets of X,. Every X,,a € A,
have CLSC property. Therefore, every subset clx, (p.(Z)) C X,,a € A,
is SCC. Since SCC property is multiplicative, it follows that the product
x{clx,(p.(Z)) : a € A} is a SCC subspace of X. Furtrermore, the product
x{clx,(pa(Z)) : a € A} is a closed subset of X and Z C x{clx,(pa(Z)):a €
A}. Since SCC property is hereditary with respect to closed sets, it follows
that the closure clx(Z) is a SCC subset of X.

CLHC(CLC) case is proved in a similar way. l

Corollary 2.10. The inverse limit of an inverse system of CLSC (CLHC,
CLC) spaces is a CLSC (CLHC, CLC) space.

We close this section by the following question.
Question 2.11. Is it true that every normal and C LSC spaceis CLHC?

3. Some properties similar to the Lindelof property

Definition 3.1. A space X is Menger(Rothberger) if for each sequence
(Un,n € N) of open covers of X, there exists a sequence (Vy,,n € N)(V,,n €
N), where for every n € N,V, is a finite subfamily of Up(V,, € U,) and
WVa:neN}=X(U{V,:ne N} = X)(see [9]).

It is clear that every Rothberger space is a Menger space and every
Menger space is a Lindelof space.
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In [11] and [13] we consider L — spaces (R — spaces) [L' — spaces]. A
topological space X is called an L — space (R — space) [L' — spaces] if each
countable [Lindelof] subset of X has Lindel6f(realcompact) [Lindeldf] closure.
In the class of L — spaces (R — spaces) [L' — spaces]| strongly countable com-
pactness [hypercountable compactness| and countable compactness coincide.
This criterion of countably compactness induce the following property.

Definition 3.2. Let X be a topological space and CC(X) the collection
of all countably compact subsets of X. Then:

(a) The space X is a LCLCC — space if the closure of each member of
CC(X) has the Lindeldf property.

(b) The space X is a MCLCC — space if the closure of each member of
CC(X) has the Menger property.

(c¢) The space X is a RCLCC — space if the closure of each member of
CC(X) has the Rothberger property.

Remark. A : Observe a simple fact that any property from Defi-
nition 3.2 is an invariant of perfect mappings and is inherited by closed
subspaces(the disjoint topological sum). Furthermore, the Cartesian prod-
uct X x Y of a LCLCC(MCLCC, RCLCC) space X and a compact space
Y is LCLCC(MCLCC, RCLCC).

B : By Definition 2.8, the space X is a CLC — space if each member
of CC(X) has compact closure. It is shown that CLC — property = (¢) =
(6) = (a).

Proposition 3.3. In the class of Tychonoff spaces the properties (a),
(b), (¢) and CLC property coincide.

Peoof. Case (a) = CLC property: This is clear, because the closure
of each member of CC(X) is a Lindel6f (realcompact) and pseudocompact
subspace. Therefore, each member of CC(X) has compact closure. Hence
(a) = CLC property. B

Corollary 3.4. In the class of first countable spaces properties (a), (b),
(¢), CLC — property and isocompactness coincide*.

*A space X is called an isocompact space (ISCC — space) if every closed countably
compact subset of X is compact(see [11]).
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