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INITIAL SEGMENTS IN BCC-ALGEBRAS

Wiestaw A. DUDEK and Xiachong ZHANG

Abstract. The role of initial segments in BCC-algebras is described.

1. Introduction

In 1966, Y. Imai and K. Iséki (cf. [8]) defined a class of algebras of
type (2,0) called BCK-algebras which generalize the notion of algebra of sets
with the set subtraction as the only fundamental non-nullary operation, on
the other hand the notion of implication algebra (cf. [9]). K. Iséki posed
an interesting problem whether the class of BCK-algebras is a variety. That
problem was solved by A. Wroniski [11] who proved that BCK-algebras do not
form a variety. In connection with this problem, Y. Komori [10] introduced
the notion of BCC-algebras, and W. A. Dudek (cf. [2], [3]) redefined the
notion of BCC-algebras by using a dual form of the ordinary definition in
the sense of Y. Komori. In [7], W. A. Dudek and X. H. Zhang introduced a
new notion of ideals in BCC-algebras and described connections between such
ideals and congruences. W. A. Dudek and Y. B. Jun (cf. [4]) considered the
fuzzification of ideals in BCC-algebras. They proved that every fuzzy BCC-
ideal of a BCC-algebra is a fuzzy BCK-ideal, and showed that the converse
is not true by providing a counterexample.

Any BCC-algebra (similarly as a BCK-algebra) may be treatment as a
partially ordered groupoid with a some smallest element. All BCK-ideals and
all BCC-ideals are ideals in the sense of ordered sets, but not conversely.

In this paper we describe the role of initial segments in BCC-algebras
and find the criterion under which the initial segment is a BCC-ideal.

2. Preliminaries

By an algebra G= (G, -,0) we mean a non-empty set G together with
a binary multiplication denoted by juxtaposition and a distinguished element
0. Dots we use only to avoid repetitions of brackets. For example, the formula
((z-y) -(z-y) (z-2z) =0 will be written as (zy - 2y) - zz = 0.
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An algebra (G, -,0) is called a BCC-algebra if it satisfies the following
conditions:

(1) (zy-2y) zz = 0,
(2) zr = 0,
(3) 0z = 0,
(4) z0 = «x,
(5) zy = yx=0 impliesz=y.

The above definition of a BCC-algebra is a dual form of the ordinary
definition (cf. [1], {10]). In our convention any BCK-algebra is a BCC-algebra,
but not conversely. A BCC-algebra which is not a BCK-algebra is called
proper. Note that (cf. [2]) a BCC-algebra is a BCK-algebra iff it satisfies

(6) TY - 2=22-Y
or
(7) (z - zy)y = 0.

Similarly as in the case of BCK-algebras, any BCC-algebra may be
viewed as a partially ordered set with the order < defined by:

(8) z <y iffey=0.

This natural BCC-order has the following properties:
(9) zy < T,
(10) zy - zy < 22,
(11) x <y implies vz < yz and zy < zx

(cf. Proposition 2 in [2]). Moreover, one can prove (cf. [5]) that every non-
empty set G partially ordered by the relation p may be treatment as a BCK-
algebra (G, -,0), where 0 is the smallest element of G and zy = 0 for zpy, and
xy = x otherwise. We say that a BCK-algebra with such defined a multipli-
cation has the trivial structure.

A BCC-algebra lineary ordered by the relation (8) is called a BCC-chain
or a BCK-chain if it is a BCK-algebra.

A non-empty subset A of a BCC-algebra G is called a BCK-ideal of G
iff (i) 0 € A and (ii) y,zy € A imply = € A. Obviously, if A is a BCK-ideal
of G and y € A then z € A for every z < y. A subset B of G is called
a BCC-ideal (cf. [6], [7]) iff () 0 € B and (ii) y,zy - 2 € B imply zz € B.
Any BCC-ideal is clearly a BCK-ideal, but not conversely. The converse holds
in BCK-algebras. Moreover, any BCC-ideal induces a some congruence, but
there are congruences which are not induced by such ideals (cf. [7]).
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3. Initial segments
For any fixed elements a < b of a BCC-algebra G the set
[a,b] ={z€G:a<z<b}={z€G:ar=212b=0}
is called the segment of G. Note that the segment
0,0 ={z€G:z<b}={zeG: zb=0},

called initial, is de facto the left annihilator of b. Since [0, b] has two elements
only in the case when b € G is an atom of G, then from result obtained in [6]
follows that a BCC-algebra in which all initial segments have at most two
elements has the trivial structure.

Example 3.1. An algebra G = {0,a,b,c,d, e} defined by the table

0 a b ¢ d e
0lo 000 0 0 ‘
aia 0 0 0 0 a b d
blb b 0 0 a a
clc b a 0 a a a e
d|ld d d d 0 a
0
ele e e e e 0
is a proper BCC-algebra (cf. [6]). Its initial segments have the form [0,a] =

{0,a}, [0,b] = {0, a,b}, [0,¢] = {0,qa,b,c}, [0,d] = {0,a,d}, [0,e] = {0,e}. All
these segments are BCK-chains.

On the other hand, BCC-algebras defined in [2] by Tables 8, 9 and 10
are BCC-chains with 3 as the greatest element. Since these BCC-algebras
are proper, then its are not BCK-chains. A BCC-algebra defined in [2] by
Table 14 is an example of a minimal proper BCC-algebra which coincides
with some its initial segment. It is not a BCC-chain because elements 1 and 2
are incomparable. Algebras defined by Tables 11, 12, 13 and 15 are minimal
proper BCC-algebras which are a set-theoretic union of two different BCK-
chains. (By the way note that Table 15 is printed with the misprint. Namely
12 = 1 must be replaced by 12 =0.)

Proposition 3.2. Every initial segment of a BCC-algebra is a BCC-
subalgebra.

Proof. Obviously 0 € [0,¢|. If z,y € [0,c], then z < ¢ and y < ¢, which
by (11) and (9) implies 2y < ¢y < ¢. Thus zy € [0, ¢|, which proves that [0, ¢]
is a BCC-subalgebra. O

Proposition 3.3. The set-theoretic union of any two initial segments
of a given BCC-algebra is a BCC-subalgebra.

Proof follows directly from (9). m

Proposition 3.4. A BCC-algebra containing at least two initial seg-
ments [0,z] and [0,y] such that [0,z] N [0,y] = {0} and zy # x is proper.
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Proof. Assume a contrary that G is a BCK-algebra in which [0,z] N
[0,y] = {0} for some z # y. Then z - zy < y (by (7)) and z - zy < = (by (6)
or (9)). Thus z - zy € [0,2] N [0,y] = {0}. Hence z < zy. This with (9) gives
zy = x, which is a contradiction. Thus G cannot be a BCK-algebra. a

As a consequence of Proposition 1 from [2] we obtain

Corollary 3.5. Every BCC-chain containing at most three elements is
a BCK-chain. a

In general, initial segments are not BCC-ideals.

Example 3.6. It is easily to verify that an algebra defined by the
following table

0 a b ¢
0O/0 0 0 O
ala 0 0 O
blb a 0 O
cle b b 0

is a BCC-algebra, isomorphic to a proper lineary ordered BCC-algebra given
by Table 9 in [2]. Since ba € [0,a] and a < b, then b & [0,a]. Thus [0,a] is
not a BCK-ideal. Of course, it is not also a BCC-ideal.

Proposition 3.7. An initial segment [0,c] of a BCC-algebra G is a
BCC-ideal if and only if for all z,z € G

(12) zc-z < c implies xz < c.

Proof. Assume that the above implication holds. If zy - z and y are in
[0,¢], then zy -z < cand y < ¢. But 0 € [0,¢] and y < ¢ imply (by (11))
xzc-z < zy- 2. Thus zc- z < ¢, which by the assumption gives 2z < ¢. Hence
zz € [0,d], i.e. [0,c] is a BCC-ideal.

The converse is obvious. O
Corollary 3.8. If [0, c]is a BCC-ideal of G, then for everyz € G
(13) ze < ¢ implies z < c.

Corollary 3.9. If a non-trivial segment [0, ¢] is a BCK-ideal or a BCC-
ideal of G, then xzc # ¢ for all non-zero ¢ € G.

Proof. Let [0, c|, where ¢ # 0, be a BCK-ideal. If zc = ¢ for some z € G,
then zc € [0, ¢] and, in the consequence, z < ¢, which is a contradiction since

in this case we obtain 0 = z¢c = c. ]
Corollary 3.10. If (zc- z)c = zz - ¢ holds for all z,z € G, then [0,c] is

a BCC-ideal. O
If a BCC-algebra G satisfies the identity

(14) (zy - z)y =zz-y,

then, of course, all initial segments are BCC-ideals. Since, for z = 0 this
identity has the form

(15) zy-y = o,
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and for z = zy it implies (z - zy)y = 0, then, by (7), a BCC-algebra satisfying
(14) is a positive implicative BCK-algebra. Obviously in any positive implica-
tive BCK-algebra (i.e. in a BCK-algebra satisfying (15)) the condition (14)
holds. Thus for BCK-algebras conditions (14) and (15) are equivalent. For
BCC-algebras this statement is not true. There are proper BCC-algebras in
which holds only (14) (cf. [2]). BCC-algebras satisfying (15) are called positive
implicative.

From the above remarks follows

Proposition 3.11. A BCC-algebra satisfying (14)is a positive implica-
tive BCK-algebra in which all initial segments are BCK-ideals. 0O

Proposition 3.12. A BCC-algebra in which all initial segments have
at most two elements is a positive implicative BCK-algebra. Initial segments
of such BCK-algebra are BCK-ideals.

Proof follows from Lemma 1, Theorem 3 and Corollary 8 in [6]. i

Proposition 3.13. If [0, | is a two-elements BCC-ideal, then zc-z = ¢
implies xz = c.

Proof. Indeed, by Proposition 3.7, from zc - 2z = ¢ follows zz < ¢. But
zz =0, by (11) and (9), gives zc- z = 0, which is a contradiction. Therefore
must be zz = c. a

Proposition 3.14. [0,c] is a BCC-ideal if and only if the relation ~
defined by

z~y iff zy<c and yzr <c

18 a4 congruence.

Proof. 1t is clear that the above relation is reflexive and symmetric. If
[0,c] is a BCC-ideal, z ~ y and y ~ z, then zy, yz, yz, zy € [0,c|. This, by (11)
and (10), gives zz - ¢ < zz-yz < zy < ¢. Thus zz - ¢ < ¢, which, by Corollary
3.8, implies zz < ¢. Similarly zz - ¢ < zz - yz < zy < ¢ implies 2z < ¢. Hence
~ is also transitive.

Let now ¢ ~ y and uw ~ v. Since zu-yu < zy < cand yu-zu < yz < ¢,
then zu ~ yu. On the other hand, from (yu-¢)-yv < (yu-vu) - yv =0<c¢
and Proposition 3.7 follows yu - yv < c. In the similar way from (yv - c)-yu <
(yv - uv) - yu = 0 follows yv - yu < ¢. Thus yu ~ yv, which by transitivity of
~ gives zu ~ yv. Hence ~ is a congruence.

Conversely, let ~ be a congruence determined by the segment [0, ¢].
Since w ~ 0 iff w € [0, ¢, then [0,¢] = {w € G: w ~ 0}. Thus zy - 2,y € [0, ¢
imply 0 ~ zy - z ~ 20 - 2 ~ xz, which proves that [0, c|is a BCC-ideal. |

Let Cp = {y € G : ypz}, where p is an arbitrary congruence on a BCC-
algebra G. The family {C; : x € G} gives a partition of G which is denoted
by G/p. For z,y € G, we define C, x Cy = Cly. Since p has the substitution
property, the operation * is well-defined. But in general, (G/p, ¥, Cp) is not a
BCC-algebra (cf. [10]). It is a BCC-algebra only in the case when a congruence
p is determined by a BCC-ideal (Theorem 3.5 in [7]). Thus the following
statement is frue.
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Proposition 3.15. If ~ is a congruence defined in Proposition 3.14,
the G/ ~ is a BCC-algebra. O

In the same way as Proposition 3.7 we can prove

Proposition 3.16. An initial segment [0,c|] of a BCC-algebra G is a
BCK-ideal if and only if (13) holds for every x € G. O

Corollary 3.17. A two-element segment [0,c| is a BCK-ideal if and
only if xc # ¢ for every z € G.

Proof. If z¢ # ¢ and zc < ¢, then zc = 0. Thus [0,¢] is a BCK-ideal.
The converse statement follows from Corollary 3.9. 0

Corollary 3.18. If zc- ¢ = zc for every z € G, then [0,c| is a BCK-
ideal. .

Corollary 3.19. Initial segments of a positive implicative BCC-algebra
are BCK-ideals. O

In general, initial segments of a positive implicative BCC-algebra are
not BCC-ideals. As an example we may consider a subalgebra § = {0,a,b, e}
from Example 3.1. This subalgebra is positive implicative (it is isomorphic to
a BCC-algebra defined by Table 12 in [2]), but [0, e] is not a BCC-ideal sirce
be - a € [0,€] and ba & [0, €]. v

Proposition 3.20. A finite BCC-chain of a positive implicative BCC-
algebra is a BCK-chain with the trivial structure.

Proof. (by induction) For BCC-chains containing at least two elements
our statement is obviously true. If [0,¢| has n 4+ 1 > 3 elements, then there
exists y € [0,c| such that [y,c| has only two elements. Thus [0,y] has n
elements and, by the assumption, has the trivial structure. Since by Corollary
3.19 it is also a BCK-ideal, then for every = € [0,y] from cz € [0,y] follows
¢ € [0,y], which is impossible because y < ¢. Thus cz ¢ [0,y], i.e. y < cz < c.

Hence cx = ¢ for every = < ¢. This completes the proof. O
Corollary 3.21. A finite lineary ordered PCC-algebra is positive im-
plicative if and only if it has the trivial structure. i

4. Constructions

In this section we give several methods of construction of BCC-algebras
with given BCC-chains. Some geneiral methods of constructions of proper
BCC-algebras one zan find in [3]. First we observe that

Proposition 4.1. Any finite BCK-chain may be zxtended to a proper
BCC-chain.

The proof is based on the observation that any two-elements BCK-chain
may be extended to three-elements BCK-chain with the trivial structure. Any
three-elements BCK-chain may be extended to a proper BCC-chain by the
following construction, which is a special case of the construction used in
Proposition 3 from [2].
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Construction A. Let (G, -,0) be a finite BCK-chain containing at least
three elements and let c be its mazimal element. Then G U {d }, where d € G,
with the operation

zy z,y€EG
_ 0 zeGuU{d},y=d
Y= z=d,y=0

c z=d,yeCG

is a proper BCC-chain.
Obtained BCC-chain is proper since (d - dy)y # Ofor any 0 <y < c.
As a simple consequence of Corollary 3 from [2] we obtain
Construction B. Let (G, -,0) be a finite proper BCC-chain. Then G U
{d}, where d ¢ G, with the operation

xy T,y €G
zy=4¢ 0 zeGU{d}, y=d
d z=d,yeCG

is a proper BCC-chain.

From these two constructions follows

Corollary 4.2. Any finite proper BCC-chain may be extended to at
least two non-isomorphic proper BCC-chains of the same order. O

Basing on the Construction B one can prove

Corollary 4.3. Any initial segment [0, c] is isomorphic to a mazimal
ideal of some BCC-algebra.

Let {G;}icr be a non-empty family of BCC-chains (or BCC-algebras)
such that G; N G; = {0} for any distinct 4,5 € I. In {G;}ier we define a
new multiplication identifying it with a multiplication in any &;, and putting
ry = z if belongs to distinct G;. Direct computations shows that the union

; Gi is a BCC-algebra. It is called the disjoint union of {G;} and is denoted

%: G;. The BCC-algebra G is called a component of 3 .., G;. It is easily

tu shown that any component Gy is a BCC-ideal of )., Gs

In general case where {G, },c; is an arbitrary non-empty family of BCC-
chains (BCC-algebras), we consider {G; % {i}}ies and identify all (0;,17),
where 0; is a constant of G;. By identifying each z; € G; with (x;,1), the
assumption of the definition mentioned above is satisfied. Consequently, we
cai define the disjoint union of an arbitrary family of BCC-chains.

Let || G; be the direct product of a non-empty family of BCC-algebras
G,;. For any fixed i € I, let z; be an element of []G; such that z;(j) = 0
for any i # j and z;(i) = ¢ € G;. Then G} = {; : ¢ € G,} is a subalgebra
of [] Gi, which 1s naturally isomorphic to Gy. If 4 # j, then z;z; = x; and

G; N G; = {0}. Hence U,.; Gf =, ;c; Gf, and in the consequence, | J,o; G
is o %ubalgebra of [[ G;. Since U G is isomorphic to ) G;, we obtain
Proposition 4.4. Y G, is a subdirect product of G;. O

By the identification G; with G} we get
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G;.

Coroliary 4.5. > G; is the minimal subalgebra of [| G; containing all
O

It is clear that if in the above construction al G; are BCK-algebras then

> G, and [] G; are BCK-algebras. If at least one BCC-algebra G; is proper
then > G; and [[ G, are also proper BCC-algebras.
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