ON p-SEMIGROUPS

Vjekoslav Budimirović

Abstract. Generalizing the notion of an anti-inverse semigroup, we introduce the notion of a p-semigroup, for arbitrary $p \in N$. We prove that every p-semigroup is covered by groups, classes of which are completely described.

1. Introduction

In papers [1] and [4], anti-inverse semigroups are introduced and investigated. Recall that a semigroup (S, +) is called anti-inverse if for every $a \in S$, there exists $b \in S$, such that a = b + a + b and b = a + b + a.

In the present paper we generalize the foregoing notion, defining a p-semigroup $p \in N$. For p=1 we obtain anti-inverse semigroups. We investigate general properties of the new class. These are described by a number of identities, depending on p. We also prove that each element and particular classes of elements of a p-semigroup have their own unity.

We prove that every p-semigroup is covered by groups. For the converse, we present complete description of classes of groups, union of which gives a p-semigroup. It turns out that the mentioned characterization depends on some divisibility properties of the integer p. Main results about anti-inverse semigroups are obtained from the corresponding theorems about p-semigroups, for p=1.

As proved in [1], each anti-inverse semigroup is covered by groups, which are cyclic of order 1, cyclic of order 2, Klein or quaternion groups. Groups covering p-semigroups belong to a wider class. In addition to the mentioned groups it contains cyclic groups of order $n \ (n \in N)$ and direct product of cyclic groups and generalized quaternion groups.

2. Results

Let (S,+) be a semigroup and $p \in N$. The relation τ_p on (S,+) is introduced by:

$$x\tau_p y \iff x + py + x = y \land py + x + py = x.$$

AMS (MOS) Subject Classification 1991. Primary: 20M05. Secondary: **Key words and phrases:** semigroup, union of groups, *p*-semigroups.

If $x\tau_p y$ for $x, y \in S$, then py is called the p-element of element x.

Definition 1. A semigroup (S, +) will be called a p-semigroup if each element has its p-element.

Let Π_p denote the class of all p-semigroups, i.e.,

$$S \in \Pi_p \iff (\forall x \in S)(\exists y \in S)(x\tau_p y).$$

Lemma 1. Let $x\tau_p y$ in semigroup S. Then:

$$1^{\circ} 2x = (p+1)y, \quad 2^{\circ} py + x = (2p+1)x + p^{2}y, \quad 3^{\circ} (4p+1)x = x.$$

Proof. $1^o 2x = py + x + py + x = py + y = (p+1)y$.

$$2^{o} py + x = p(x + py + x) + x$$

$$= x + py + x + x + py + x + \dots + x + py + x + x$$

$$= x + p(py + 2x) = x + p(py + (p + 1)y) = x + p(2p + 1)y$$

$$= x + p(p + 1)y + p^{2}y = x + p(2x) + p^{2}y = (2p + 1)x + p^{2}y.$$

$$3^{o} x = py + x + py = (2p + 1)x + p^{2}y + py = (2p + 1)x + p(p + 1)y$$

$$= (2p + 1)x + p(2x) = (4p + 1)x. \square$$

Lemma 2. Let $x, y \in S$, $p \in N$ and (4p + 1)x = x and 2x = (p + 1)y. Then (p + 1)y = (p + 1)(2p + 1)y.

Proof. Straightforward.

Lemma 3. Let $x, y \in S$, $p \in N$ and $(\forall a \in S) (4p + 1)a = a$. Then $2x = (p + 1)y \Longrightarrow y = (2p^2 + 2p + 1)y$.

Proof. Since $(2p^2+2p+1)y = (p+1)y+(2p^2+p)y$, from the conditions and Lemma 2. we have

$$(2p^{2} + 2p + 1)y = (p+1)(2p+1)y + (2p^{2} + p)y$$
$$= p(4p+1)y + (3p+1)y = py + (3p+1)y$$
$$= (4p+1)y = y. \square$$

Theorem 1. Let S be a semigroup. Then

$$S \in \Pi_p \iff (\forall x \in S)(\exists y \in S)(2x = (p+1)y, \ py + x = (2p+1)x + p^2y, (4p+1)x = x).$$

Proof. Let $S \in \Pi_p$. Then by Lemma 1., the right side of the equivalence follows immediately. Conversely, let for arbitrary $x \in S$ and his existing $y \in S$ be

$$2x = (p+1)y$$
, $py + x = (2p+1)x + p^2y$ i $(4p+1)x = x$.

Then, by Lemma 3., we have

$$x + py + x = x + (2p+1)x + p^2y = (p+1)(2x) + p^2y$$

= $(p+1)(p+1)y + p^2y = (2p^2 + 2p + 1)y = y$.

Furthermore

$$py + x + py = (2p+1)x + p^{2}y + py = (2p+1)x + p(p+1)y$$
$$= (2p+1)x + p(2x) = (4p+1)x = x.$$

So, $S \in \Pi_p$. \square

Recall that a semigroup S is **regular** if for every $a \in S$ there exists $x \in S$ such that a = axa.

Corollary 1. (i) Each p-semigroup is a regular semigroup.

- (ii) Each element x of a p-semigroup has its own unity e_x , where $e_x = 4px$.
- (iii) In a p-semigroup S all elements y which are in relation τ_p to x have the same unity.
 - (iv) If in a p-semigroup $2px = e_x$ and $x\tau_p y$, then $py + x = x + p^2 y$.

Proof. (i) From (4p+1)x = x follows x = x + (4p-1)x + x for every x.

- (ii) From (4p+1)x = x we have that x+4px = 4px+x = x, so $e_x = 4px$.
- (iii) By Lemma 3..
- (iv) By Lemma 1.. \square

Proposition 1. Let $x\tau_p y$ in a semigroup S. Then:

(i) y + x = 3x + py, (ii) y + x + y = 5x, (iii) x + y + x = (3p + 2)y.

Proof. Straightforward.

Theorem 2. Let $x\tau_p y$ in a p-semigroup S. For arbitrary positive integer k we have:

(i)
$$2kx + y = y + 2kx$$
, (ii) $x + 2ky = 2ky + x$.

Proof. (i) 2kx + y = k(p+1)y + y (Lemma 1.) = y + 2kx.

(ii) Using the Proposition 1. (i) 2k times and Lemma 1., too, we have

$$2ky + x = (2k - 1)y + y + x = (2k - 1)y + 3x + py$$

$$= (2k - 1)y + x + 2x + py = (2k - 1)y + x + (p + 1)y + py$$

$$= (2k - 1)y + x + (2p + 1)y = \dots = x + 2k(2p + 1)y$$

$$= x + k(4p + 1)y + ky = x + 2ky. \square$$

Lemma 4. Let $S \in \Pi_p$ and $x \in S$. Then

$$x\tau_p x \Longrightarrow px = x \wedge 2x = e_x.$$

Proof. Straightforward.

Lemma 5. Let $x\tau_p y$ in a p-semigroup S and $k \in N$. Then 4ky = 8kx.

Proof. Straightforward. \square

Lemma 6. Let $x\tau_p y$ in semigroup S. Let k be the smallest positive integer for which $kx=e_x$. Then

$$qx = e_x \Longrightarrow k \mid q.$$

Proof. Straightforward. \square

Theorem 3. Let S be a semigroup. Then

$$S \in \Pi_p \iff (\forall x \in S)(\exists y \in S)(2x = (p+1)y, \ 2x = 2(x+py), \ (4p+1)x = x).$$

Proof. Let $S \in \Pi_p$. Then for any $x \in S$, there exists $y \in S$ such that $x\tau_p y$. For such x and y, by Theorem 1., we have that (2x = (p+1)y) and (4p+1)x = x. Furthermore, 2(x+py) = x + py + x + py = y + py = 2x.

Conversely, by supposition 2x = (p+1)y and (4p+1)x = x and Lemma 3. we have $y = (2p^2 + 2p + 1)y$. Let us prove that $e_x = e_y$. We have

$$e_x = 4px = 2p(2x) = 2p(p+1)y = (2p^2 + 2p - 1)y + y$$

= $(2p^2 + 2p - 1)y + (4p + 1)y = (2p^2 + 2p + 1)y + (4p - 1)y$
= $y + (4p - 1)y = 4py = e_y$.

By using supposition 2x = 2(x + py), we have

$$\begin{array}{rcl} x+py+x & = & x+py+x+e_x=x+py+x+4py\\ & = & x+py+x+py+3py=2(x+py)+3py=2x+3py\\ & = & (p+1)y+3py=y,\\ py+x+py & = & e_y+py+x+py=4px+py+x+py\\ & = & (4p-1)x+x+py+x+py=(4p-1)x+2(x+py)\\ & = & (4p-1)x+2x=x. \ \ \Box \end{array}$$

Let T be a nonempty subset of the semigroup S. Let [T] denote the subsemigroup of semigroup S generated by the set T. Let us denote by A_a the set of all p-elements of element a in p-semigroup S, i.e., $A_a = \{pb \mid a\tau_p b\}$.

Theorem 4. Let $S \in \Pi_p$ and $a \in S$. Then for each subset $I_a \subset A_a$, $GI_a = [a \cup I_a]$ is a group.

Proof. Let $x \in GI_a$. Then $x = x_1 + x_2 + \cdots + x_n$, where $x_i \in a \cup I_a$ ($i = 1, 2, \dots, n$), and

$$x_i = \left\{ \begin{array}{ll} pa_i, & x_i \neq a, \ pa_i \in I_a \\ a, & x_i = a. \end{array} \right.$$

Consider x' which is of the following form $x' = x'_n + x'_{n-1} + \cdots + x'_1$, where

$$x_i' = \begin{cases} 3pa_i, & x_i \neq a, \quad pa_i \in I_a \\ (4p-1)a, & x_i = a, \ (i = 1, 2, \cdots, n). \end{cases}$$

It is clear that x' is from GI_a . Since for each $i=1,2,\cdots,n$ we have $x_i+x_i'=e_a$ and $x_i+e_a=x_i$, then $x+x'=e_a$. Similarly $x'+x=e_a$, so GI_a is a group. \square

Corollary 2. Each p-semigroup S has the following form $S = \bigcup_{a \in S} GI_a$.

In other words, each p-semigroup is covered by groups.

Lemma 7. Let $x\tau_p y$ in p-semigroup S. Then:

- (i) If p is even number, then $p^2y = e_x$.
- (ii) If p is odd number, then $p^2y = py$.

Proof. (i) Since p is even number, we have $p^2y = \left(\frac{p}{2}\right)^2(4y) = \left(\frac{p}{2}\right)^2(8x)$ (Lemma 5.) $= \frac{p}{2}(4px) = e_x$.

(ii) We distinguish two cases: $p=4p_1+1$ and $p=4p_2+3$, where $p_1, p_2 \in N_0$. In the first case we have $p^2y=(4p_1+1)(py)=p_1(4py)+py=e_y+py=py$. In the second case we have $p^2y=(4p_2+3)py=p_2(4py)+3py=e_y+3py=3py$. Since S is p-semigroup, then there is a $z \in S$ such that $y\tau_p z$. So we get

$$3py = p(2y) + py = p(p+1)z + py = p(4p_2 + 4)z + py$$

= $(p_2 + 1)(4pz) + py = e_z + py = py$.

Accordingly, $p^2y = py$. \square

Lemma 8. Let $pb \in A_a$, $I_a = \{pb\}$, where a is from the p-semigroup S. Then

 $GI_a = \{e_a, a, 2a, \cdots, (k-1)a, pb, a+pb, 2a+pb, \cdots, (k-1)a+pb\},$ where k is the smallest positive integer such that $ka = e_a$.

Proof. Since $pb + a = (2p + 1)a + p^2b$, by using Lemma 7. we have that pb + a = (2p + 1)a or pb + a = (2p + 1)a + pb. If pb + a = (2p + 1)a, then $2pb = 2p(a + pb + a) = 2p(a + (2p + 1)a) = (p + 1)(4pa) = e_a$. If pb + a = (2p + 1)a + pb, then

$$2pb = p(b+b) = p(a+pb+a+b) = p(a+(2p+1)a+pb+b)$$

= $p(a+(2p+1)a+2a) = 2p^2a + 4pa = 2p^2a.$

From the previous relations we have that 3pb = pb or $3pb = 2pa^2 + pb$. Also $4pb = e_a$. Therefore each element from GI_a has one of the following forms: $e_a, ma, pb, na + pb$, where m and n are positive integers smaller than k. \square

Theorem 5. Let $pb, pc \in A_a$, $pb \neq pc$, $I_a = \{pb\}$, $I'_a = \{pc\}$, where a is from a p-semigroup S. Then:

- (i) If pc = ma + pb for some $m \in N$, then $GI_a = GI'_a$.
- (ii) If $pc \neq ma + pb$ for every $m \in N$, then $GI_a \cap GI'_a = \{e_a, a, 2a, \dots, (k-1)a\}$, where k is the smallest positive integer such that $ka = e_a$.

Proof. (i) Let pc = ma + pb for some $m \in N$. Then $pc \in GI_a$, so $GI'_a \subset GI_a$. Since for arbitrary $m \in N$ exists $l \in N$ such that m < 4lp, we have

$$pb=e_a+pb=(4lp-m)a+ma+pb=(4lp-m)a+pc,$$
 so, $pb\in GI_a'$ Accordingly, $GI_a\subset GI_a'.$

(ii) Let $pc \neq ma + pb$ for every $m \in N$. Suppose that GI_a and GI'_a have, besides e_a and ta ($t \in N$ and $t \leq k - 1$), some other common element, i.e. let

 $m_1a+pb=m_2a+pc$. Then $(4p-m_2)a+m_1a+pb=(4p-m_2)a+m_2a+pc$, i.e. $(4p+m_1-m_2)a+pb=4pa+pc$. Consequently $pc=(4p+m_1-m_2)a+pb$, which is contradictory to the assumption that $pc \neq ma+pb$ for all $m \in N$. So, $GI_a \neq GI'_a$ and

$$GI_a \cap GI'_a = \{e_a, a, 2a, \cdots, (k-1)a\}. \square$$

The following considerations are referred to p-semigroups, where p is an odd number.

Lemma 9. Let $x\tau_p y$ in a p-semigroup and let p be an odd number. Then 2px = 2py.

Proof. We distinguish two cases: $p = 4p_1 + 1$ and $p = 4p_2 + 3$ $(p_1, p_2 \in N_0)$. If $p = 4p_1 + 1$, then

$$2px = p(p+1)y = (4p_1+1+1)py = p_1(4py) + 2py = e_x + 2py = 2py.$$
 If $p = 4p_2 + 3$, Then

$$2px = p(p+1)y = p(4p_2 + 3 + 1)y = (p_2 + 1)(4py) = e_x.$$

Since $y\tau_p z$ holds for some z from p-semigroup, then, similarly to the previous, we have $2py=e_y$. Since $e_x=e_y$ (Corollary 1. (iii)), we finally have 2px=2py. \Box

Proposition 2. Let x be arbitrary element of a p-semigroup where p is an odd number. Then $p^2x = px$.

Proof. If p is of the form $4p_1 + 1$ $(p_1 \in N_0)$, then

$$p^2x = (4p_1 + 1)(px) = p_1(4px) + px = e_x + px = px.$$

Let p be of the form $4p_2 + 3$ ($p_2 \in N_0$). Since x is from p-semigroup, then there is a y such that $x\tau_p y$. Therefore $2px = p(p+1)y = p(4p_2 + 3 + 1)y = (p_2 + 1)(4py) = e_x$. Consequently

$$p^2x = (4p_2 + 3)(px) = p_2(4px) + 2px + px = e_x + e_x + px = px$$
.

Lemma 10. Let $x\tau_p y$ in a p-semigroup where p is an odd number. Then p(x+py)=px+py.

Proof. Straightforward. □

From Lemma 1., Lemma 7. and Lemma 9. the next corollary follows immediately.

Corollary 3. Let $x\tau_p y$ in a p-semigroup where p is an odd number. Then:

(i)
$$py + x = (2p + 1)x + py$$
, (ii) $py + x = x + 3py$.

Corollary 4. Let $x\tau_p y$ in a p-semigroup, p being an odd number and $m \in \mathbb{N}$. Then

$$py + (2m + 1)x = (2p + 2m + 1)x + py.$$

Lemma 11. Let x be an arbitrary element from a p-semigroup where p is an odd number. Then

$$x\tau_p x \Longleftrightarrow 2x = e_x$$

Proof. Straightforward. □

Let a be an arbitrary element of a p-semigroup S, let p be an odd number and $a \notin A_a$. In further text we will study the group GI_a , where I_a has exactly one element pb, i.e., $I_a = \{pb\}$, respectively $GI_a = [\{a, pb\}]$. Further, we will denote by k the smallest positive integer such that $ka = e_a$.

Lemma 12. Let a be an arbitrary element of p-semigroup, let p be an odd number and let k be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then $k \mid 4p$ and k > 2.

Proof. Straightforward.

Corollary 5. Let a be an arbitrary element from a p-semigroup, let p be an odd number, let k be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then for some $k_1 \mid p$ we have $k = k_1$ or $k = 2k_1$ or $k = 4k_1$ and k > 2.

Recall that a generalized quaternion group is $(Q_{8k,+})$, $k \in N$, where

$$Q_{8k} = \{e, a, 2a, \cdots, (4k-1)a, b, a+b, 2a+b, \cdots, (4k-1)a+b\}$$

and the following conditions are fulfilled: 4ka = e, 2b = 2ka, 3b = 2ka + b, 4b = 4ka, b + 2ma = 2ma + b $(m \in N)$, b + (2n + 1)a = (2k + 2n + 1)a + b $(n \in N_0)$.

Theorem 6. Let a be arbitrary element of a p-semigroup, let p be an odd number, let k be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then for $k = 4k_1$ $(k_1 \mid p)$ and $I_a = \{pb\}$ we have that

 $GI_a = \{e_a, a, 2a, \cdots, (k-1)a, pb, a+pb, 2a+pb, \cdots, (k-1)a+pb\}$ i.e., it is the generalized quaternion group.

Proof. By corollary 3. (i) and Lemma 9. we have pb+a=(2p+1)a+pb, 2pb=2pa, 3pb=2pa+pb i $4pb=e_a$. Therefore

$$GI_a = \{e_a, a, 2a, \cdots, (k-1)a, pb, a+pb, 2a+pb, \cdots, (k-1)a+pb\}.$$

Let us prove that all elements from GI_a are different.

- (1) Since k is the smallest positive integer such that $ka = e_a$, then $\{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic subgroup of group GI_a , so $ma \neq na$ for different $m, n \leq k$.
- (2) Let us prove that $pb \neq e_a$. Suppose that this is not true, i.e., $pb = e_a$. Then $b = a + pb + a = a + e_a + a = 2a$. Therefore $e_a = pb = p(2a) = 2pa$, so $k \mid 2p$, i.e., $4k_1 \mid 2p$, which is impossible because p is an odd number. Accordingly, $pb \neq e_a$.

- (3) Let us prove that $pb \neq ma$, for arbitrary positive integer m smaller than k. Suppose that this is not true, i.e. that pb = ma for some positive integer m. Then a = pb + a + pb = ma + a + ma = (2m + 1)a. Furthermore ka = (k 1)a + a = (k 1)a + (2m + 1)a = ka + 2ma. Since $ka = e_a$, then $2ma = e_a$. By assumption $a \notin A_a$, so $pb \neq a$. Therefore 2 < 2m < 2k, thus $2m = k = 4k_1$. From the last relation we have $m = 2k_1$, so $pb = 2k_1a$. Furthermore $b = a + pb + a = a + 2k_1a + a = 2(k_1 + 1)a$, from which $pb = p(2(k_1 + 1)a) = 2(k_1 + 1)(pa)$. By using Corollary 4.1. we have $k_1 \mid p$, so k_1 is an odd number. Therefore $4 \mid 2(k_1 + 1)$, thus $pb = 2(k_1 + 1)(pa) = e_a$, what is impossible by (2). Thus, $pb \neq ma$ for any positive integer m smaller than k.
- (4) Let us prove that $ma + pb \neq e_a$ for any positive integer m smaller than k. Suppose that this is not true i.e. let $ma + pb = e_a$ be for some positive integer m. Then

$$pb = e_a + pb = ma + pb + pb = ma + 2pb = ma + 2pa = (m + 2p)a$$
, which is impossible by (3). Thus, $ma + pb \neq e_a$ for any positive integer m .

(5) Let us prove that $ma + pb \neq na$ if m and n are positive integers smaller than k. Suppose that ma + pb = na for some positive integers m and n smaller than k. Then

$$pb = 4pa + pb = (4p - m)a + ma + pb = (4p - m)a + na = (4p + n - m)a$$
, which is impossible by (3). Thus, $ma + pb \neq na$ for any positive integers m and n smaller than k .

(6) Let us prove that $ma + pb \neq pb$ for any positive integer m smaller than k. Suppose that ma + pb = pb be for some positive integer m smaller than k. Then

$$ma = ma + 4pb = ma + pb + 3pb = pb + 3pb = e_a$$

which is in contradiction with the assumption that k is the smallest positive integer such that $ka = e_a$. Accordingly, $ma + pb \neq pb$ for any positive integer m smaller than k.

(7) It remains to prove that $ma + pb \neq na + pb$ if m and n are different positive integers smaller than k. Suppose the opposite, i.e., let ma + pb = na + pb be for some positive integers m and n smaller than k. Then

$$na = na + 4pb = na + pb + 3pb = ma + pb + 3pb = ma$$
,

which is impossible by (1). Thus, $ma + pb \neq na + pb$ if m and n are different positive integers smaller than k.

According to (1)-(7) all elements of set GI_a are mutually different. For $k=4,\ GI_a$ is the quaternion group, so, for $k>4,\ GI_a$ is the generalized quaternion group. \square

Theorem 7. Let a be an arbitrary element of a p-semigroup, let p be an odd number, let k be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then for $k = 2k_1$ $(k_1 \mid p)$ and $I_a = \{pb\}$ we have:

- (1) $GI_a = \{e_a, a, 2a, \dots, (k-1)a, pb, a+pb, 2a+pb, \dots, (k-1)a+pb\}$ and $GI_a \simeq C_{k_1} \times C_2 \times C'_2$, where C_{k_1} is the cyclic group of order k_1 and k_2 and k_3 are the cyclic groups of order two, or
- (2) $GI_a = \{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic group of order k.

Proof. By Corollary 5. we have that $k_1 \mid p$, so $k \mid 2p$. Consequently $2pa = e_a$. Since 2pa = 2pb, then $2pb = e_a$, too. From equalities $2pa = e_a$ and pb + a = (2p + 1)a + pb we get pb + a = a + pb. By Lemma 8. we have

$$GI_a = \{e_a, a, 2a, \cdots, (k-1)a, pb, a+pb, 2a+pb, \cdots, (k-1)a+pb\}.$$

First, let us prove that pb = ma only if $m = k_1$. Suppose the opposite, i.e., let pb = ma and $m \neq k_1$. First, let m be even number, i.e., $m = 2m_1$ $(m_1 \in N)$. Then

$$b = a + pb + a = a + ma + a = (m+2)a$$
 and

$$pb = p(m+2)a = p(2m_1+2)a = (m_1+1)(2pa) = (m_1+1)e_a = e_a.$$

Since pb = ma, then $ma = e_a$. Since m < k, then $ma = e_a$ which is in contradiction with the assumption that k is the smallest positive integer such that $ka = e_a$. Accordingly, the even positive integer m for which pb = ma, does not exist. Let m be an odd number smaller than k and $m \neq k_1$, i.e., $m = 2m_2 + 1$ ($m_2 \in N$). Then b = (m+2)a and $pb = p(m+2)a = p(2m_2 + 3)a = (m_2 + 1)(2pa) + pa = e_a + pa = pa$. Hence, pb = pa = ma. Since $k_1 \mid p$ and p is odd number, there exists $k_2 \in N_0$ so that $p = k_1(2k_2 + 1)$. Therefore $pa = k_1(2k_2 + 1)a = k_2(2k_1a) + k_1a = e_a + k_1a = k_1a$. From the last equality follows that $ma = k_1a$, whence $m = k_1$. So, if $pb = k_1a$, then $GI_a = \{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic group of order k.

If $pb = e_a$, then $GI_a = \{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic group of order k, too.

Let $pb \neq e_a$ and $pb \neq k_1a$. Let us prove that in this case $GI_a = \{e_a, a, 2a, \dots, (k-1)a, pb, a+pb, 2a+pb, \dots, (k-1)a+pb\}$ and $GI_a \simeq C_{k_1} \times C_2 \times C'_2$, where C_{k_1} is the cyclic group of order k_1 and k_2 are the cyclic groups of order 2. By the assumption we have that $pb \neq e_a$ and $pb \neq k_1a$. We have proved that $pb \neq ma$ for $m \neq k_1$, too. We prove that other elements of GI_a are different in the same way as in Theorem 6..

Let us prove that $GI_a \simeq C_{k_1} \times C_2 \times C_2'$. Let

$$C_{k_1} = \{e_a, 2a, 4a, 6a, \cdots, 2(k_1 - 1)a\}, C_2 = \{e_a, k_1a\} \text{ and } C'_2 = \{e_a, pb\}.$$

Immediately, it is clear that C_{k_1} is the cyclic group of order k_1 , and C_2 and C_2' are the cyclic groups of order 2. Let us define function f of the set $C_{k_1} \times C_2 \times C_2'$ to set GI_a in the following way: f(x, y, z) = x + y + z. Since a + pb = pb + a, then GI_a is commutative group. Therefore

$$f((x_1, y_1, z_1) + (x_2, y_2, z_2)) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = (x_1 + y_1 + z_1) + (x_2 + y_2 + z_2)$$

$$= f(x_1, y_1, z_1) + f(x_2, y_2, z_2),$$

so, f is a homomorphism. Let us prove that each element of GI_a is an image of some element from the set $C_{k_1} \times C_2 \times C_2$. Let x be from the set GI_a . If $x = e_a$, then $x = e_a + e_a + e_a = f(e_a, e_a, e_a)$. If x = 2ma $(1 \le m \le k_1 - 1)$, then $x = 2ma + e_a + e_a = f(2ma, e_a, e_a)$. If x = (2m - 1)a $(1 \le m \le k_1)$, then

$$x = (2m-1)a + e_a = (2m-1)a + 2k_1a = (2m+k_1-1)a + k_1a + e_a$$
$$= f((2m+k_1-1)a, k_1a, e_a).$$

If x = pb, then $x = e_a + e_a + pb = f(e_a, e_a, pb)$. If x = 2ma + pb $(1 \le m \le k_1 - 1)$, then $x = 2ma + e_a + pb = f(2ma, e_a, pb)$. If x = (2m - 1)a + pb $(1 \le m \le k_1)$, then

$$x = (2m-1)a + e_a + pb = (2m-1)a + 2k_1a + pb$$

= $(2m+k_1-1)a + k_1a + pb = f((2m+k_1-1)a, k_1a, pb).$

So, function f is "on".

Let us prove that the function f is "1 - 1". Let (x, y, z) be from the set $C_{k_1} \times C_2 \times C_2'$. Element (x, y, z) has one of the following forms: (e_a, e_a, e_a) , (e_a, e_a, pb) , (e_a, k_1a, e_a) , (e_a, k_1a, pb) , $(2ma, e_a, e_a)$, $(2ma, e_a, pb)$, $(2ma, k_1a, e_a)$, $(2ma, k_1a, pb)$, where $1 \le m \le k_1 - 1$. Furthermore:

$$f(e_a, e_a, e_a) = e_a, \ f(e_a, e_a, pb) = pb, \ f(e_a, k_1 a, e_a) = k_1 a,$$

 $f(e_a, k_1 a, pb) = k_1 a + pb, \ f(2ma, e_a, e_a) = 2ma,$
 $f(2ma, e_a, pb) = 2ma + pb, \ f(2ma, k_1 a, e_a) = (2m + k_1)a,$
 $f(2ma, k_1 a, pb) = (2m + k_1)a + pb.$

It is easy to prove that all elements on the right sides of equalities are different, so, function f is "1 - 1". Accordingly, f is an isomorphism. This proves the theorem. \Box

Theorem 8. Let a be an arbitrary element of a p-semigroup, let p be an odd number, let $k \neq 1$ be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then for $k = k_1$ $(k_1 \mid p)$ and $I_a = \{pb\}$ we have that

$$GI_a = \{e_a, a, 2a, \cdots, (k-1)a, pb, a+pb, 2a+pb, \cdots, (k-1)a+pb\}$$
 is the cyclic group generated by $a+pb$.

Proof. If $pb = e_a$, then $GI_a = \{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic group generated by a + pb.

Let $pb \neq e_a$. Since $k \mid p$ and $ka = e_a$, then $pa = e_a$. From 2pa = 2pb and pb + a = (2p + 1)a + pb, it follows that $2pa = 2pb = e_a$ and pb + a = a + pb. By Lemma 8.

$$GI_a=\{e_a,a,2a,\cdots,(k-1)a,pb,a+pb,2a+pb,\cdots,(k-1)a+pb\}.$$
 Let us prove that all elements of GI_a are different.

First, let us prove that $pb \neq ma$ (1 < m < p). Suppose that this is not true, i.e. let pb = ma. Then b = a + pb + a = a + ma + a = (m + 2)a.

Further $pb = p(m+2)a = (m+2)e_a = e_a$, which is in contradiction with the assumption that $pb \neq e_a$. So, $pb \neq ma$. The proof that the other elements are different is the same as in Theorem 6.

Let us prove that GI_a is the cyclic group generated by a+pb. If m is an even number, then $mpb=e_a$, and if m is an odd number, then mpb=pb. Since pb+a=a+pb, then: $e_a=(2k)(a+pb)$, pb=k(a+pb), ma=m(a+pb) for even number m, ma=(m+k)(a+pb) for odd number m, ma+pb=(m+k)(a+pb) for even number m, ma+pb=m(a+pb) for odd number m.

Therefore, GI_a is the cyclic group of order 2k generated by a + pb. \square

Theorem 9. Let a be an arbitrary element of a p-semigroup, let p be an odd number, $a \in A_a$ and $I_a = \{pb\}$. Then:

- (1) If $a = pb = e_a$, then $GI_a = \{e_a\}$ is the cyclic group of order one;
- (2) If $a = e_a$ and $pb \neq e_a$, then $GI_a = \{e_a, pb\}$ is the cyclic group of order two;
- (3) If $a \neq e_a$ and $pb = e_a$, then $GI_a = \{e_a, a\}$ is the cyclic group of order two;
- (4) If $a \neq e_a$ and $pb \neq e_a$, then $GI_a = \{e_a, a, pb, a + pb\}$ is the Klein group. **Proof.** (1) This proposition follows immediately.
- (2) Let $a = e_a$ and $pb \neq e_a$. By Lemma 9. and Lemma 11. we have that $2pb = e_a$, so $GI_a = \{e_a, pb\}$.
- (3) Let $a \neq e_a$ and $pb = e_a$. By Lemma 11. we have that $2a = e_a$, so $GI_a = \{e_a, a\}$.
- (4) Let $a \neq e_a$ and $pb \neq e_a$. By Lemma 9. and Lemma 11. we have $2a = e_a$ and $2pb = e_a$. Using the Proposition 2. (i), we conclude that pb + a = a + pb. Thus, $GI_a = \{e_a, a, pb, a + pb\}$. \square

Proposition 3. Let x be an arbitrary element of a p-semigroup and let $p = 4p_1 + 3$ ($p_1 \in N_0$). Then $2px = e_x$.

Proof. Straightforward. □

Corollary 6. Let $x\tau_p y$ in a p-semigroup and let $p=4p_1+3$ $(p_1 \in N_0)$. Then x+y=y+x.

Proof. Straightforward. □

Corollary 7. Let a be an arbitrary element of p-semigroup, let $p = 4p_1 + 3$ $(p_1 \in N_0)$, let k be the smallest positive integer such that $ka = e_a$ and let $a \notin A_a$. Then, $k = k_1$ or $k = 2k_1$, for some $k_1 \mid p$ and k > 2.

The following considerations are referred to p-semigroups in which p is an even number.

Lemma 13. Let $x\tau_p y$ in a p-semigroup and let p be an even number. Then:

(1) 2y = 4x, (2) $2py = e_x$, (3) py = 2px, (4) y = (2p + 2)x, (5) x + y = y + x, (6) x + py = py + x, (7) p(x + py) = px.

Proof. Let $x\tau_p y$.

- (1) Since p is even number, by Theorem 2. we have 2y = y + x + py + x = y + py + 2x = 2x + 2x = 4x.
- (2) By (1) we have $2py = 4px = e_x$.
- (3) Since p is even number, by (1) we have $py = \frac{p}{2}(2y) = \frac{p}{2}(4x) = 2px$.
- (4) By (3) we get y = x + py + x = x + 2px + x = (2p + 2)x.
- (5) By (4) we have x + y = x + (2p + 2)x = (2p + 2)x + x = y + x.
- (6) Equality x + py = py + x immediately follows from (5).
- (7) Since p is an even number, by Theorem 2. we have $p(x+py)=px+p^2y$. By Lemma 7. (i) we have $p^2y=e_x$, so p(x+py)=px. \square

Theorem 10. Let S be a semigroup and let p be an even number. Then

$$S \in \Pi_p \iff (\forall x \in S)((4p+1)x = x).$$

Proof. Let $S \in \Pi_p$. By Theorem 1. we have $(\forall x \in S)((4p+1)x = x)$. Conversely, let $(\forall x \in S)((4p+1)x = x)$. Let us take that y = (2p+2)x and let us prove that $x\tau_p y$. Let $p = 2p_1(p_1 \in N)$. Then

$$x + py + x = x + p(2p + 2)x + x = x + p(4p_1 + 2)x + x$$

= $p_1(4px) + (2p + 2)x = e_x + y = y$.

Furthermore

$$py + x + py = p(2p + 2)x + x + p(2p + 2)x = (p + 1)(4px) + x = e_x + x = x.$$

So, $x\tau_p y$. \Box

Theorem 11. Let a be an arbitrary element of a p-semigroup, let p be an even number and let k be the smallest positive integer such that $ka = e_a$ and $I_a = \{pb\}$. Then $GI_a = \{e_a, a, 2a, \dots, (k-1)a\}$ is the cyclic group of order k.

Proof. Straightforward. \square

Let us denote by C_k the cyclic group of order k, by K_4 the Klein group, by $C_k \times C_2 \times C_2$ the direct product of cyclic groups and by Q_{8k} the generalized quaternion group of order 8k, where $k \in N$. In particular for k = 1 we have that Q_8 is the quaternion group.

Let us define the classes of groups $\Gamma'_p, \Gamma''_p, \Gamma'''_p$ in the following way:

(i) For $p = 4p_1 + 1$ $(p_1 \in N_0)$ we define the class Γ'_p by

$$G \in \Gamma_p' \iff (\exists k \in N)(k \mid p \land (G = C_k \lor G = C_{2k} \lor G = K_4)$$
$$\lor G = C_k \times C_2 \times C_2 \lor G = Q_{8k}).$$

(ii) For $p = 4p_2 + 3$ $(p_2 \in N_0)$ we define the class Γ_p'' by

$$G \in \Gamma_p'' \iff (\exists k \in N)(k \mid p \land (G = C_k \lor G = C_{2k} \lor G = K_4)$$

 $\lor G = C_k \times C_2 \times C_2).$

(iii) For $p = 2p_3$ $(p_3 \in N)$ we define the class Γ_p''' by

$$G \in \Gamma_p''' \iff (\exists k \in N)(k \mid p \land (G = C_k \lor G = C_{2k} \lor G = C_{4k})).$$

In each of the foregoing cases, if p is not of the given form, then the corresponding class is empty.

Lemma 14. Let S be a semigroup which is a union of groups from the class Γ'_p , i.e., $S = \bigcup \{G \mid G \in \Gamma'_p\}$. Then $S \in \Pi_p$.

Proof. Let S be a semigroup, $p = 4p_1 + 1$ $(p_1 \in N_0)$, $S = \bigcup \{G \mid G \in \Gamma_p'\}$ and $x \in S$. Depending on to which group the element x from the class Γ_p' belongs, we distinguish five cases.

1) Let $x \in C_k$ and $k \mid p$. Since

$$C_k = \{e, a, 2a, \cdots, (k-1)a\}$$

for some $a \in S$, we distinguish two cases.

- a) If x = e, then for y we take that y = e.
- b) Let $x = ma, 1 \le m \le k-1$. For y we take that y = 2x = 2ma. 2) Let $x \in C_{2k}$ and $k \mid p$. Since

$$C_{2k} = \{e, a, 2a, \cdots, (2k-1)a\}$$

for some $a \in S$, we distinguish two cases.

- a) If x = e for y we take that y = e.
- b) Let x = ma, $1 \le m \le 2k 1$. For y we take that y = 2x = 2ma.
- 3) Let $x \in K_4$. Then for y we take that y = x.
- 4) Let $x \in C_k \times C_2 \times C_2'$ and $k \mid p$, where $C_k = \{e_1, a_1, 2a_1, \dots, (k-1)a_1\}$, $C_2 = \{e_2, a_2\}$ and $C_2' = \{e_3, a_3\}$ for some $a_1, a_2, a_3 \in S$. We distinguish two cases:
- a) Let x have one of the following forms: (e_1, e_2, e_3) , (e_1, e_2, a_3) , (e_1, a_2, e_3) , (e_1, a_2, a_3) . In all cases $2x = (e_1, e_2, e_3)$. For y we take that $y = 2x = (e_1, e_2, e_3)$.
- b) Let x have one of the following forms: (ma_1, e_2, e_3) , (ma_1, e_2, a_3) , (ma_1, a_2, e_3) , (ma_1, a_2, a_3) , where $1 \le m \le k-1$. In all cases $2x = (2ma_1, e_2, e_3)$. For y we take that $y = 2x = (2ma_1, e_2, e_3)$.
 - 5) Let $x \in Q_{8k}$, $k \mid p$, where

$$Q_{8k} = \{e, a, 2a, \cdots, (4k-1)a, b, a+b, 2a+b, \cdots, (4k-1)a+b\}$$

for some $a, b \in S$. It is known that for elements a and b from Q_{8k} the following equalities hold: 4ka = e, 2b = 2ka, 3b = 2ka + b, 4b = e, b + 2ma = 2ma + b $(m \in N)$, b + (2n + 1)a = (2k + 2n + 1)a + b, $(n \in N_0)$. Since $p = (2k_1 + 1)k$

and
$$p = 4p_1 + 1$$
 $(k_1, p_1 \in N_0)$, then:

$$2pa = 2(2k_1 + 1)ka = k_1(4ka) + 2ka = e + 2ka = 2ka = 2b,$$

$$2pa + b = 2b + b = 3b,$$

$$4pa = 2b + 2b = 4b = e,$$

$$b + (2n + 1)a = (2k + 2n + 1)a + b = (2p + 2n + 1)a + b,$$

$$pb = (4p_1 + 1)b = p_1(4b) + b = e + b = b.$$

To prove that $x\tau_p y$ for some $y \in S$, we distinguish six cases.

- a) If x = e then for y we take that y = e.
- b) If $x = 2ma \ (m \in N)$ then for y we take that y = 4ma + 2b.
- c) If x = (2n+1)a, $(n \in N_0)$ then for y we take that y = (2p+4n+2)a+b.
- d) If x = b, then for y we take that y = pa.
- e) If x = 2ma + b, $(m \in N)$ then for y we take that y = (4m + p)a.
- f) If x = (2n+1)a+b, $(n \in N_0)$ then for y we take that y = (p+4n+2)a. We have $x\tau_n y$ in all cases. For example, here is the proof for the case 5)

c).

$$\begin{array}{lll} x+py+x&=&(2n+1)a+p((2p+4n+2)a+b)+(2n+1)a\\ &=&(2n+1)a+p(2p+4n+2)a+pb+(2n+1)a\\ &=&(2n+1)a+2p^2a+n(4pa)+2pa+b+(2n+1)a\\ &=&(2n+1)a+(4p_1+1)(2pa)+e+2pa\\ &+b+(2n+1)a\\ &=&(2n+1)a+2p_1(4pa)+2pa+2pa+b+(2n+1)a\\ &=&(2n+1)a+e+e+b+(2n+1)a=(2n+1)a\\ &+&(2p+2n+1)a+b=(2p+4n+2)a+b=y,\\ py+x+py&=&p((2p+4n+2)a+b)+(2n+1)a\\ &+&p((2p+4n+2)a+b)\\ &=&2p^2a+n(4pa)+2pa+pb+(2n+1)a+2p^2a\\ &+&n(4pa)+2pa+pb\\ &=&(4p_1+1)(2pa)+e+2pa+b\\ &=&2p_1(4pa)+2pa+2pa+b\\ &=&2p_1(4pa)+2pa+2pa+b\\ &=&e+e+b+(2n+1)a+e+e+b\\ &=&b+(2n+1)a+b=(2p+2n+1)a+b+b\\ &=&(2p+2n+1)a+2pa=4pa+(2n+1)a\\ &=&e+(2n+1)a=x. \end{array}$$

Hence, $x\tau_p y$. \square

Lemma 15. Let S be a semigroup which is a union of groups from the class Γ_p'' , i.e., $S = \bigcup \{G \mid G \in \Gamma_p''\}$. Then $S \in \Pi_p$.

Proof. Straightforward. \square

Lemma 16. Let S be a semigroup which is a union of groups from the class Γ_p''' , i.e., $S = \bigcup \{G \mid G \in \Gamma_p'''\}$. Then $S \in \Pi_p$.

Proof. Let S be a semigroup, $p = 2p_3$, $(p_3 \in N)$, $S = \bigcup \{G \mid G \in \Gamma_p'''\}$ and $x \in S$. We distinguish two cases:

- a) If x = e then for y we take that y = e. Similarly to 1) a) of Lemma 14. we have that $x\tau_{p}y$.
- b) If x = ma $(1 \le m \le k-1) \lor 1 \le m \le 2k-1 \lor 1 \le m \le 4k-1)$ then for y we take that y = 2mpa + 2ma. Then we have

$$x + py + x = ma + p(2mpa + 2ma) + ma = ma + 2mp^{2}a + 2mpa + ma$$

= $2ma + mp_{1}(4pa) + 2mpa = 2mpa + 2ma = y$,

$$py + x + py = p(2mpa + 2ma) + ma + p(2mpa + 2ma)$$

= $2mp^2a + 2mpa + ma + 2mp^2a + 2mpa$
= $(mp + m)(4pa) + ma = e + ma = x$.

So, $x\tau_p y$. \square

According to Theorem 6., Theorem 7., Theorem 8., Theorem 9., Theorem 11., Lemma 14., Lemma 15. and Lemma 16. we get the following theorem.

Theorem 12. Let S be a semigroup. Then:

1) For $p = 4p_1 + 1$ $(p_1 \in N_0)$

$$S \in \Pi_p \iff S = \bigcup \{G \mid G \in \Gamma_p'\}.$$

2) For $p = 4p_2 + 3$ $(p_2 \in N_0)$

$$S \in \Pi_p \iff S = \bigcup \{G \mid G \in \Gamma_p''\}.$$

3) For $p = 2p_3 \ (p_3 \in N)$

$$S \in \Pi_p \iff S = \bigcup \{G \mid G \in \Gamma_n'''\}.$$

Theorem 12. can be presented in the following way.

Let S be a semigroup. Then

$$\begin{split} S \in \Pi_p &\iff S = \bigcup \{G \mid G \in \Gamma_p'\} \quad \lor \quad S = \bigcup \{G \mid G \in \Gamma_p''\} \\ & \lor \quad S = \bigcup \{G \mid G \in \Gamma_p'''\}. \end{split}$$

As all p-semigroups from classes Γ_p', Γ_p'' and Γ_p''' are groups, finally, we give an example of a p-semigroup (for p odd) which is not a group.

+	e	a	\overline{b}	c	d
e	e	a	b	c	d
a	a	e	c	b	d
b	b	c	e	a	d
c	c	b	a	e	d
d	d	d	d	d	d

3. References

- S. Bogdanović, S. Milić, V. Pavlović, Anti-inverse semigroups, Publ. Inst. Math.(Beograd) 24(38) (1978), 19-28
- [2] S. Bogdanović, M. Ćirić, Polugrupe, Prosveta, Niš, 1993.
- [3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., 1964.
- [4] S. Milić, On some classes of semigroups, Algebraic conference, Skopje, 1980.

Viša hemijsko-tehnološka škola Narodnih heroja 10 15000 Šabac

Received 15. Dec. 2000.