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ON p-SEMIGROUPS

Vjekoslav Budimirovié

Abstract. Generalizing the notion of an anti-inverse semigroup, we
introduce the notion of a p-semigroup, for arbitrary p € N. We prove that
every p-semigroup is covered by groups, classes of which are completely
described.

1. Introduction

In papers [1] and [4], anti-inverse semigroups are introduced and inves-
tigated. Recall that a semigroup (S, +) is called anti-inverse if for every a € S,
there exists b€ S, suchthat a=b+a+band b=a+ b+ a.

In the present paper we generalize the foregoing notion, defining a p-
semigroup p € N. For p = 1 we obtain anti-inverse semigroups. We investigate
general properties of the new class. These are described by a number of iden-
tities, depending on p. We also prove that each element and particular classes
of elements of a p-semigroup have their own unity.

We prove that every p-semigroup is covered by groups. For the converse,
we present complete description of classes of groups, union of which gives a p-
semigroup. It turns out that the mentioned characterization depends on some
divisibility properties of the integer p. Main results about anti-inverse semi-
groups are obtained from the corresponding theorems about p-semigroups, for
p=1.

As proved in [1], each anti-inverse semigroup is covered by groups, which
are cyclic of order 1, cyclic of order 2, Klein or quaternion groups. Groups
covering p-semigroups belong to a wider class. In addition to the mentioned
groups it contains cyclic groups of order n (n € N) and direct product of
cyclic groups and generalized quaternion groups.

2. Results

Let (S,+) be a semigroup and p € N. The relation 7, on (S,+) is
introduced by:

TTpY <~ T +py+T=yApy+zx+py==.
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If z7py for z,y € S, then py is called the p-element of element x.

Definition 1. A semigroup (S,+) will be called a p-semigroup if each
element has its p-element.

Let II,, denote the class of all p-semigroups, i.e.,
S e ll, <= (Vz € 8)(3y € S)(z7py).
Lemma 1. Let z7,y in semigroup S. Then:
1°20=(p+ 1)y, 2°py+az=2p+Dz+p?y, 3° (dp+1l)z=n=x.
Proof. 1° 2z =py+z+py+z=py+y=(p+1)y.
2°py+z = plat+py+z)+a
= z+pytz+tzrz+pytzx+---+rx+py+rt+z
= z+plpy+2z) =z +ppy+(p+1y) =z+p2p+ 1)y
= z+plp+ 1)y +p’y =z +p(22) +p’y = (2p + Dz +p’y.
3x = py+z+py=(2p+Vz+piy+py=2p+ Lz +plp+ 1y
= (2p+Dz+p2z)={4p+1)z. O
Lemma 2. Letz,y € S, pe N and (4p+ 1)z =z and 2z = (p + 1)y.
Then (p+ 1)y = (p+1)(2p + 1)y.
Proof. Straightforward. O
Lemma 3. Letz,y € S, p< N and (Va € S) (4p+ 1)a = a. Then
2z=(p+ 1)y =y = (20" +2p + y.
Proof. Since (2p2+2p+1)y = (p+ 1)y + (2p* +p)y, from the conditions
and Lemma 2. we have
20" +2p+1)y = (p+1)(2p+1)y+ (20" +p)y
= pdp+ Ly +Gp+Ly=py+Gp+ 1Ly
= (Up+ly=y. O
Theorem 1. Let S be a semigroup. Then
Sell, < (NVzeS)PFyeS)2z=(p+ 1)y, py+z=(2p+ )z + py,
(4p + D)z = x).
Proof. Let S € Il,. Then by Lemma 1., the right side of the equivalence

follows immediately. Conversely, let for arbitrary € .S and his existing y € S
be

22 =(p+Vy, py+z=02p+1L)z+p’yi(dp+ 1)z =2z
Then, by Lemma 3., we have
s+py+z = z+(2p+ Dz+pPy=(p+1)(22) +p’y
= (p+D+y+py=(2p"+2p+ 1)y =1y.
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Furthermore
py+z+py = Qp+Vzs+p’y+py=2p+Lz+plp+1)y
= (2p+ 1)z +p2z)={4p+ 1)z ==z
So, S €Il,. O

Recall that a semigroup S is regular if for every a € S there exists
x € S such that a = aza.

Corollary 1. (i) Each p-semigroup is a reqular semigroup.

(#1) Each element x of a p-semigroup has its own unity ez, where e, =
4pz.

(i91) In a p-semigroup S all elements y which are in relation 7, to x
have the same unity.

(tv) If in a p-semigroup 2pz = e5 and x7pYy, thenpy + o =z + p2y.

Proof. (i) From (4p + 1)z = z follows z = z + (4p — 1)z + x for every

(24) From (4p+1)z = z we have that z+4px = dpx+x = x, s0 e, = 4pz.
(i47) By Lemma 3..
(1v) By Lemma 1.. O
Proposition 1. Let x7,y wn a semigroup S. Then:
() y+z=3z+py, (1) y+ax+y=>5x, (i) c+y+z=3p+2)y.
Proof. Straightforward. O
Theorem 2. Let x7,y in a p-semigroup S. For arbitrary positive inte-
ger k we have:
(i) 2kz+y=1y+ 2kxz, (ii) =+ 2ky =2ky + x.
Proof. (i) 2kz +y =k(p+ 1)y + y (Lemma 1.) = y + 2kz.
(1) Using the Proposition 1. (i) 2k times and Lemma 1., too, we have

2ky+x = 2k—-Ny+y+az=02k—-1)y-+3z+py
= 2k-Dy+z+2z4+py=02k~)y+z+(p+1)y+py
= 2k-Dy+z+2p+ly=-=z+2k(2p+ 1)y

= z+k(dp+ 1)y +ky=z+2ky O
Lemma 4. Let S €1, and z € S. Then
TTpT =—> pT =T N 2T = eg.
Proof. Straightforward. O
Lemma 5. Let z7,y in a p-semigroup S and k € N. Then 4dky = Skz.
Proof. Straightforward. O

Lemma 6. Let x7,y in semigroup S. Let k be the smallest positive
integer for which kx = e;. Then

gr =e;, = k| q.
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Proof. Straightforward. O
Theorem 3. Let S be a semigroup. Then

Sell,<=VzeS)3BycS)2z=(p+1)y, 22 =2(z+py), 4p+ 1)z =1).
Proof. Let § € II,. Then for any € 9, there exists y € S such that
z7py. For such z and y, by Theorem 1., we have that (2z = (p + 1)y and
(4p + 1)z = z. Furthermore, 2(z +py) =z +py + 2 +py =y + py = 2z.
Conversely, by supposition 2z = (p+ 1)y and (4p+ 1)z = z and Lemma
3. we have y = (2p® + 2p + 1)y. Let us prove that e; = e,. We have
e = dpr=2p(2z) =2p(p+ )y = (20" +2p-1L)y+y
= (20°+ 2~ Dy +@p+ 1y = (20" +2p+ 1)y + (4p - Dy
y+ (4p— Dy =4py =¢y.
By using supposition 2z = 2(z + py), we have
T+pyt+x = THpy+trte=x+py+z+4py
= z+py+z+py+3py =2z +py)+ 3py =2z + 3py
= (p+1Ly+3py=y,
pytxz+py = e +py+tx+py=4pz+py+x+py
= (@dp-Dz+z+py+z+py=4p—1z+2(z+py)
= (d4p—-1l)z+2z=2 0O
Let T be a nonempty subset of the semigroup S. Let [T] denote the

subsemigroup of semigroup S generated by the set T'. Let us denote by A4,
the set of all p-elements of element a in p-semigroup S, i.e., A, = {pb | arpb}.

Theorem 4. Let S € I, and a € S. Then for each subset I, C Ag,
GI, = [aU1,] is a group.

Proof. Let z € GI,. Thenz = z1+ 22+ -+ 2p, where z; € aU L, (i =
1,2,---,n), and

g o= d PO, TiFa, pai €,
t a, z; = a.

Consider z’ which is of the following form z’ = 2], + 2, _, + --- + ), where

o — | 3pai, T #a, pa; € lq
¢ 4p-1a, z;=a, (1=12---,n).
It is clear that 2’ is from GI,. Since for each ¢ = 1,2, - -- ,n we have z;,+z; = e,

and x; + e, = x;, then z+ 2’ = e,. Similarly 2’ +2z = e4, so GI, is a group. O

Corollary 2. Each p-semigroup S has the following form S = U GI,.
ags
In other words, each p-semigroup is covered by groups.
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‘Lemma 7. Let x7py in p-semigroup S. Then:
(i) If p is even number, then p*y = e.
(ii) If p is odd number, then p*y = py.

2 2
Proof. (i) Since p is even number, we have p?y = (g) (4y) = (g) (8z)
(Lemma 5.) = §(4px) = eg.

(17) We distinguish two cases: p = 4p1+-1 and p = 4py+3, where p1,p2 €
No. In the first case we have p?y = (dp1+1)(py) = p1(4dpy)+py = ey+pYy = DY.
In the second case we have py = (4p2+3)py = p2(4py)+3py = e, +3py = 3py.
Since S is p-semigroup, then there is a z € S such that y7,2. So we get

3py = pQ2y) +py =plp+ 1)z +py=pdp2 +4)z +py
= (p2+1)(4pz) + py = e, +py = py.

Accordingly, p*y = py. O

Lemma 8. Let pb € A,, I, = {pb}, where a is from the p-semigroup
S. Then

GI, = {eq,0,20a, - ,(k~ 1)a,pb,a + pb,2a +pb,--- , (k — 1)a + pb},

where k is the smallest positive integer such that ka = e,.

Proof. Since pb+a = (2p + 1)a + p?b, by using Lemma 7. we have
that pb+ a = (2p+ 1)a or pb +a = (2p + 1)a + pb. If pb + a = (2p + 1)q,
then 2pb = 2p(a + pb+ a) = 2pla + (2p + 1)a) = (p+ 1)(4pa) = e,. If
pb+a = (2p + 1)a+ pb, then

2pb = pb+b)=pla+pb+a+b)=pla+(2p+1)a+pb+b)

= pla+ (2p+ 1)a + 2a) = 2p%a + 4pa = 2p°a.

From the previous relations we have that 3pb = pb or 3pb = 2pa® + pb. Also
4dpb = e,. Therefore each element from GI, has one of the following forms:
€q,ma, pb, na + pb, where m and n are positive integers smaller than k. O

Theorem 5. Let pb,pc € A,, pb # pc, I, = {pb}, I, = {pc}, where a
is from a p-semigroup S. Then:

(i) If pc = ma + pb for some m € N, then GI, = GI..

(ii) If pc # ma+pb for every m € N, then GI,NGI, = {ey,a,2a, - ,(k—
1)a}, where k is the smallest positive integer such that ka = e,.
Proof. (i) Let pc = ma + pb for some m € N. Then pc € GI,, so

GI, C GI, Since for arbitrary m € N exists [ € N such that m < 4ip, we
have
pb = €, + pb = (4lp — m)a + ma + pb = (4lp — m)a + pc,
so, pb € GI} Accordingly, GI, C GI..
(41) Let pc # ma+pb for every m € N. Suppose that GI, and GI’, have,
besides e, and ta (¢t € N and t < k — 1), some other common element, i.e. let
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mia + pb = moa + pc. Then (4p — my)a+mia + pb = (4p — mg)a + maa + pe,
i.e. (4p-+mq —mg)a+pb = dpa+pe. Consequently pc = (4p+m1 —mq)a+pb,
which is contradictory to the assumption that pc # ma + pb for all m € N.
So, GI, # GI! and
GI,NGI, = {es,a,2a,--+ ,(k—1)a}. O

The following considerations are referred to p-semigroups, where p is an
odd number.

Lemma 9. Let z7,y in a p-semigroup and let p be an odd number.
Then 2px = 2py.

Proof. We distinguish two cases: p = 4p; + 1 and p = 4ps + 3 (p1,p2 €
Np). If p = 4p; + 1, then

2pz =p(p+ 1)y = (4p1 + 1 + L)py = p1(4py) + 2py = ez + 2py = 2py.
If p = 4py + 3, Then
2pz =p(p+ 1)y =p(dp2 + 3+ L)y = (p2 + 1)(4py) = e

Since y7,z holds for some z from p-semigroup, then, similarly to the previous,
we have 2py = ey. Since e; = e, (Corollary 1. (4i7)), we finally have 2pz =
2py. O

Proposition 2. Let x be arbitrary element of a p-semigroup where p
is an odd number. Then p’z = pz.

Proof. If p is of the form 4p; +1 (p1 € Ny), then

p*z = (4p1 + 1)(pz) = p1(4pz) + pr = €, + pz = pa.
Let p be of the form 4ps + 3 (p2 € Np). Since z is from p-semigroup, then
there is a y such that z7,y. Therefore 2px = p(p + 1)y = p(dp2 + 3+ 1)y =
(p2 + 1)(4py) = e;. Consequently
P’z = (4p2 + 3)(pz) = pa(dpz) + 2pT + T = €5 + €5 + pz = pz. O

Lemma 10. Let z7,y in a p-semigroup where p is an odd number. Then
p(z +py) = pz + py.

Proof. Straightforward. O

From Lemma 1., Lemma 7. and Lemma 9. the next corollary follows
immediately.

Corollary 3. Let z1pyy in a p-semigroup where p is an odd number.
Then:

(1) py+z=02p+ L)z +py, (i) py+z =z + 3py.

Corollary 4. Let xm,y in a p-semigroup, p being an odd number and
m € N. Then

py+ (2m+ 1)z = (2p + 2m + 1)z + py.
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Lemma 11. Let z be an arbitrary element from a p-semigroup where
p is an odd number. Then

TTpX <= 2T = €y

Proof. Straightforward. O

Let a be an arbitrary element of a p-semigroup S, let p be an odd
number and a ¢ A,. In further text we will study the group GI;, where
I, has exactly one element pb, ie., I, = {pb}, respectively GI, = [{a,pb}].
Further, we will denote by k the smallest positive integer such that ka = e,.

Lemma 12. Let a be an arbitrary element of p-semigroup, let p be an
odd number and let k be the smallest positive integer such that ka = e, and
leta € Aq. Then k | 4p and k > 2.

Proof. Straightforward. O

Corollary 5. Let a be an arbitrary element from a p-semigroup, let p
be an odd number, let k be the smallest positive integer such that ka = eq and
let a & A,. Then for some ki | p we have k = ki or k = 2ky or k = 4k1 and
k>2.

Hecall that a generalized quaternion group is (Qsi + ), k € N, where
Qsk = {e,a,2a, -+ ,(4k — Da,b,a + b,2a + b,--- ,(dk — 1)a -+ b}

and the following conditions are fulfilled: 4ka = e, 2b = 2ka, 3b = 2ka + b,
4b = dka, b+2ma =2ma+b (m e N), b+ (2n+1)a=(2k+2n+1)a+b
(?’L S 1\70)

Theorem 6. Let a be arbitrary element of a p-semigroup, let p be an

odd number, let k be the smallest positive integer such that ka = e, and let
a ¢ A,. Then for k =4k, (k1 | p) and I, = {pb} we have that

Gl, = {eq,a,2a, - ,(k—1)a,pb,a + pb,2a + pb,--- , (k — 1)a + pb}
i.e., it is the generalized quaternion group.

Proof. By corollary 3. (1) and Lemma 9. we have pb+a = (2p+1)a+pb,
2pb = 2pa, 3pb = 2pa + pb i 4pb = e,. Therefore

Gl, = {eq,a,2a, - ,(k —1)a,pb,a + pb,2a + pb,- -, (k — 1)a + pb}.

Let us prove that all elements from GI, are different.

(1) Since k is the sinallest positive integer such that ka = e,, then
{eq,a,2a, - ,(k —1)a} is the cyclic subgroup of group GI,, so ma # na for
different m,n < k.

(2) Let us prove that pb # e,. Suppose that this is not true, i.e., pb = e,.
Then b = a +pb+a = a+ e, + a = 2a. Therefore e, = pb = p(2a) = 2pa,
so k | 2p, ie., 4k; | 2p, which is impossible because p is an odd number.
Accordingly, pb # e,.
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(3) Let us prove that pb # ma, for arbitrary positive integer m smaller
than k. Suppose that this is not true, i.e. that pb = ma for some positive
integer m. Then a = pb + a + pb = ma + a + ma = (2m + 1)a. Furthermore
ka = (k—1)a+a = (k—1)a+ (2m + 1)a = ka + 2ma. Since ka = e,,
then 2ma = e,. By assumption a € A,, so pb # a. Therefore 2 < 2m < 2k,
thus 2m = k = 4ky. From the last relation we have m = 2k, so pb = 2k;a.
Furthermore b = a + pb+ a = a + 2k1a + a = 2(k; + 1)a, from which pb =
p(2(k1 + 1)a) = 2(k1 + 1)(pa). By using Corollary 4.1. we have k1 | p, so k; is
an odd number. Therefore 4 | 2(k; + 1), thus pb = 2(k1 + 1)(pa) = e,, what is
impossible by (2). Thus, pb # ma for any positive integer m smaller than k.

(4) Let us prove that ma + pb # e, for any positive integer m smaller
than k. Suppose that this is not true i.e. let na +pb = e, be for some positive
integer m. Then

pb = e, + pb = ma + pb + pb = ma + 2pb = ma + 2pa = (M + 2p)a,
which is impossible by (3). Thus, ma + pb # e, for any positive integer m.

(5) Let us prove that ma + pb # na if m and n are positive integers
smaller than k. Suppose that ma + pb = na for some positive integers m and
n smaller than k. Then

pb = 4pa + pb = (4p — m)a + ma + pb = (4p — m)a + na = (4p + n — m)a,
which is impossible by (3). Thus, ma + pb # na for any positive integers m
and n smaller than k.

(6) Let us prove that ma + pb # pb for any positive integer m smaller
than k. Suppose that ma + pb = pb be for some positive integer m smaller
than k. Then

ma = ma + 4pdb = ma + pb + 3pb = pb + 3pb = e,,
which is in contradiction with the assumption that k& is the smallest positive
integer such that ka = e,. Accordingly, ma + pb # pb for any positive integer
m smaller than k.
(7) It remains to prove that ma + pb # na + pb if m and n are different

positive integers smaller than k. Suppose the opposite, i.e., let ma + pb =
na + pb be for some positive integers m and n smaller than k. Then

na = na + 4pb = na + pb + 3pb = ma + pb + 3pb = ma,
which is impossible by (1). Thus, ma + pb # na + pb if m and n are different
positive integers smaller than k.
According to (1)-(7) all elements of set GI, are mutually different. For
k = 4, GI, is the quaternion group, so, for k > 4, GI, is the generalized
quaternion group. O
Theorem 7. Let a be an arbitrary element of a p-semigroup, let p be

an odd number, let k be the smallest positive integer such that ka = e, and
let a € Aq. Then for k= 2k1 (k1 |p) and I, = {pb} we have:
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(1) GI, ={eq,a,2a, - ,(k—1)a,pb,a+pb,2a +pb,--- ,(k —1)a +pb} and
GI, =~ Ck, x Cy x CY, where Cy, is the cyclic group of order ky and Ca
and CY, are the cyclic groups of order two, or

(2) GI, ={eq,a,2a, - ,(k — 1)a} is the cyclic group of order k.

Proof. By Corollary 5. we have that k; | p, so k& | 2p. Consequently
2pa = e4. Since 2pa = 2pb, then 2pb = e,4, too. From equalities 2pa = e, and
pb+a = (2p+ 1)a+ pb we get pb + a = a + pb. By Lemma 8. we have

GI, = {€ea,a,2a, -+ ,(k ~ 1)a,pb,a + pb,2a + pb,- - - , (k — 1)a + pb}.

First, let us prove that pb = ma only if m = k. Suppose the opposite,
ie., let pb = ma and m # k;. First, let m be even number, ie., m = 2m;
(my € N). Then

b = a+pbta=a+ma+a=(m+2)a and
pb = plm+2)a=p2mi+2)a=(m1+1)(2pa) =(m1+ 1)eg = e,.

Since pb = ma, then ma = e,. Since m < k, then ma = e, which is in
contradiction with the assumption that k is the smallest positive integer such
that ka = e,. Accordingly, the even positive integer m for which pb = ma,
does not exist. Let m be an odd number smaller than k£ and m # ki, ie.,
m=2mg+1 (mg € N). Then b = (m + 2)a and pb = p(m + 2)a = p(2my +
3)a = (mz + 1)(2pa) + pa = e, + pa = pa. Hence, pb = pa = ma. Since
k1 | p and p is odd number, there exists ko € Ny so that p = k1(2ky + 1).
Therefore pa = k1(2ky + 1)a = ko(2k1a) + k1a = €4 + k1a = kia. From the
last equality follows that ma = kia,whence m = k1. So, if pb = kja, then
GI, = {es,a,2a, - ,(k — 1)a} is the cyclic group of order k.

If pb = e,, then GI, = {eq,0q,2a, -+ ,(k — 1)a} is the cyclic group of
order k, too.

Let pb # e, and pb # kia. Let us prove that in this case GI, =
{es,a,2a,--- ,(k — l)a,pb,a + pb,2a + pb,--- ,(k — 1)a + pb} and GI, =~
Ck, x Cy x Cj, where Cy, is the cyclic group of order k; and Cy and C}
are the cyclic groups of order 2. By the assumption we have that pb # e, and
pb # kya. We have proved that pb # ma for m # ky,too. We prove that other
elements of GI, are different in the same way as in Theorem 6..

Let us prove that Gi, >~ Cy, x Cy x C}. Let

Cry = {€a,20,4a,6a,- - ,2(ki — 1)a}, Cy = {eqs,k1a} and Cj = {e4,pb}.

Immediately, it is clear that Cy, is the cyclic group of order k1, and Cs and C},
are the cyclic groups of order 2. Let us define function f of the set Cy, x Co x5,
to set G1, in the following way: f(z,y,2) = z +y + 2. Since a + pb = pb + a,
then G1, is commutative group. Therefore
f((xl,yh Zl) + (x21y2) ZZ)) = f(:rl + x2,Y1 + Y2, 21 + Z?)
(1 +22) +(y1 +12) + (21 + 22) = (T1 +y1 + 21) + (T2 + Y2 + 20)
= flz1,91,21) + f(z2,y2, 22),
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s0, f is a homomorphism. Let us prove that each element of G, is an image
of some element from the set Cg, x Cy x Cj. Let z be from the set GI,. If
T = ey, then z =€, + €5 + e, = fleg, €ay8a). 2 =2ma (1 <m < k; —1),
then z = 2ma+e,+e, = f(2ma,eq,e,). f 2 = (2m—1)a (1 < m < ky), then
z = (2m-—1l)at+e,=02m—1)a+2kia=2m+k —1l)a+kia+e,

= f((2m+ ki —1a,kia,e,).
If x = pb, then x = ey +e,+pb = f(eq, €q, pb). If z = 2ma+pb (1 < m < k1—1),
then z = 2ma+ e, +pb = f(2ma,eq,pb). f = (2m —1L)a+pb (1 < m < ky),
then

r = (2m—1)a+e,+pb=(2m — l)a+ 2kia+ pb
(2m+ky — 1)a+ kia+ pb = f((2m + k1 — 1)a, k1a, pb).

So, function f is "on”.

Let us prove that the function f is ”1 - 1”. Let (z,y, z) be from the set
Ci, x Cy x C4. Element (z,y,z) has one of the following forms: (eq, €4, €4),
(eaa eaypb)7 (ea7 klay ea)> (ea; klaﬂpb)) (2ma7 €a, ea): (2ma7 e(l;pb)) (Zma'a klay ea)7
(2ma, kya,pb), where 1 < m < k; — 1. Furthermore:

f(eaa €a, 6a) = €qg, f(ea) eavpb) = pba f(eayklay ea) = k1a>
fleaskra,pb) = kra +pb, f(2ma,eq,eqa) = 2ma,
f(2ma, eq, pb) = 2ma + pb, f(2ma,kia,e,) = (2m + ki)a,
f(2ma, k1a,pb) = (2m + k1)a + pb.
It is easy to prove that all elements on the right sides of equalities are
different, so, function f is ”1 - 1”. Accordingly, f is an isomorphism. This
proves the theorem. O

Theorem 8. Let a be an arbitrary element of a p-semigroup, let p be
an odd number, let k #£ 1 be the smallest positive integer such that ka = eq
and let a ¢ Ag. Then for k =k (k1 | p) and I, = {pb} we have that

GIl, ={eq,a,2a,--- ,(k — 1)a,pb,a + pb,2a + pb,- - - ,(k — 1)a + pb}
1s the cyclic group generated by a + pb.

Proof. If pb = e, then GI, = {e,s,a,2a,---,(k — 1)a} is the cyclic
group generated by a + pb.

Let pb # e,. Since k | p and ka = e,, then pa = e,. From 2pa = 2pb and
pb+a = (2p + l)a + pb, it follows that 2pa = 2pb = e, and pb + a = a + pb.
By Lemma 8.

GI, = {es,0,2a, -+ ,(k — 1)a,pb,a + pb,2a + pb,--- , (k — 1)a + pb}.

Let us prove that all elements of GGI, are different.
First, let us prove that pb # ma (1 < m < p). Suppose that this is
not true, i.e. let pb = ma. Thenb=a+pb+a =a+ma+a = (m+ 2)a.
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Further pb = p(m + 2)a = (m + 2)e, = €4, which is in contradiction with the
assumption that pb # e,. So, pb # ma. The proof that the other elements are
different is the same as in Theorem 6.

Let us prove that G 1, is the cyclic group generated by a+ pb. If m is an
even number, then mpb = ¢4, and if m is an odd number, then mpb = pb. Since
pb+a = a+pb, then: e, = (2k)(a+pb), pb = k(a+pb), ma = m(a+pb) for even
number m, ma = (m+k)(a+pbd) for odd number m, ma+pb = (m+k)(a+pb)
for even number m, ma + pb = m(a + pb) for odd number m.

Therefore, GI, is the cyclic group of order 2k generated by a 4 pb. O

Theorem 9. Let a be an arbitrary element of a p-semigroup, let p be
an odd number, a € A, and I, = {pb}. Then:

(1) If a = pb = e, then GI, = {e,} is the cyclic group of order one;
(2) If a = e, and pb # e,, then GI, = {eq, pb} is the cyclic group of order
two;
(3) If a # e, and pb = e,, then GI, = {eq,a} is the cyclic group of order
two;
(4) If a # eq and pb # e,, then GI, = {eq,a, pb,a + pb} is the Klein group.
Proof. (1) This proposition follows immediately.

(2) Let a = e, and pb # e,. By Lemma 9. and Lemma 11. we have that
2pb = eg, so GI, = {e,, pb}.

(3) Let @ # ¢, and pb = e,. By Lemma 11. we have that 2a = ¢, so
GI, = {eq,a}.

(4) Let a # e, and pb # €,. By Lemma 9. and Lemma 11. we have
2a = e, and 2pb = ¢,. Using the Proposition 2. (¢), we conclude that pb+a =
a + pb. Thus, GI, = {eq,a,pb,a + pb}. O

Proposition 3. Let x be an arbitrary element of a p-semigroup and let
p=4p1 + 3 (p1 € Np). Then 2px = e,.

Proof. Straightforward. O

Corollary 6. Let z7py in a p-semigroup and let p = 4p1 +3 (p1 € Np).
Thenx+y=y+zx.

Proof. Straightforward. D

Corollary 7. Let a be an arbitrary element of p-semigroup, let p =
4p1 + 3 (p1 € Ny), let k be the smallest positive integer such that ka = e, and
let a g Ay. Then, k =ky or k = 2k, for some k1 | p and k > 2.

The following considerations are referred to p-semigroups in which p is
an even number.

Lemma 13. Let x,y in a p-semigroup and let p be an even number.
Then:

(1) 2y = 4z, (2) 2py = ez, (3) py = 2pz, (4) y = (2p + 2=z, (5)
z+y=y+a, (6)z+py=py+z, (7) p(z +py) = pz.



16 Vjekoslav Budimirovié¢

Proof. Let z7py.
(1) Since p is even number, by Theorem 2. we have 2y =y +2 +py + 2z =
Y+ py+ 2z =2z 4+ 22 = 4x.
By (1) we have 2py = 4pz = e;.

B

Since p is even number, by (1) we have py = 5 2y) = = (4z) = 2pz.

: p
) 2
By B)wegety=z+py+z=z+2pz+z=(2p+2)z.
5) By (4) wehavez+y=2z+ (2p+2)z=(2p+2)z +x =y + 2.
) Equality = + py = py + = immediately follows from (5).

) Since p is an even number, by Theorem 2. we have p(z +py) = pz +py.
By Lemma 7. (i) we have p%y = e, so p(z + py) = pz. O

Theorem 10. Let S be a semigroup and let p be an even number. Then

Sell, <= (Vz € S)((4dp+ 1)z = z).

Proof. Let S € II,. By Theorem 1. we have (Vz € S)((4p + 1)z = ).

Conversely, let (Vz € S)({(4dp + 1)z = z). Let us take that y = (2p+ 2)z
and let us prove that z7py. Let p = 2p1(p1 € N). Then

z+py+z = z+p2p+2)z+z=c+pdp1+2)z+z
= pi(dpz)+ 2p+2)z = +y=1y.

Furthermore
py+z+py=p2p+2)z+z+p2p+2xz=(p+1)4pz)+z =€y +2z ==z.
So, zTpy. O

Theorem 11. Let a be an arbitrary element of a p-semigroup, let p be
an even number and let k be the smallest positive integer such that ka = e,
and I, = {pb}. Then GI, = {e4,a,2a,--- ,(k — 1)a} is the cyclic group of
order k.

Proof. Straightforward. O

Let us denote by Cy the cyclic group of order k, by K4 the Klein group,
by Ck x Cy x Cy the direct product of cyclic groups and by Qg the generalized
quaternion group of order 8k, where k£ € N. In particular for £ = 1 we have
that Qg is the quaternion group.

Let us define the classes of groups I',, T/, T in the following way:

pipitp
(i) For p=4p1 +1 (p1 € No) we define the class I';, by

Gel, < (FkeN)k|pA (G=CrV G=Cy V G =Ky
V G=CrxCaxCyV G=Qsw)
(i1) For p =4ps + 3 (p2 € Ny) we define the class Ty by
Gel, < (FkeN)k|pA (G=C,V G=Cy V G=Ky
V. G =CgxCyxCy)).
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(#ii) For p = 2p3 (p3 € V) we define the class I';’ by
Gely < (FkeN)k|p A (G=Cx V G=Cy V G=Cu)).

In each of the foregoing cases, if p is not of the given form, then the
corresponding class is empty.

Lemma 14. Let S be a semigroup which ts a union of groups from the
class Ty, i.e., S =\ J{G | G € T,}. Then S € Iy.

Proof. Let S be a semigroup, p = 4p1+1 (p1 € Np), S = [ {G | G € T}
and z € S. Depending on to which group the element z from the class F;
belongs, we distinguish five cases.

1) Let z € Cy, and k | p. Since

Cr ={e,a,2a, - ,(k—1a}

for some a € S, we distinguish two cases.

a) If z = e, then for y we take that y =e.

b) Let z = ma,1 < m < k — 1. For y we take that y = 2z = 2ma. 2)
Let z € Co and k | p. Since

Cor = {e,a,2a,--- ,(2k — 1)a}

for some a € S, we distinguish two cases.

a) If z = e for y we take that y =e.

b) Let 2 = ma, 1 < m < 2k — 1. For y we take that y = 2z = 2ma.

3) Let z € K4. Then for y we take that y = .

4) Let z € CyxCyxCh and k | p, where Cr = {e1,a1,2ay,- -, (k—1)a1 },
Cy = {ey,a2} and Cf = {e3, a3} for some ay,a9,a3 € S. We distinguish two
cases:

a) Let z have one of the following forms: (e, e2, €3), (e1, €2, as), (e1, az, e3),
(e1,a2,a3). In all cases 2z = (ej,eq,e3). For y we take that y = 2z =
(61, €o, 63). .

b) Let = have one of the following forms: (maj, ez, e3), (mas, ez, as),
(may, ag, e3), (a1, ag,a3), where 1 < m < k—1.In all cases 2z = (2may, €2, €3).
For y we take that y = 2z = (2may, ez, €3).

5) Let z € Qgk, k | p, where
Qsk = {e,a,2a,--- ,(4k — 1)a,b,a +b,2a +b,--- , (4k — 1)a + b}

for some a,b € S. It is known that for elements a and b from Qg the following
equalities hold: 4ka = e, 2b = 2ka, 3b = 2ka + b, 4b = ¢, b+ 2ma = 2ma + b
(meN),b+(2n+1)a=(2k+2n+1)a+b, (n € Ny). Since p = (2k; + 1)k
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and p = 4p; + 1 (k1,p1 € No), then:
2pa = 2(2ky + 1)ka = k1(4ka) + 2ka = e + 2ka = 2ka = 2b,
2pa +b=2b+b=23b,
dpa = 2b + 2b = 4b = ¢,
b+ (2n+1)a=(2k+2n+1)a+b=(2p+2n+1)a+0b,
pb=(4p1 +1)b=p1(4b) +b=e+b=0.
To prove that z7,y for some y € S, we distinguish six cases.
a) If z = e then for y we take that y = e.
b) If z = 2ma (m € N) then for y we take that y = 4ma + 2b.
c) Ifx = (2n+1)a, (n € Np) then for y we take that y = (2p+4n+2)a+b.
d) If z = b, then for y we take that y = pa.
e) If z = 2ma + b, (m € N) then for y we take that y = (4m + p)a.
f)If z = (2n+1)a+b, (n € Np) then for y we take that y = (p+4n+2)a.
We have 27,y in all cases. For example, here is the proof for the case 5)

r+py+zx

Py +x +py

Hence, z7py. O

(2n+ a+p((2p+4n +2)a +b) + (2n + 1)a
@n+1l)a+p2p+4n+2)a+pb+ 2n+ 1)a
(2n + 1)a + 2pa + n(4pa) + 2pa + b+ (2n + 1)a
(2n+ La+ (4p1 + 1)(2pa) + € + 2pa

+b+ (2n+ 1)a

(2n + 1)a + 2p1 (4pa) + 2pa + 2pa+ b+ (2n + 1)a
@Pn+1l)ja+e+e+b+(2n+1la=2n+1)a
+(2p+2n+1a+b=2p+4n+2)a+ b=y,
p((2p+4n+2)a+b) + (2n+1)a

+p((2p + 4n + 2)a + b)

2p°a + n(4pa) + 2pa + pb + (2n + 1)a + 2p%a
+n{4pa) + 2pa + pb

(4p1 +1)(2pa) + e+ 2pa+ b+ (2n+ 1)a

+(4p1 + 1)(2pa) + e + 2pa+b

2p1(4pa) + 2pa + 2pa + b

+(2n + 1)a + 2p1(4pa) + 2pa + 2pa + b
ete+b+(2n+1l)ate+e+d
b+2n+1)a+b=02p+2n+1la+b+bd

(2p +2n+ 1)a + 2pa = 4pa + (2n + 1)a

e+ (@2n+1la=ux.
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Lemma 15. Let S be a semigroup which is a union of groups from the
class Ty, i.e., S=U{G | G € Tp}. Then S € IIp.

p)
Proof. Straightforward. O

Lemma 16. Let S be a semigroup which is a union of groups from the

class T, e, S={G |G €T} Then S €I,

Proof. Let S be a semigroup, p = 2p3, (ps € N), S =U{G | G € I'}}
and x € §. We distinguish two cases:
a) If z = e then for y we take that y = e. Similarly to 1) a) of Lemma

14. we have that z7yy.
b)Iffz=ma(1<m<k-1)v1i<m<2k—1V 1<m<4k-1)
then for y we take that y = 2mpa + 2ma. Then we have

c+py+z = ma+ p(2mpa+ 2ma) + ma = ma + 2mp*a + 2mpa + ma
= 2ma + mp1(4pa) + 2mpa = 2mpa + 2ma = y,
py+z+py = p(2mpa+ 2ma) + ma + p(2mpa + 2ma)
= 2mp2a + 2mpa + ma + 2mp2a + 2mpa
= (mp+m)(4dpa) + ma = e+ ma =z.

So, zmpy. O
According to Theorem 6., Theorem 7., Theorem 8., Theorem 9., Theo-
rem 11., Lemma 14., Lemma 15. and Lemma 16. we get the following theorem.

Theorem 12. Let S be a semigroup. Then:
1) Forp=4p1 +1 (p1 € Np)

Sell, & S=|J{G|Ger}.
2) For p=4py +3 (p2 € No)

Sell,«=S=|J{G|Gery}
8) Forp=2ps (p3 € N)

Sell, <= S=|J{G|GeTy}.

Theorem 12. can be presented in the following way.
Let S be a semigroup. Then

Sell, <= S=(J[{G|GeTl,} v S=|J{G|GeTy}
v S=|J{GIGeTy).

As all p-semigroups from classes I, Ty and I}/ are groups, finally, we
give an example of a p-semigroup (for p odd) which is not a group.
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