A COMMENT OF POWER IN n-GROUP

Janez Ušan

Abstract. Let $n \geq 2$, let (Q,A) be an n-group, e its $\{1,n\}$ -neutral operation f: [6]; 1.3f, and e^{-1} its inversing operation f: [7]; 1.3f. Let also f be an set of all integers. Then, in this paper, we say that f f f f f is an f-th power of the element f in f in f if f if f is an f-th power of the element f in f in f if f if f is an f-th power of the element f in f in f if f is an f-th power of the element f in f in f in f in f is an f-th power of the element f in f-th power of the element f-th power f-th power of the element f-th power f-

$$\mathbf{e}(a^{\alpha_1}, \dots, a^{\alpha_{n-2}}) = a^{-\sum\limits_{i=1}^{n-2} \alpha_i + n - 2},$$

$$(a^{\alpha_1}, \dots, a^{\alpha_{n-2}}, a^{\alpha})^{-1} = a^{-\alpha - 2\left(\sum\limits_{i=1}^{n-2} \alpha_i - n + 2\right)} \quad \text{and}$$

$$A(a^{\alpha_1}, \dots, a^{\alpha_n}) = a^{\sum\limits_{i=1}^{n} \alpha_i - n + 2} \quad \text{{\it [:2.7,2.8, footnote 4) j.}}$$

1. Preliminaries

- 1.1. Definition: Let $n \geq 2$ and let (Q, A) be an n-groupoid. We say that (Q, A) is a Dörnte n-group [briefly: n-group] iff is an n-semigroup and an n-quasigroup as well.¹
- 1.2. Proposition [10]: Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then the following statements are equivalent: (i) (Q, A) is an n-group; (ii) there are mappings $^{-1}$ and \mathbf{e} respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q, \{A, ^{-1}, \mathbf{e}\})$ [of the type < n, n-1, n-2 >]

AMS (MOS) Subject Classification 1991. Primary: 20N15.

Key words and phrases: n-semigroups, n-quasigroups, n-groups, $\{1, n\}$ -neutral operations on n-groupoids, inversing operation on n-group, nHG-algebras.

¹A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group.

- (a) $A(x_1^{n-2}, A(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})),$
- (b) $A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x$ and
- (c) $A((a_1^{n-2}, a)^{-1}, a_1^{n-2}, a) = e(a_1^{n-2});$ and
- (iii) there are mappings $^{-1}$ and \mathbf{e} respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q, \{A, ^{-1}, \mathbf{e}\})$ [of the type < n, n-1, n-2 >]
 - $(\overline{a}) \ A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}),$
 - $(\overline{b}) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x \ and$
 - $(\overline{c}) \ A(a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}).$
- 1.3. Remarks: e is an $\{1,n\}$ -neutral operation of n-grupoid (Q,A) iff algebra $(Q,\{A,e\})$ of type < n,n-2> satisfies the laws (b) and (\overline{b}) from 1.2 [:[6]]. The notion of $\{i,j\}$ -neutral operation $(i,j\in\{1,\ldots,n\},i< j)$ of an n-groupoid is defined in a similar way [:[6]]. Every n-groupoid there is at most one $\{i,j\}$ -neutral operations [:[6]]. In every n-group, $n\geq 2$, there is a $\{1,n\}$ -neutral operation [:[6]]. There are n-groups without $\{i,j\}$ -neutral operations with $\{i,j\}\neq\{1,n\}$. In [8], n-groups with $\{i,j\}$ -neutral operations, for $\{i,j\}\neq\{1,n\}$ are described. Operation n-from 1.2 n-from 1.2

$$\left(a_1^{n-2},a\right)^{-1} \stackrel{def}{=} \mathsf{E}\left(a_1^{n-2},a,a_1^{n-2}\right),$$

where E is an $\{1, 2n-1\}$ -neutral operation of the (2n-1)-group $(Q, \overset{2}{A})$; $\overset{2}{A}(x_1^{2n-1}) \stackrel{def}{=} A(A(x_1^n), x_{n+1}^{2n-1})$ [:[7]]. (For $n=2, a^{-1}=\mathsf{E}(a)$; a^{-1} is the inverse element of the element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group (Q, A).)

- **1.4. Proposition** (Hosszú-Gluskin Theorem) [2-3]: For every n-group (Q, A), $n \geq 3$, there is an algebra $(Q, \{\cdot, \varphi, b\})$ such that the following statements hold: $1^{\circ}(Q, \cdot)$ is a group; $2^{\circ} \varphi \in Aut(Q, \cdot)$; $3^{\circ} \varphi(b) = b$; 4° for every $x \in Q$, $\varphi^{n-1}(x) \cdot b = b \cdot x$; and 5° for every $x_1^n \in Q$, $A(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \cdots \cdot \varphi^{n-1}(x_n) \cdot b$.
- **1.5. Definition [9]:** We say that an algebra $(Q, \{\cdot, \varphi, b\})$ is a Hosszú-Gluskin algebra of order $n(n \geq 3)$ [briefly: nHG-algebra] iff $1^{\circ} 4^{\circ}$ from 1.4 hold. In addition, we say that an nHG- algebra $(Q, \{\cdot, \varphi, b\})$ is associated to the n-group (Q, A) iff 5° from 1.4 holds.

1.6. Proposition [9]: Let $n \geq 3$, let (Q, A) be an n-group, and e its $\{1, n\}$ - neutral operation. Further on, let c_1^{n-2} be an arbitrary sequence over Q and let for every $x, y \in Q$

$$\begin{split} B_{(c_1^{n-2})}(x,y) &\stackrel{def}{=} A\left(x,c_1^{n-2},y\right), \\ \varphi_{(c_1^{n-2})}(x) &\stackrel{def}{=} A\left(\mathbf{e}(c_1^{n-2}),x,c^{n-2}\right) \text{ and } \\ b_{(c_1^{n-2})} &\stackrel{def}{=} A\left(\overline{\mathbf{e}(c_1^{n-2})}\right). \end{split}$$

Then, the following statements hold

- (i) $(Q, \{B_{(c_1^{n-2})}, \varphi_{(c_1^{n-2})}, b_{(c_1^{n-2})})\}$ is an nHG-algebra associated to the n-group (Q,A); and
- (ii) $C_A \stackrel{def}{=} \{(Q, \{B_{(c_1^{n-2})}, \varphi_{(c_1^{n-2})}, b_{(c_1^{n-2})}\}) | c_1^{n-2} \text{ is a sequence over } Q\} \text{ is the set of all } nHG-algebras \text{ associated to the } n-group (Q, A).}$
 - 1.7. Definition: Let (Q, B) be an n-groupoid and $n \geq 2$. Then
- 1) $\stackrel{1}{B} \stackrel{def}{=} B$; and 2) for every $k \in N$ and for every $x_1^{(k+1)(n-1)+1} \in Q$

$$\overset{k+1}{B} \left(x_1^{(k+1)(n-1)+1} \right) \overset{def}{=} B \left(\overset{k}{B} \left((x_1^{k(n-1)+1} \right), x_{k(n-1)+2}^{(k+1)(n-1)+1} \right).$$

1.8. Proposition: Let (Q,B) be an n-semigroup, $n \geq 2$ and $(i,j) \in \mathbb{N}^2$. Then, for every $x_1^{k(n-1)+1} \in Q$ and for every $t \in \{1,\ldots,i(n-1)+1\}$ the following equality holds

$$\overset{i+j}{B}\left(x_1^{(i+j)(n-1)+1}\right) = \overset{i}{B}\left(x_1^{t-1}, \overset{j}{B}\left(x_t^{t+j(n-1)}\right), x_{t+j(n-1)+1}^{(i+j)(n-1)+1}\right).$$

2. Results

- **2.1. Definition**: ² Let $n \ge 2$ and let (Q, A) be an n-group. Let, also, Z be an set of all integers. Then we say that $a^{< s>}(s \in Z)$ is the s-th n-adic power of the element a in (Q, A) iff:
 - $(a) \ a^{\langle s \rangle} \stackrel{def}{=} a, \ s = 0;$
 - (b) $a^{< s > def \atop =} {}^{s} A({}^{s(n-1)+1}), \ s > 0;$ and

(c)
$$a^{< s > \frac{def}{=}} x, s < 0$$
, where $A(x, a^{-s(n-1)}) = a^3$

²Rusakov S. A., 1978. Information from [5].

³In [5] S. A. Rusakov uses $\binom{k(n-1)+1}{a}$ instead of $A \binom{k(n-1)+1}{a}$, k > 0.

- **2.2. Remark:** For s > 0 the following equality holds: $\langle s \rangle = s(n 1)$ -1) + 1 [4]. Moreover, s is the number of appearances of the operation A in the description of the power $a^{\langle s \rangle}$ /:(b)/ (for all $n \geq 2$).
- **2.3.** Definition: Let $n \geq 2$. Let also (Q, A) be an n-group, e its $\{1,n\}$ -neutral operation [:1.3] and $^{-1}$ its inversing operation [:1.3]. Then we shall say that $a^m (m \in Z)$ is the m-th power of the element a in (Q,A)iff:
 - (1) $a^1 \stackrel{def}{=} a$
 - (2) $a^{k+1} \stackrel{def}{=} A(a^k, {}^{n-2}, a), \ k \ge 1;$
 - (3) $a^{\circ} \stackrel{def}{=} \mathbf{e} ({}^{n-2})$ and
 - (4) $a^{-k} \stackrel{\text{def}}{=} ({}^{n-2}, a^k)^{-1}, k > 1$
- **2.4.** Remark: For n=2, the conditions (1)-(4) reduce to the conditions:
 - $(\hat{1}) a^1 \stackrel{def}{=} a$:
 - $(\hat{2}) \ a^{k+1} \stackrel{def}{=} A(a^k, a), \ k > 1$
 - $(\hat{3}) \ a^{\circ} \stackrel{def}{=} e/= \mathbf{e}(\emptyset); \stackrel{n-2}{=} \stackrel{0}{a} = \emptyset \ / \text{ and}$
 - $(\hat{4}) a^{-k} \stackrel{def}{=} (a^k)^{-1} k > 1$
- **2.5 Proposition:** Let $n \geq 2$ and let (Q, A) be an n-group. Let, also, Z be an set of all integers. Then for all $a \in Q$ and for all $s \in Z$ the following equality holds

$$a^{\langle s \rangle} = a^{s+1}$$

/:2.1,2.3/.

Sketch of the proof.

$$s = 0$$
: $a) a^1 = a^{<0>} [:2.3 - (1), 2.1 - (a)].$

$$s = 0$$
: $a) a^{1} = a^{<0>}$ [:2.3 - (1), 2.1 - (a)].
 $s > 0$: $b) a^{m} = A^{(m-1)(n-1)+1}$, $m \ge 2$ [:2.3 - (1), (2); 1.7, 1.8].

c)
$$a^{\langle s \rangle} = {\stackrel{s}{A}} ({\stackrel{s(n-1)+1}{a}})$$
 [:2.1 - (b)].

d)
$$a^{s+1} = {\stackrel{s}{A}} {\stackrel{(s(n-1)+1)}{(a)}} = a^{< s>} /(b), c)/(a)$$

$$s < 0$$
: $e^{'}$ $s = -1$:

$$A(a^{<-1>}, \stackrel{n-1}{a}) = a \Leftrightarrow A(a^{<-1>}, \stackrel{n-2}{a}, a) = a,$$

 $a^{<-1>} = e(\stackrel{n-2}{a}) \Leftrightarrow a^{<-1>} = a^0 \text{ [:2.1 - (c), 1.3, 3.3 - (3)].}$

$$f) s = -k, k = 2:$$

$$\overset{?}{A}(a^{<-2>},\overset{n-2}{a},a,\overset{n-2}{a},a) = a \Leftrightarrow A(a^{<-2>},\overset{n-2}{a},A(a^1,\overset{n-2}{a},a)) = a,$$

$$\overset{(n-2}{a},a^1)^{-1} = a^{<-2>} \Leftrightarrow a^{-1} = a^{<-2>} \text{ [:2.1 - (c), 1.7, 1.8, 1.3, 2.3 - (1), 2.3 - (4)]}.$$

$$\begin{array}{c} g)\; s=-k,\; k>2:\\ \overset{k}{A}(a^{<-k>},\overset{k(n-1)}{a})=a\Leftrightarrow \overset{k}{A}(a^{<-k>},\overset{n-2}{a},\overset{(k-2)(n-1)+1}{a},\overset{n-2}{a},a)=a\Leftrightarrow\\ \overset{2}{A}(a^{<-k>},\overset{n-2}{a},\overset{k-2}{A}(\overset{(k-2)(n-1)+1}{a}),\overset{n-2}{a},a)=a\Leftrightarrow\\ \overset{2}{A}(a^{<-k>},\overset{n-2}{a},a^{k-1},\overset{n-2}{a},a)=a\Leftrightarrow\\ A(a^{<-k>},\overset{n-2}{a},A(a^{k-1},\overset{n-2}{a},a))=a, \end{array}$$

$$\binom{n-2}{a}, a^{k-1})^{-1} = a^{<-k>} \Leftrightarrow a^{-k+1} = a^{<-k>}$$
 [:2.1-(c),1.7,1.8,b),1.3,2.3-(4)]. \square

Let $n \ge 3$, (Q, A) be an n-group, $^{-1}$ its inversing operation [:1.3] and e its $\{1, n\}$ -neutral operation /:1.3/. Let also a be an arbitrary element of the set Q and for all $x, y \in Q$ let:

- (5) $x \square y \stackrel{def}{=} A(x, \stackrel{n-2}{a}, y),$
- (6) $x^{-1} \stackrel{def}{=} {n-2 \choose a} x)^{-1}$ and
- (7) $e_{\square} \stackrel{def}{=} \mathbf{e} \binom{n-2}{a}$.

Then, (Q, \square) is a group with the inversing operation $^{-1}$ and the neutral element e_{\square} /:1.2,1.3/. By the convention with (5)-(7), the conditions (1)-(4) can be formulated in the following way:

- $(\overline{1}) \ a^1 \stackrel{def}{=} a$:
- $(\overline{2}) a^{k+1} \stackrel{def}{=} a^k \square a, \ k > 1$:
- $(\overline{3}) \ a^{\circ} \stackrel{def}{=} e_{\square} \ \text{and}$
- $(\overline{4}) \ a^{-k} \stackrel{\text{def}}{=} (a^k)^{-1}, \ k > 1.$

Hence, the following proposition is fulfilled:

- **2.6.** Theorem: Let $n \geq 3$, $(Q, \{A, ^{-1}, e\})$ be an n-group as variety of type < n, n-1, n-2 > [:1.2,1.3], a be an arbitrary element from Qand $(Q, \{\Box, ^{-1}, e_{\Box}\})$ the group defined by (5)-(7). Let, also, Z be an set of all integers. Then: $a^m (m \in Z)$ is the m-th power of the element a in the n-group $(Q, \{A, ^{-1}, \mathbf{e}\})$ iff a^m is the m-th power of a in the group $(Q, \{\Box, ^{-1}, e_{\Box}\})$. \Box
- **2.7. Theorem:** Let $n \geq 3$, $(Q, \{A,^{-1}, e\})$ be an n-group as variety of type < n, n-1, n-2 > [:1.2,1.3], a be an arbitrary element from Q. Let, also, Z be an set of all integers. Then for every $\alpha, \alpha_1, \ldots, \alpha_n \in Z$ the following equalities hold

(8)
$$A(a^{\alpha_1}, \dots, a^{\alpha_n}) = a^{\sum_{i=1}^{n} \alpha_i - n + 2} {}_4,$$

(9)
$$(a^{\alpha_1}, \dots, a^{\alpha_{n-2}}, a^{\alpha})^{-1} = a^{-\alpha - 2(\sum_{i=1}^{n-2} \alpha_i - n + 2)}$$

 $[\]overline{{}^4A\left(a^{<\alpha_1>},\ldots,a^{<\alpha_n>}\right)}=a^{<\alpha_1+\cdots+\alpha_n+1>}; \text{ for } \alpha_1,\ldots,\alpha_n\in N\cup\{0\} \text{ see, e.g., } [4].$

(10)
$$\mathbf{e}(a^{\alpha_1}, \dots, a^{\alpha_{n-2}}) = a^{-\sum_{i=1}^{n-2} \alpha_i + n - 2}.$$

Proof. 1) Let $n \geq 3$, (Q, A) be an n-group, $^{-1}$ its inversing operation [1.3] and e its $\{1, n\}$ -neutral operation [1.3]. Let, also, $(Q, \{\cdot, \varphi, b\})$ be an arbitrary nHG- algebra associated to the n-group (Q, A) [1.5]. Further on, let $^{-1}$ be an inversing operation of the group (Q, \cdot) . Then, by 1.2,1.3 an 1.5, we conclude that for all $c \in Q$ and for every sequence c_1^{n-2} over Q the following equalities hold

$$\mathbf{e}(c_1^{n-2}) = (\varphi(c_1) \cdot \dots \cdot \varphi^{n-2}(c_{n-2}) \cdot b)^{-1} \text{ and}$$

$$(c_1^{n-2}, c) = (\varphi(c_1) \cdot \dots \cdot \varphi^{n-2}(c_{n-2}) \cdot b \cdot c \cdot \varphi(c_1) \cdot \dots \cdot \varphi^{n-2}(c_{n-2}) \cdot b)^{-1}.$$

2) Let a be an arbitrary element from Q and for every $x, y \in Q$ let

$$x \Box y \stackrel{def}{=} A(x, \stackrel{n-2}{a}, y) [(5)],$$

$$\varphi_{\Box}(x) \stackrel{def}{=} A(\mathbf{e}(\stackrel{n-2}{a}), x, \stackrel{n-2}{a}) \text{ and }$$

$$b_{\Box} \stackrel{def}{=} A\left(\frac{\stackrel{n}{e}(\stackrel{n}{a})}{\mathbf{e}(\stackrel{n-2}{a})}\right).$$

Then $(Q, \{\Box, \varphi_{\Box}, b_{\Box}\})$ is an nHG- algebra associated to the n-group (Q, A) /:1.6/. Moreover, for every $m \in Z$ the equality

$$\varphi_{\square}(a^m) = a^m$$

holds.

Indeed:

 2_1) Let m=1. Then the following sequence of equalities holds

$$\varphi_{\square}(a^1) = \varphi_{\square}(a) = A(\mathbf{e}({}^{n-2}), a, {}^{n-2})$$

$$= A(\mathbf{e}({}^{n-2}), {}^{n-2}, a) = a = a^1$$

/:(1),1.2,1.3/.

 2_2) Let $m=k\geq 2$. Then the following sequence of equalities holds

$$\varphi_{\square}(a^{k}) = A(\mathbf{e}^{\binom{n-2}{a}}, a^{k}, \overset{n-2}{a})$$

$$= A(\mathbf{e}^{\binom{n-2}{a}}, \overset{k-1}{A}(\overset{(k-1)(n-1)+1}{a}), \overset{n-2}{a})$$

$$= A(\mathbf{e}^{\binom{n-2}{a}}, \overset{n-2}{a}, \overset{k-1}{A}(\overset{(k-1)(n-1)+1}{a})),$$

$$= \overset{k-1}{A}(\overset{(k-1)(n-1)+1}{a}) = a^{k}$$

/:2.3-(1),(2);1.7,1.8,1.3/.

 (2_3) Let m=0. Then the following sequence of equalities holds

$$\varphi_{\square}(a^{\circ}) = \varphi_{\square}(\mathbf{e}(a^{-2})) = A(\mathbf{e}(a^{-2}), \mathbf{e}(a^{-2}), a^{-2})$$

$$= \mathbf{e}(a^{-2}) = a^{\circ}$$

$$f(3); F(x, c_1^{n-2}) = A(x, \mathbf{e}(c_1^{n-2}), c_1^{n-2}) \Rightarrow A(F(x, c_1^{n-2}), \mathbf{e}(c_1^{n-2}), c_1^{n-2}) =$$

$$\begin{split} &A(A(x,\mathbf{e}(c_1^{n-2}),c_1^{n-2}),\mathbf{e}(c_1^{n-2}),c_1^{n-2}) \Rightarrow A(F(x,c_1^{n-2}),\mathbf{e}(c_1^{n-2}),c_1^{n-2}) = \\ &A(x,\mathbf{e}(c_1^{n-2}),c_1^{n-2}) \Rightarrow F(x,c_1^{n-2}) = x,\,1.2,1.3 \text{.} \end{split}$$

 2_4) Let m = -1. Then the following sequence of equalities holds

$$\varphi_{\square}(a^{-1}) = \varphi_{\square}((\stackrel{n-2}{a}a)^{-1}) = A(\mathbf{e}(\stackrel{n-2}{a}), (\stackrel{n-1}{a})^{-1}, \stackrel{n-2}{a})$$

$$= A(A((\stackrel{n-1}{a})^{-1}, \stackrel{n-2}{a}, a), (\stackrel{n-1}{a})^{-1}, \stackrel{n-2}{a})$$

$$= A((\stackrel{n-1}{a})^{-1}, A(a, \stackrel{n-2}{a}, (\stackrel{n-1}{a})^{-1}), \stackrel{n-2}{a})$$

$$= A((\stackrel{n-1}{a})^{-1}, \mathbf{e}(\stackrel{n-2}{a}), \stackrel{n-2}{a})$$

$$= (\stackrel{n-1}{a})^{-1} = (\stackrel{n-2}{a}, a^1)^{-1} = a^{-1}$$

 $f:(4);1.3; A(x, \mathbf{e}(c_1^{n-2}), c_1^{n-2}) = x, 2_3)f.$

 2_5) Let m=-k and $k\geq 2$. Then the following sequence of equalities holds

$$\begin{split} \varphi_{\square}(a^{-k}) &= \varphi_{\square}(\binom{n-2}{a}, a^k)^{-1}) = A(\mathbf{e}\binom{n-2}{a}), \binom{n-2}{a}, a^k)^{-1}, \binom{n-2}{a}) \\ &= A(A(\binom{n-2}{a}, a^k)^{-1}, \binom{n-2}{a}, a^k), \binom{n-2}{a}, a^k)^{-1}, \binom{n-2}{a}) \\ &= A(\binom{n-2}{a}, a^k)^{-1}, A\binom{n-2}{a}, a^k, \binom{n-2}{a}, a^k)^{-1}), \binom{n-2}{a}) \\ &= A(\binom{n-2}{a}, a^k)^{-1}, A\binom{n-2}{a}, \binom{k-1}{a}\binom{(k-1)(n-1)+1}{a}, \binom{n-2}{a}, a^k)^{-1}), \binom{n-2}{a}) \\ &= A(\binom{n-2}{a}, a^k)^{-1}, A\binom{k-1}{A}\binom{(k-1)(n-1)+1}{a}, \binom{n-2}{a}, \binom{n-2}{a}, a^k)^{-1}), \binom{n-2}{a}) \\ &= A(\binom{n-2}{a}, a^k)^{-1}, A(a^k, \binom{n-2}{a}, \binom{n-2}{a}, a^k)^{-1}), \binom{n-2}{a}) \\ &= A(\binom{n-2}{a}, a^k)^{-1}, \mathbf{e}\binom{n-2}{a}, \binom{n-2}{a}) \\ &= \binom{n-2}{a}, a^k)^{-1} = a^{-k} \end{split}$$

$$f: 1.2, 1.3, (4), 1.7, 1.8, A(x, \mathbf{e}(c_1^{n-2}), c_1^{n-2}) = x - 2_3).$$

3) By 2), 1.5 and 2.6, we conclude that the following sequence of equalities holds

$$a \Box a = A(a, \stackrel{n-2}{a}, a) = A(\overline{a^1}|)$$

= $a^1 \Box \dots \Box a^1 \Box b_{\Box}$
= $a \Box \dots \Box a \Box b_{\Box},$

and hence we conclude that

$$b_{\square} = a^{-(n-2)}.$$

4) Finally, by proposition from 1)-3), Theorem 2.6 and 1.5, we conclude

that for every $\alpha, \alpha_1, \ldots, \alpha_n \in Z$ the following equalities hold

$$A(a^{\alpha_{1}}, \dots, a^{\alpha_{n}}) = a^{\alpha_{1}} \square \dots \square a^{\alpha_{n}} \square a^{-(n-2)} = a^{-\sum_{i=1}^{n-2} \alpha_{i} - (n-2)},$$

$$(a^{\alpha_{1}}, \dots, a^{\alpha_{n-2}, a^{\alpha}})^{-1} = (a^{\alpha_{1}} \square \dots \square a^{\alpha_{n-2}} \square a^{-(n-2)} \square 2a^{\alpha} \square a^{\alpha_{1}} \square \dots$$

$$\dots \square a^{\alpha_{n-2}} \square a^{-(n-2)})^{-1} = a^{-\alpha-2(\sum_{i=1}^{n-2} \alpha_{i} - (n-2))} \text{ and }$$

$$e(a^{\alpha_{1}}, \dots, a^{\alpha_{n-2}}) = (a^{\alpha_{1}} \square \dots \square a^{\alpha_{n-2}} \square a^{-(n-2)})^{-1} = a^{-\sum_{i=1}^{n-2} \alpha_{i} + n-2}$$

2.8. Remark: For n = 2, the equality (8) reduce to the well-known equality

$$A(a^{\alpha_1}, a^{\alpha_2}) = a^{\alpha_1 + \alpha_2}.$$

Moreover, for n = 2, by convection

$$\sum_{i=1}^{0} \stackrel{def}{=} 0,$$

the equalities (9) and (10) reduce to the well-known equalities

$$(a^{\alpha})^{-1} = a^{-\alpha}$$
 and $\mathbf{e}(\emptyset) = a^{\circ}$,

where $\mathbf{e}(\emptyset)$ is a neutral element of the group (Q, A).

2.9. Example: Let $(\{1,2,3,4\},\cdot)$ be the Klein's group defined by the table

	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

and $^{-1}$ its inversing operation. Let also the permutation φ be defined by the table

$$\begin{array}{c|c|cccc} \varphi & 1 & 2 & 3 & 4 \\ \hline & 1 & 2 & 4 & 3 \end{array};$$

 $\varphi \in Aut(\{1,2,3,4\},\cdot)$ $\varphi(2)=2, \ \varphi^2=\{(x,x)|x\in\{1,2,3,4\}.$ Then, $(\{1,2,3,4\},A)$, where

$$A(x, y, z) \stackrel{def}{=} x \cdot \varphi(y) \cdot z \cdot 2$$

for every $x, y, z \in \{1, 2, 3, 4\}$, is a 3-group, and for every $a, c \in \{1, 2, 3, 4\}$ the following equalities hold

$$e(c) = (\varphi(c) \cdot 2)^{-1}$$
 and $(c, a)^{-1} = f(\varphi(c) \cdot 2 \cdot a \cdot \varphi(c) \cdot 2)^{-1} = a^{-1} = a$.

In addition, the following series of equalities holds

$$x \cdot_1 y = A(x, 1, y) = x \cdot \varphi(1) \cdot y \cdot 2 = x \cdot 2 \cdot y,$$

$$x \cdot_2 y = A(x, 2, y) = x \cdot y,$$

$$x \cdot_3 y = A(x,3,y) = x \cdot \varphi(3) \cdot y \cdot 2 = x \cdot 3 \cdot y$$
 and

$$x \cdot_4 y = A(x,4,y) = x \cdot_4 \cdot y.$$

$$[\varphi_1 = \varphi_2 = \varphi, \ \varphi_3 = \varphi_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \ b_1 = 1, \ b_2 = 2, \ b_3 = 3, \ b_4 = 4.]$$

Finally, by Theorem 2.6, we conclude that the following sequence of equalities holds

$$1^{1} = 1$$
, $1^{2} = 1 \cdot_{1} 1 = 2$, $1^{0} = [e(1) =]2$, $1^{-1} = 1$, $2^{-1} = 2$; $2^{1} = 2$, $2^{2} = 2 \cdot_{2} 2 = 1$, $2^{0} = 1$, $1^{-1} = 1$, $2^{-1} = 2$; $3^{1} = 3$, $3^{2} = 3 \cdot_{3} 3 = 3$, $3^{0} = 3$, $3^{-1} = 3$ and $4^{1} = 4$, $4^{2} = 4 \cdot_{4} 4 = 4$, $4^{0} = 4$, $4^{-1} = 4$.

2.10. Remark: Power and order of elements in n-group have been also described in the following papers [11-15]. W. A. Dudek has pointed my attention to this fact.

3. References

- [1] W. Dörnte: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1-19.
- [2] M. Hosszú: On the explicit form of n-group operations, Publ. math. Debrecen, (10) 1-4 (1963), 88-92.
- [3] L. M. Gluskin: Position operatives, Mat. sb. t. 68 (110) No3 (1965), 444-472.(In Russian).
- [4] J. D. Monk and F. M. Sioson: On the general theory of m-groups, Fund. Math., 72 (1971), 233-244.
- [5] S. A. Rusakov: r-folded skew element of the type k in periodic n-ary groups, Proceedings of the Symposium n-ary Structures, Skopje 1982, 161–169. (In Russian.)
- [6] J. Ušan: Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 18-2 (1988), 117-126. (In Russian.)
- [7] J. Ušan: A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 24-1 (1994), 281–288.
- [8] J. Ušan: On n-groups with $\{i, j\}$ -neutral operation for $\{i, j\} \neq \{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 25–2 (1995), 167–178.

- [9] J. Ušan: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 25-1 (1995), 101-119.
- [10] J. Ušan: n-groups, $n \geq 2$, as varieties of type (n, n-1, n-2), Algebra and Model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182–208.
- [11] E. L. Post: Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
- [12] W. A. Dudek: Autodistributive n-groups, Commentationes Math. Annales Soc. Math. Polonae, Prace Matematyczne, 323 (1983), 1-11.
- [13] W. A. Dudek: On distributive n-ary groups, Quasigroups and Related Systems, 2 (1995), 132-151.
- [14] I. M. Dudek and W. A. Dudek: On skew elements in n-groups, Demonstratio Math., 14 (1981), 827-833.
- [15] M. B. Wanke-Jakubowska and M. E. Wanke-Jerie: On orders of skew elements in finite n-groups, Demonstratio Math., 12 (1979), 247-253.

Institute of Mathematics, University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia

Received November 6, 1998.