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GENERALIZATION OF
HARDY-LITTLEWOOD-POLYA
MAJORIZATION PRINCIPLE

Milan R. Taskovié

Abstract. This paper continues the study of the general convex
functions. In this paper we extension our the former objects of the func-
tion in contact and of the function in circled contact.

The following main result is proved: Let J C R be an open interval
and let z;,y; € J(¢ = 1,... ,n) be real numbers such that fulfilling
3) Ty 2 2Tp, Y12 2 Yne

Then, a necessary and sufficient condition in order that
(W) S22 ) —nmax { 5@, 709 (S, 76 }
i=1 i=1

holds for every general convex function f : J — R which is in contact
with function g : f(J)?> = R and for arbitrary a,b € J(a < z; < b for
t=1,...,n),is that

k k n n
@ dw<Yym (k=lL..,n-1, Y y=)
i=1 i=1 i=1 i=1

1. Introduction and definitions

This paper continues the study of the general convex fuctions. A func-
tion f : D — R, where R denotes the real line and D is a convex subset of
R" is said to be convex if

fQz+(1-Ay) <Af(z)+ (1 - A)f(y)
for all z,y € D and for arbitrary A € [0, 1]. Convex functions were introduced
(for n = 1 and A = 1/2) by J. L. Jensen [9], although functions satisfying
similar conditions were already treated by O. Holder [6], J. Hadarmard [3],
Ch. Hermite [5] and O. Stolz [19].
G. H. Hardy, J. E. Littlewood and G. Pélya [4] proved in 1929 the
following majorization principle for convex funcitions which reads as follows.
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Theorem 1. Let J C R be an open interval, let x;,y; € J(i =1,...,n)
be real numbers such that fulfilling

(1) Ty 22 Tp, YL 2 Y

k k n n
(2) Nom<) o (k=1...,n-1), D m=) y.
i=1 i=1 i=1 i=1

If f:J > R is a convex function, then the following inequality holds

(H) S @) <> flw).
=1 i=1

Conversely, if for some z;,y; € J(i = 1,... ,n) such that (1) holds, and
inequality (H) is fulfilled for every convez function, then relations (2) hold.

In this paper we consider the preceding facts for general convex func-
tions. In our former paper (see: Taskovié [20]) we have introduced the notion
of general convex functions. A function f : D — R, where R denotes the real
line and D is a convex subset of R", is said to be general convex if there is
a function ¢ : f(D)? = R such that

(Max) O + (1= Ny) < max {£(2), £(©),9 (/(), f()) }

for all z,y € D and for arbitrary A € [0,1]. We notice that the set of all
convex functions can be proper subset of the set all general convex functions.

In connection with my the former paper [24] in this paper I extension
the former objects of the function in contact and of the function in circled
contact.

Otherwise, a function f : D — R is said to be general convex with
circled contact if (Max) holds, if there are zg,y9 € D such that f(z¢) =
= f(yo) = 9(f(z0), f(w0)) with g(f(z), f(¥)) < g(f(2), f(2)) for z <y < 2,

and if for z; < y; < 21 the following ineqality

(Mm) min { £ (1), f(21),9(f (21, f (1))} <

< max { max (£(1), £(21), (F(@1), £(20))) s max (£ (1), £(20), 9(F (1), £ (1)) |
implies that there are a;,a; € D(a; # ag) such that

(U) F(z0) < min { f(ar), f(@2), 9(f(ar), f(@2)) }
or there are by, by € D(by # b2) such that
(L) max { £(b1), £ (b2), 9(£(51), F(22)) } < f (o).

Also, a function f : D — R is said to be in circled contact with a
function g : f(D)* = R (9(f(2),f(y) < 9(f(2),f(2)) for 2 < y < 2) if
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f(zo) = f(yo) = g(f(z0), f(yo)) for some zg,yo € D, and if (Mm) implies (U)
or (L). We notice that the set of all convex functions can be a proper subset
of the set all general convex with circled contact functions.

On the other hand, a function f : D — R is said to be general convex
with contact if (Max) holds, if there are zg, yo € D uch that f{zg) = f(yo) =

= g(f(z0), f(y0)), and if
min { f(212), f(22), g(f (1), f(2)) } <

< max {f(ml),f(Z1),g(f($1),f(21))}

for z1 < y1 < 21 implies (U) or (L). Also, a function f : D — R is said to be
in contact with a function g : f(D)%? — R, if f(z0) = f(v0) = g(f(z0), f (o))
for some zp, o € D, and if (Mc) implies (U) or (L).

We notice that the set of all convex functions can be a proper subset of
the set all general convex with contact functions.

In this paper, we prove some inequalities which are characterizations
of general convex functions on interval. With the help of the former facts
(see: Taskovi¢ [20]) in this paper we present a new characterization of general
convexity as a majorization principle form an alternative type. With this
inequalities alternative we precision and expand our the former majorization
principle for general convex functions (see: Theorems 3 and 4 in [24]).

(Mc)

2. Characterizations of general convexity

In the reminder of the paper we consider some statements which give
characterizations of general convex functions.

Theorem 2 . (Monotonity of quotients). Let J C R be an open interval,
and let f : J — R be a function in circled contact with a function g : f(J)? —
— R. Then each of the following conditions (postulated for every z,y,z € J
with z < y < z) s necessary and sufficient for the function f to be general
convex with circled contact:

(2) Fl) < max (72, £(2), 9((2), F(2))}
2£(2) = f(&) = max {1(2), £(2), 9(F (=), F () _
zZ~T -
®) - 2(2) - (o) = max (f(9), £ (=), o 9, £ ()
g 2 — y 3
2£(y) - f(z) ~ max {7 (@), / (4), o (2), @) _
(©) yoe )

< U (2) — f(z) — max {f(2), (2),9(f(2), F(2)}

- Z—T
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A variant brief proof of this statement may be found in Taskovi¢ [24].
Proof for Theorem 2 is the totally analogous to the proof of Theorem 2 in [24].

In connection with the preceding facts, we are now in a position to
formulate our the following characterizations for general convex with contact
functions.

Theorem 2a. (Monotonity of quotients). Let J C R be an open inter-
val, and let f : J — R be a function in contact with a function g : f(J)? — R.
Then each of the following conditions (postulated for arbitrary a,b € J and for
every ¢,y,z € J with £ < y < z) is necessary and sufficient for the function
[ to be general convex with contact:

(a) f() < max{f(a), f(b),9(f(a), f(b))} forall &€ lab),
2f(2) — f(z) — max {f(a), f(b),9(f(a), f (b))} <

®) - 2(2) = §(u) — max {/(a), /), o/ (@), F(5)}
— 2 _y ?
2f(y) — f(m) — max {f(a),f(b))g(f(a')af(b))} <
y—x B
© < 2(2) = £(2) ~ max (), S0, 9(4 (@) S D)}

For this statement the proof is analogous to the preceding proof for
Theorem 2 based on Theorem 1 (Min-Max Principle) in Taskovié (24].

3. Inequalities for general convexity

In this section we give some inequalities which are similar to well known
inequality of Hardy-Littlewood-Pélya, i.e., similar with Theorem 1.

We are now in a position to formulate the following fundamental state-
ment for general convex functions.

Theorem 3. (Inequalities alternative). Let J C R be an open interval,
let z;,y; € J (1 =1,...,n) be real numbers such that fulfilling

(3) Ty 2 2Tp, Y1200 2 Yn,

k k n n
(4) zyiSZmi (k=1,...,n—-1), Emi=}:yi.
i=1 i=1 i=1 i=1

If f : J = R is a general convex with circled contact function for some
function g : f(J)? = R, then either

(A Y fw) <2 fla) = Y max {f(2a), f(v:), 9(f (z3), f (v:))}
=1 i=1

=1
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(B) D fmi) 22) fly) — Y max {f(z:), f(w:), 9(f (), F(we))}-
i=1 i=1 =1

Conversely, if for some z;,y; € J (i =1,... ,n) such that (3) holds and
inequality (A) is fulfilled for every general convex with circled contact function
f:J — R, then relations (4) hold.

We notice, proof of this statement is a totally analogous with the proof
of Theorem 3 in Taskovié [24].

In connection with the preceding statement and Theorem 2a we are now
in a position to formulate our main general statement.

Theorem 4. (Majorization Principle). Let J C R be an open interval,
let z;,y; € J (i =1,...,n) be real numbers such that fulfilling

(3) 12 2 Tn, Y120 2 Yn,

k k n n
(4) Swi<dm  (k=1...,n-1), > z=) u
i=1 =1 i=1 i=1

If f . J = R is a general convex with contact function for some function
g: f(J)?2 = R then cither

(N) D f(w) <2 f(@) — nmax {f(a), £(b), 9(f(a), (b))}
=1 i=1

(M) Y f(@:) 22 f(y:) — nmax {f(a), f(b),9((a), f (b))}
1=1 =1

for two arbitrary points a,b € J.

Conversely, if for some z;,y; € J (1 = 1,...,n) such that (3) holds
and inequality (N) or (M) is fulfilled for every general convez with contact
function f : J — R, then relations (4) hold.

Sketch proof. Adding the same term to both the sides of (N) or (M)
does not affect the inequality. Therefore we may a ssume that z; # y; for
i=1,...,n. Put

F(ys) = 2f (2:)+ max {f(a), £(b), g(f(a), £ (b))}

Vi —

1

or

D, .= £(@i) = 2f(yi) + max{f(a), f(b), 9(f(a), (b))}

i
i — Y
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for i = 1,...,n. Since f is a general convex with contact function from
Theorem 2a we obtain the inequality (N) or (M).

On the other hand, a brief proof of necessity for the case (N) may be
found in Taskovié¢ [24]. Thus, we need only show that (M) implies (4). Taking
f(z) = = we obtain from (M)

(5) Z$222Zyl—nmax{abg(a b)}.
=1
If put @ < b = yp, g(a,b) = y,, then we obtain that the following
inequality holds

n n
2Zyi — nmax {a,b,g(a,b)} > Zyi,
i=1 1=1

i.e., from (5) we obtain an inequality in the last equality in (4). On the other
hand, taking f(z) = —z from (M) we obtain, with the preceding relations,
together yield the last equality in (4).

Now take an arbitrary k(1 < k < n) and f(z) := max(0,z — zx). The-
refore, putting that isz = y; (¢ = 1,... , k) and summing up over 1 = 1,... ,k
we get by (M):

4

k n

(yi —zx) < X0 F(y:) ng(yz <

1 =1
;f(:vz)Jr max {f(a), f(b), g(f(a), f (b))}

Y fla) + § max (7(0), 70,9/ (0), SO}

\ =

If putting that is a,b < zj, and g(0,0) = 0, then from (6) we obtain the
following inequality

Ma-

-.
il

(6) ¢ <

BOf =

k k
i — ) <> (i — zx)
i=1 =1

for k = 1,...,n — 1 whence the first n — 1 inequalities in (4) follow. Now the
proof is finite.

In further let the function z — f(z) be nonnegative and integrable on
(0, 1) so that it is measurable and finite almost everywhere and let u(s) be
the measure of the set on which f(z) > s. The function z — f*(z) which is
inverse to u is called the decreasing rearrangement of f.

If z,y € L'(0,1), we say that ¥y majorizes z, in writing z < v, if

§ S
/ z*(t)dt < / y*(t)dt for 0<s<1,
0 0
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/01 o(t)dt = /01 y(#)dt.

We shall now give an integral inequality, which is connected with the
majorization of functions, and which is analogue the preceding result, be-
cause without proof. We note G.H. Hardy, J.E. Littlewood and G. Pdlya also
proved in [4] an integral analogy of the inequality which appears in the their
majorization principle.

and

Theorem 4a. (Integral analogue of majorization). The following in-
equality of the form

1 1
/0 Flu(t)dt < 2 /0 £ (@(t))dt— max {f(a), F(8), 9(F(a), F(b)))

or

1 1
/O f(z(t))dt > 2/0 Fy(t))di— max {f(a), f(b),9(f(a), (b))}

holds for some function g : [0,1]2 — R, for arbitrary points a,b € [0,1], and
for any general conver with contact function f if and only if z majorizes y.
With this preceding statements we precision and expand our the former

majorization principles for general convex with contact functions (Theorems 4
and 4a in [24)).

4. Some consequences

On the other hand, if to teasing on the convex class of functions taking

(C) max {f(xi), f(yi):g(f(xi)>f(yi))} = M(z:) + (1 = N) f(vi)

for arbitrary A € (0,1] in Theorem 3, then from inequalities (A) and (B) we
obtain the preceding Theorem 1 of Hardy-Littlewood-Pélya.

This means that Theorem 3 extends Theorem 1 to general convex func-
tions. Also, from Theorem 3 as an immediate consequence we obtain and a
correspond statement for quasiconvex functions.

In connection with the preceding facts, since inequality (N) or (M) for
a <z; <b(i=1,...,n)is equivalent only to inequality (M), thus we can
Theorem 4 write in the following equivalent form in this case.

Theorem 4b. Let J C R be an open interval and let z;,y; € J (i =
=1,...,n) be real numbers such that fulfilling

(3) L1 > 2 Tp, Y12 2 Yn.
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Then, a necessary and sufficient condition in order that

M) S @) 223 f) - nmax {£(a), F8), 9(F(a), FB)))
=1 i=1

holds for every general convex function f : J — R which is in contact with
function g : f(J)> = R and for arbitrary a,b € J (a < z; < b for i =
=1,...,n), is that

k k n
(4) ‘Zyiszxi (k=1,...,n—1), Zyz in-
=1 i=1 i=1

As an imediate consequence of Theorem 3, dxrectly, we obtain the fol-
lowing inequality. Indeed, putting in (B) 41 = ... = yp = n~ 13 1, z; we
get

for every general convex function f : J — R (J C R is an open interval)
which is in circled contact with function g : f(J)? - R.

This inequality is a generalization of Jensen’s inequality for convex func-
tions. Indeed, if to teasing on the convex class of functions taking (C), then
from (Gc) we get Jensen’s inequality.

The following statement is very similar to Theorem 3.

(Ge)

Theorem 3a. Let J C R be an open interval, let z;,y; € J (1 =
=1,...,n) be real numbers such that fulfilling (3) and such that

k k
(D ZyiSin (k=1,...,n).
=1 i=1

If f : J = R is an increasing general convex with circled contact func-
tion for some function g : f(J)?> — R then either

(B) D ) <2) fla) =Y max {f(z), £(%i), 9 (F(23), £ (4:))}
i=1 i=1 i=1

or

B) S fz) 223 flu) - S max f(ai), f(9:), 9 (F(ai), F5:)} -
i=1 i=1 i=1
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Conversely, if for some z;,y; € J (i = 1,...,n) such that (3) holds
and inequality (A) is fulfilled for every increasing general convex with circled
contact function f:J — R, then inequalities (1) hold.

This proof of this statement is totally analogous to the preceding proof
of Theorem 3. The following statement is very similar to Theorem 4b.

Theorem 4c. Let J C R be an open interval and let z;,y; € J (1 =
=1,...,n) be real numbers such that fulfilling

(3) Ty 2 2 2, Y12 2 Yn

Then, a necessary and sufficient condition in order that

vl

(M) > f(@) 22 f(y:) — nmax {f(a), f(b), 9 (f(a), F(0))}
i=1 1=1

holds for every increasing general convexr function f : J — R which is in
contact with function g : f(J)? — R and for arbitrary a,b € J (a < 2; < b
fori=1,...,n), is that

k k
(D ZyzSZLIh (k=1,...,n).
i=1 i=1

The proof of this statement is very similar and a totally analogous to
the preceding proof of Theorem 4.
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