FIXED POINTS ON TRANSVERSAL PROBABILISTIC SPACES

Milan R. Tasković

Abstract. In this paper we introduce a notion of the probabilistic contraction on a lower transversal probabilistic space and prove two fixed point statements. The lower transversal probabilistic spaces are a natural extension of Menger's and probabilistic spaces.

1. Introduction and definitions

Transversal probabilistic spaces were introduced in 1998 by Tasković [6] in the following sense.

Let X be a nonempty set. The function $\rho: X \times X \to [0,1]$ is called an **upper probabilistic transverse** on X (or upper probabilistic transversal) if: $\rho[x,y] = \rho[y,x]$, and if there is a function $g:[0,1] \times [0,1] \to [0,1]$ such that

$$(\mathbf{A}) \qquad \qquad \rho[x,y] \leq \max \Big\{ \rho[x,z], \rho[z,y], g\left(\rho[x,z], \rho[z,y]\right) \Big\}$$

for all $x, y, z \in X$. An upper transversal probabilistic space is a set X together with a given upper probabilistic transverse on X. The function $g:[0,1]\times[0,1]\to[0,1]$ in (A) is called upper (probabilistic) bisection function.

In connection with this, the function $\rho: X \times X \to [0,1]$ is called a **lower probabilistic transverse** on X (or lower probabilistic transversal) if: $\rho[x,y] = \rho[y,x]$ and if there is a **lower (probabilistic) bisection function** $d:[0,1]\times[0,1]\to[0,1]$ such that

$$\left(\operatorname{Am} \right) \qquad \qquad \min \left\{ \rho[x,z], \rho[z,y], d\left(\rho[x,z], \rho[z,y] \right) \right\} \leq \rho[x,y]$$

for all $x, y, z \in X$. A lower transversal probabilistic space is a set X together with a given lower probabilistic transverse on X.

AMS (MOS) Subject Classification 1991. Primary: 47H10, 54E70, 05A15. Secondary: 54H25, 54E35.

Key words and phrases: Fixed points, upper or lower transversal probabilistic spaces, Menger's space, probabilistic contraction, lower (probabilistic) transverse, bisection functions.

Otherwise, a **transversal probabilistic space** is an upper and a lower transversal probabilistic space simultaneous.

The preceding definitions suggest that all probabilistic transverses ρ : $X \times X \to [0,1]$ may be interpreted as probability, that is to say, given any two points x and y of a transversal (upper or lower) probabilistic space X, rather than consider a single non-negative real number $\rho[x,y] \in [0,1]$ as a measure of the probabilistic transverse between x and y in X.

As an important example of lower transversal probabilistic spaces we have a Menger's (probabilistic) space.

K. Menger introduced in 1928 and 1942 the notion of probabilistic metric space. O. Kaleva and S. Seikkala proved in 1984 that each Menger's space, which is a special probabilistic metric space, can be considered as a fuzzy metric space.

In further, we shall denote the distribution function F(p,q) by $F_{p,q}$ and $F_{p,q}(x)$ will represent the value of $F_{p,q}$ at $x \in \mathbb{R}$.

The function $F_{p,q}(p, q \in X)$ are assumed to satisfy the following conditions: $F_{p,q}(x) = 1$ for x > 0 iff p = q, $F_{p,q}(0) = 0$ and $F_{p,q} = F_{q,p}$ for all $p, q \in X$. In further let $\rho[u, v] = F_{u,v}(x)$ with the preceding conditions.

In the theory of metric spaces, as and in the lower transversal probabilistic spaces, it is extremely convenient to use a geometrical language inspired by classical geometry.

Thus elements of a lower transversal probabilistic space will usually be called **points**. Given a lower transversal probabilistic space (X, ρ) , with the lower bisection function $d: [0,1] \times [0,1] \to [0,1]$ and a point $a \in X$, the **open ball**, in notation d(B(a,r)), of center a and radius r > 0 is the set

$$d\big(B(a,r)\big) = \Big\{x \in X : \rho[a,x] > r\Big\}.$$

The concept of a neighborhood in a lower transversal probabilistic space X for the lower probabilistic transverse $\rho[p,q]:=F_{p,q}(x)$ is the following. If $p\in X$, and μ,σ are positive reals, then an (μ,σ) - neighborhood of p, denoted by $U_p(\mu,\sigma)$, is defined by

$$U_p(\mu, \sigma) = \{ q \in X : \rho[p, q] = F_{p,q}(\mu) > 1 - \sigma \}.$$

The above topology satisfies the first axiom of countability. In this topology a sequence $\{p_n\}_{n\in\mathbb{N}}$ in X converges to a point $p\in X$ (in notation $p_n\to p$) if and only if for every $\mu>0$ and $\sigma>0$, there exists an integer $M(\mu,\sigma)$ such that $p_n\in U_p(\mu,\sigma)$, i. e., $\rho[p,p_n]>1-\sigma$ whenever $n\geq M(\mu,\sigma)$. The sequence $\{p_n\}_{n\in\mathbb{N}}$ will be called fundamental in X if for each $\mu>0$, $\sigma>0$ there is an integer $M(\mu,\sigma)$ such that $\rho[p_n,p_m]=F_{p_n,p_m}(\mu)>1-\sigma$ whenever $n,m\geq M(\mu,\sigma)$. In analogy with the completion concept of metric space, a lower transversal probabilistic space X will be called **complete** if each fundamental sequence in X converges to an element in X.

2. Main results

In further we introduce a notion of a probabilistic contraction on a lower transversal probabilistic space and prove a fixed point theorem.

A mapping T of a lower transversal probabilistic space (X, ρ) into itself for $\rho[u, v] = F_{u,v}(x)$ will be called a **probabilistic contraction** if there exists a nondecreasing function $\varphi : \mathbb{R}^{\circ}_{+} \to \mathbb{R}^{\circ}_{+} := [0, +\infty)$ such that

(As)
$$\lim_{n\to\infty} \varphi^n(t) = +\infty$$
 for every $t>0$

and such that

(Pc)
$$F_{Tu,Tv}(x) \ge \min \left\{ F_{u,v}(\varphi(x)), F_{u,Tu}(\varphi(x)), F_{v,Tu}(\varphi(x)), F_{v,Tu}(\varphi(x)), F_{v,Tu}(\varphi(x)) \right\}$$

for all $u, v \in X$ and for every $x \in \mathbb{R}_+ := (0, +\infty)$.

The function $d:[0,1]\times[0,1]\to[0,1]$ is **nondecreasing** if $a_i,b_i\in[0,1]$ and $a_i\leq b_i$ (i=1,2) implies $g(a_1,a_2)\leq g(b_1,b_2)$. Now we shall prove the following result for the preceding class of functions (Pc) on a special lower transversal probabilistic space.

Theorem 1. Let (X, ρ) be a complete lower transversal probabilistic space, where the lower transverse $\rho[u, v] = F_{u,v}$ and the lower bisection function $d: [0,1] \times [0,1] \to [0,1]$ is nondecreasing such that $d(t,t) \geq t$ for every $t \in \mathbb{R}_+$. If T is any probabilistic contraction mapping of X into itself, then there is a unique point $p \in X$ such that Tp = p. Moreover, $T^n q \to p$ for each $q \in X$.

Proof. For this proof the following inequalities are essential. Namely, from the conditions for the function $d:[0,1]^2 \to [0,1]$ we obtain the following inequalities

(1)
$$d(a,b) \ge d(\min\{a,b\}, \min\{a,b\}) \ge \min\{a,b\}$$

for all $a, b \in [0, 1]$. On the other hand, since X is a lower transversal probabilistic space, for every $x \ge 0$ we have the following inequalities

(2)
$$F_{a,b}(x) \ge \min \left\{ F_{a,c}(x), F_{c,b}(x), d\left(F_{a,c}(x), F_{c,b}(x)\right) \right\} \\ \ge \min \left\{ F_{a,c}(x), F_{c,b}(x) \right\}$$

To prove the existence of the fixed point, consider an arbitrary $u \in X$, and define $u_n = T^n(u)$, for $n \in \mathbb{N} \cup \{0\}$. We show that the sequence $\{u_n\}_{n \in \mathbb{N} \cup \{0\}}$ is fundamental in X. Then for $a \in \mathbb{R}_+$ and m > n $(m, n \in \mathbb{N})$ from (2) is

(3)
$$F_{u_n,u_m}(a) \ge \min \left\{ F_{u_n,u_{n+1}}(a), \dots, F_{u_{m-1},u_m}(a) \right\}$$

On the other hand, since T is a probabilistic contraction mapping, from (2) we obtain the following inequalities

$$F_{u_{n},u_{n+1}}(a) = F_{Tu_{n-1},Tu_{n}}(a) \ge$$

$$(4) \ge \min \left\{ F_{u_{n-1},u_{n}}(\varphi(a)), F_{u_{n},u_{n+1}}(\varphi(a)), F_{u_{n-1},u_{n+1}}(\varphi(a)) \right\} \ge$$

$$\ge \min \left\{ F_{u_{n-1},u_{n}}(\varphi(a)), F_{u_{n},u_{n+1}}(\varphi(a)) \right\}$$

and thus

(5)
$$F_{u_n,u_{n+1}}(\varphi(a)) \ge \min \left\{ F_{u_{n-1},u_n}(\varphi^2(a)), F_{u_n,u_{n+1}}(\varphi^2(a)) \right\}$$

From (4) and (5) it follows by induction that for every integer $k \in \mathbb{N}$ the following inequality holds

$$F_{u_n,u_{n+1}}(a) \ge \min \left\{ F_{u_{n-1},u_n}\left(\varphi(a)\right), F_{u_n,u_{n+1}}\left(\varphi^k(a)\right) \right\},$$

that is, when $k \to +\infty$, we obtain $F_{u_n,u_{n+1}}(a) \geq F_{u_{n-1},u_n}(\varphi(a))$ for every $n \in \mathbb{N}$, i. e.,

$$F_{u_n,u_{n+1}}(a) \ge F_{u_0,u_1}(\varphi^n(a))$$

for every $n \in \mathbb{N}$. Hence, from the former inequality (3), we obtain

$$F_{u_n,u_m}(a) \ge \min \left\{ F_{u_0,u_1}(\varphi^n(a)), F_{u_0,u_1}(\varphi^{n+1}(a)), \dots, F_{u_0,u_1}(\varphi^{m-1}(a)) \right\}$$

that is, $F_{u_n,u_m}(a) \geq F_{u_0,u_1}(\varphi^n(a))$. Hence, $\{u_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a fundamental sequence in X. Since X is a complete space, there is an $p\in X$ such that $u_n\to p$, that is $T^n(u)\to p$. Then, from the former facts, we have

$$F_{Tp,p}(a) \ge F_{Tp,p}(\varphi(a))$$

for every $a \in \mathbb{R}_+$, that is Tp = p. We further prove the uniqueness. Suppose $p \neq q$ and Tp = p, Tq = q. Then, there exists an x > 0 and an $0 \leq a < 1$, such that $F_{p,q}(x) = a$. However, since T is a probabilistic contraction mapping, for each $n \in \mathbb{N}$ we have

$$a = F_{p,q}(x) = F_{Tp,Tq}(x) \ge \cdots \ge F_{p,q}(\varphi^n(x)),$$

and hence, since $F_{p,q}(\varphi^n(x)) \to 1$ as $n \to \infty$, it follows that a = 1. This contradicts the choice of $0 \le a < 1$, and therefore, the fixed point is unique. The proof is complete.

In connection with the preceding statement, from our the Principle of Symmetry (see: Tasković, *Math. Japonica*, **35** (1990), p. 661), we obtain as an immediate consequence of Theorem 1 the following result.

Theorem 2. Let (X, ρ) be a complete lower transversal probabilistic space, where the lower transverse $\rho[u, v] = F_{u,v}$ and the lower bisection function $d: [0,1] \times [0,1] \to [0,1]$ is nondecreasing such that $d(t,t) \geq t$ for every $t \in \mathbb{R}_+$. If there exists a nondecreasing function $\varphi: \mathbb{R}_+^{\circ} \to \mathbb{R}_+^{\circ}$ such that (As) and if there is a function $n: X \to \mathbb{N}$ such that

$$\begin{split} F_{T^{n(u)}(u),T^{n(v)}(v)}(x) &\geq \min \left\{ F_{u,v}\left(\varphi(x)\right), F_{u,T^{n(u)}u}\left(\varphi(x)\right), \\ F_{v,T^{n(v)}v}\left(\varphi(x)\right), F_{u,T^{n(v)}v}\left(\varphi(x)\right), F_{v,T^{n(u)}u}\left(\varphi(x)\right) \right\} \end{split}$$

for all $u, v \in X$ and for every $x \in \mathbb{R}_+$, then T has exactly one fixed point $p \in X$ and $T^n q \to p$ for every $q \in X$.

3. Some consequences

Let B denote the set of all \triangle -norms. A Menger space is a triplet (E, F, \triangle) , where (E, F) is a probabilistic metric space and $\triangle \in B$ satisfies the following inequality:

$$F_{p,r}(x+y) \ge \triangle (F_{p,q}(x), F_{q,r}(y))$$

for all $p, q, r \in E$ and for all $x, y \ge 0$. Metric spaces are special cases of Menger spaces with $\Delta(x, x) \ge x$ for every $x \in [0, 1]$.

If we chosen a lower bisection function $d:[0,1]^2 \to [0,1]$ such that $d = \Delta$ (for $\Delta \in B$), then we obtain immediate that every Menger's space, for $\rho[x,y] = F_{x,y}$, is a lower transversal probabilistic space.

Hence, Theorems 1 and 2 immediate hold and for Menger's spaces. Also, since every probabilistic (metric) space is a lower transversal probabilistic space, hence Theorems 1 and 2 hold and for probabilistic spaces; similar, and for fuzzy metric spaces.

On the other hand, as an immediate consequence of the preceding Theorem 1 we obtain directly the following result on Menger's spaces.

Corollary 1. (Bylka [1]). Let (E, F, \triangle) be a complete probabilistic Menger space, where \triangle is a continuous function satisfying $\triangle(x, x) \ge x$ for each $x \in [0, 1]$, and T a mapping of E into itself. If $\varphi : \mathbb{R}_+^{\circ} \to \mathbb{R}_+^{\circ}$ is a nondecreasing function such that (As) and

$$F_{Tu,Tv}(x) \ge F_{u,v}(\varphi(x))$$

for $x \in \mathbb{R}_+$ and for all $u, v \in E$, then T has a unique fixed point $p \in E$ and $T_{T^nq,p}(x) \to 1$ for every $q \in E$ and $x \in \mathbb{R}_+$.

4. Open problems

We notice that are preceding results of this note (Theorems 1 and 2) given for a special probabilistic transverse in case $\rho[u, v] = F_{u,v}(x)$.

In connection with this, formulate some new statements of the preceding type for arbitrary upper or lower probabilistic transverses!

Formulate and a correspond statement (analogous to Theorem 1) for upper transversal probabilistic spaces!

5. References

- [1] C. Bylka: Fixed point theorems of Matkowski on probabilistic metric spaces, Demonstratio Math., 29 (1996), 159-164.
- [2] O. Kaleva and S. Seikkala: On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
- [3] K. Menger: Untersuchungen über allgemeine Metrik, Math. Annalen, 100 (1928), 75-163.
- [4] K. Menger: Statistical metrics, Proc. Nat. Acad. Sci., USA, 28 (1942), 535-537.
- [5] M. R. Tasković: Some new principles in fixed point theory, Math. Japonica, 35 (1990), 645-666.
- [6] M. R. Tasković: Transversal spaces, Math. Moravica, 2 (1998), 133-142.

Matematički fakultet 11000 Beograd, P.O. Box 550 Yugoslavia

Received January 27, 1998.