A PROCEDURE FOR OBTAINING ITERATIVE FORMULAS OF HIGHER ORDER

D. M. Simeunović

Abstract. In this paper a procedure for obtaining iterative formulas of higher order is obtained. In particular, a family of iterative formulas of higher order is given. The family includes several already known results.

1. Introduction

Let

(1)
$$x_{n+1} = f(x_n), \ n = 0, 1, 2, \cdots$$

be an iterative method for finding the root $x = \alpha$ of the real or complex equation F(x) = 0.

For the iterative method (1) which converges to $x = \alpha$, we say it is of order k if

(2)
$$|x_{n+1} - \alpha| = O\left(|x_n - \alpha|^k\right), \ n \to \infty.$$

If the function f(x) is k times differentiable in a neighbourhood of the limit point $x = \alpha$, then the iterative method (1) is of order k if and only if

(3)
$$f(\alpha) = \alpha$$
, $f'(\alpha) = f''(\alpha) = \dots = f^{(k-1)}(\alpha) = 0$, $f^{(k)}(\alpha) \neq 0$.

This paper deals with a general procedure for obtaining iterative formulas of higher order.

2. A Theorem for Iterative Formulas of Higher Order

Starting from an iterative method of order k for finding the root $x = \alpha$ of the real or complex equation F(x) = 0, we give, in this paper, a procedure for obtaining iterative methods of order $\geq k+1$. In this connection the following theorem is proved here.

AMS (MOS) Subject Classification 1991. Primary: 65H05.

Key words and phrases: Iteration formulae, approximate solutions of equations.

Theorem 1. Let (1) be an iterative method of order $k \geq 2$. Let the function f(x) be k+1 times differentiable in a neighbourhood of the limit point $x = \alpha$. Then for the function g(x) of the form

$$(4) g(x) = G(f'(x))$$

k times differentiable in the neighbourhood of the limit point $x = \alpha$ such that

$$(5) g(\alpha) = 0,$$

(6)
$$g'(x) = \frac{1}{k}h(x)f''(x)$$

and

$$(7) h(\alpha) = 1,$$

formula

(8)
$$x_{n+1} = f(x_n) - g(x_n) (x_n - f(x_n)), \quad n = 0, 1, 2, \cdots$$

is an iterative method of order $\geq k+1$.

Proof. In the method (1) the iteration function is f(x), and in the method (8) the iteration function is

(9)
$$\varphi(x) = f(x) - g(x)(x - f(x)).$$

For the function $\varphi(x)$ we shall prove that

(10)
$$\varphi(\alpha) = \alpha, \quad \varphi'(\alpha) = \varphi''(\alpha) = \dots = \varphi^{(k)}(\alpha) = 0.$$

By hypothesis, (1) is an iterative method of order $k \geq 2$ and therefore the relations (3) hold.

From (9) and (6) we have, respectively

$$\varphi^{(r)}(x) = f^{(r)}(x) - g^{(r)}(x)(x - f(x)) - rg^{(r-1)}(x)(1 - f'(x)) + \left(\frac{r}{2}\right)g^{(r-2)}(x)f''(x) + \dots + rg'(x)f^{(r-1)}(x) + g(x)f^{(r)}(x)$$
(11)

and

(12)

$$g^{(r-1)}(x) = \frac{1}{k} \left(h^{(r-2)}(x) f''(x) + (r-2) h^{(r-3)}(x) f'''(x) + \left(\frac{r-2}{2} \right) h^{(r-4)}(x) f^{(4)}(x) + \dots + (r-2) h'(x) f^{(r-1)}(x) + h(x) f^{(r)}(x) \right).$$

For $k \geq 2$, in view of (3), we obtain from (9)

(13)
$$\varphi(\alpha) = \alpha.$$

Because of (3) and (5), for r = 1, we obtain from (11)

$$\varphi'(\alpha) = 0.$$

For k = 2, in view of (3) and (7), we have from (6)

(15)
$$g'(\alpha) = \frac{1}{2}f''(\alpha).$$

Taking into account (3), (5) and (15), we obtain from (11)

(16)
$$\varphi''(\alpha) = f''(\alpha) - 2 \cdot \frac{1}{2} f''(\alpha) = 0.$$

In view of (13), (14) and (16), we conclude that the relations (10) are satisfied for k = 2.

For $k \geq 3$, having in mind (3) and (7), we obtain from (12)

(17)
$$g^{(r-1)}(\alpha) = 0$$
, for $2 \le r \le k-1$

and

(18)
$$g^{(k-1)}(\alpha) = \frac{1}{k} f^{(k)}(\alpha), \text{ for } r = k.$$

On account of (3), (5) and (17), for $r = 1, 2, \dots, k-1$, from (11) we have, respectively

(19)
$$\varphi'(\alpha) = 0, \quad \varphi''(\alpha) = 0, \cdots, \varphi^{(k-1)}(\alpha) = 0.$$

Keeping in mind (3), (5), (17) and (18) for r = k, we obtain from (11)

(20)
$$\varphi^{(k)}(\alpha) = f^{(k)}(\alpha) - k \cdot \frac{1}{k} f^{(k)}(\alpha) = 0.$$

In view of (13), (14), (19) and (20), we conclude that the relations (10) are satisfied for $k \geq 3$. Since the relations (10) are satisfied for k = 2, it follows that they are satisfied for $k \geq 2$, which means that the iterative method (8) is of order $\geq k + 1$ for $k \geq 2$.

3. Determination of the Function g(x)

From (4), it follows that the function h(x) has the form h(x) = H(f'(x)). For $k \geq 2$, in view of (3), the condition $f'(\alpha) = 0$ is satisfied. Therefore, it is not difficult to determine the function of the form h(x) = H(f'(x)) for which we have $h(\alpha) = H(f'(\alpha)) = H(0) = 1$.

For every given function h(x), we can obtain from (6) the corresponding function g(x) as

(21)
$$g(x) = \frac{1}{k} \int_{0}^{x} h(t) f''(t) dt = \frac{1}{k} \int_{0}^{x} H(f'(t)) df'(t) = G(f'(x))$$

for which we have $g(\alpha) = G(f'(\alpha)) = G(0) = 0$.

The function g(x) can also be directly given.

4. Some Forms of the Function g(x)

Here we give several functions g(x) obtained from (21) for corresponding functions h(x). These are

(22)
$$g(x) = \frac{1}{k} f'(x), \text{ for } h(x) = 1,$$

which is the result obtained by G. Milovanović [5];

(23)
$$g(x) = \frac{1}{k} \frac{f'(x)}{(1 - f'(x))}, \text{ for } h(x) = \frac{1}{(1 - f'(x))^2},$$

which is the result obtained in [7];

(24)
$$g(x) = \frac{f'(x)}{k - f'(x)}, \text{ for } h(x) = \frac{1}{(1 - \frac{1}{k}f'(x))^2},$$

which is the result obtained by B. Jovanović [4];

(25)
$$g(x) = -\frac{1}{k} \ln \left(1 - f'(x) \right), \text{ for } h(x) = \frac{1}{1 - f'(x)};$$

(26)
$$g(x) = \frac{1}{k} \left(e^{f'(x)} - 1 \right), \text{ for } h(x) = e^{f'(x)};$$

(27)
$$g(x) = e^{\frac{f'(x)}{k}} - 1$$
, for $h(x) = e^{\frac{f'(x)}{k}}$;

(28)
$$g(x) = \frac{1}{k} \sin f'(x)$$
, for $h(x) = \cos f'(x)$;

(29)
$$g(x) = \frac{1}{k} (f'(x) - (f'(x))^2), \text{ for } h(x) = 1 - 2f'(x).$$

Now we shall give some more forms of the function g(x) for which the conditions (4), (5), (6) and (7) from Theorem 1 are also satisfied. These are

(30)
$$g(x) = \frac{1}{k} \left(\left(\frac{stuv - 1 + \left[2 - (1 - sf'(x))^t \right]^u}{stuv} \right)^v - 1 \right),$$

(31)
$$g(x) = \frac{1}{k} \left(e^{\frac{[2-(1-sf'(x))^t]^u - 1}{stu}} - 1 \right),$$

(32)
$$g(x) = \frac{1}{k} \left(\left(\frac{stv + \ln[2 - (1 - sf'(x))^t]}{stv} \right)^v - 1 \right),$$

(33)
$$g(x) = \left(\frac{kstuv - 1 + \left[2 - (1 - sf'(x))^t\right]^u}{kstuv}\right)^v - 1,$$

(34)
$$g(x) = e^{\frac{[2-(1-sf'(x))^t]^u-1}{kstu}} - 1,$$

(35)
$$g(x) = \left(\frac{kstv + \ln[2 - (1 - sf'(x))^t]}{kstv}\right)^v - 1,$$

where s, t, u and v are finite parameters $\neq 0$.

We shall consider in particular the function g(x) from (33). In this case Theorem 1 reduces to next theorem.

Theorem 2. Let (1) be an iterative method of order $k \geq 2$. Let the function f(x) be k+1 times differentiable in a neighbourhood of the limit point $x = \alpha$. Then

$$(36) \quad x_{n+1} = f(x_n) - \left(\left(\frac{kstuv - 1 + \left[2 - (1 - sf'(x_n))^t \right]^u}{kstuv} \right)^v - 1 \right) \cdot (x_n - f(x_n)) =$$

$$= x_n - \left(\frac{kstuv - 1 + \left[2 - (1 - sf'(x_n))^t \right]^u}{kstuv} \right)^v (x_n - f(x_n)),$$

$$n = 0, 1, 2, \dots$$

is an iterative method of arder $\geq k+1$, where s, t, u and v are finite parameters $\neq 0$. If $f'(\alpha) \neq 1$, s = u = 1 and tv = -1 or ktv = -1, then the method (36) holds for $k \geq 1$.

Proof. On basis of Theorem 1 it follows that Theorem 2 holds for $k \geq 2$. If $f'(\alpha) \neq 1$, s = u = 1 and tv = -1, the iteration function on the right hand side of (36) reduces to

(37)
$$\varphi(x) = f(x) - \left(\left(\frac{k - 1 + \left(1 - f'(x) \right)^t}{k} \right)^{-\frac{1}{t}} - 1 \right) \left(x - f(x) \right).$$

If $f'(\alpha) \neq 1$, s = u = 1 and ktv = -1, the iteration function on the right hand side of (36) reduces to

(38)
$$\varphi(x) = f(x) - \left(\left(1 - f'(x) \right)^{-\frac{1}{k}} - 1 \right) \left(x - f(x) \right).$$

It is not difficult to see that functions (37) and (38) satisfy (10) for k = 1, which means that they satisfy it also for $k \geq 1$. This way we have completed the proof of the Theorem 2.

Four parameters, s, t, u and v, stand in the formula (36). Giving these parameters fixed finite values $\neq 0$, one obtains particular iterative formulas.

5. Special Cases of the Formula (36)

(39)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \left(x_n - f(x_n) \right) =$$

$$= x_n - \left(1 + \frac{1}{k} f'(x_n) \right) \left(x_n - f(x_n) \right), \quad n = 0, 1, 2, \dots,$$

which is the result obtained by G. Milovanović [5].

5.2. For s = u = 1, tv = -1 and if $f'(\alpha) \neq 1$, the formula (36), which in this case holds for $k \geq 1$, reduces to

$$(40) x_{n+1} = f(x_n) - \left(\left(\frac{k - 1 + (1 - f'(x_n))^t}{k} \right)^{-\frac{1}{t}} - 1 \right) \cdot (x_n - f(x_n)) =$$

$$= x_n - \left(\frac{k - 1 + (1 - f'(x_n))^t}{k} \right)^{-\frac{1}{t}} (x_n - f(x_n)),$$

$$n = 0, 1, 2, \dots$$

5.2.1. For t = 1, from (40) we obtain

(41)
$$x_{n+1} = f(x_n) - \frac{f'(x_n)}{k - f'(x_n)} (x_n - f(x_n)) =$$
$$= x_n - \frac{x_n - f(x_n)}{1 - \frac{1}{k} f'(x_n)}, \quad n = 0, 1, 2, \dots$$

which is the result obtained by B. Jovanović [4].

5.2.2. For t = -1, from (40) we have

(42)
$$x_{n+1} = f(x_n) - \frac{1}{k} f'(x_n) \frac{x_n - f(x_n)}{1 - f'(x_n)} =$$

$$= x_n - \left(1 + \frac{1}{k} \frac{f'(x_n)}{1 - f'(x_n)}\right) (x_n - f(x_n)), \quad n = 0, 1, 2, \dots$$

which is the result obtained in [7].

5.3. For s = u = 1, ktv = -1 and if $f'(\alpha) \neq 1$, the formula (36), which in this case holds for $k \geq 1$, reduces to

(43)
$$x_{n+1} = f(x_n) - \left(\left(1 - f'(x_n) \right)^{-\frac{1}{k}} - 1 \right) \left(x_n - f(x_n) \right) =$$

$$= x_n - \frac{x_n - f(x_n)}{\left(1 - f'(x_n) \right)^{\frac{1}{k}}}, \quad n = 0, 1, 2, \dots$$

6. Examples

If (1) represents Newton's method for finding a simple root $x = \alpha$ of the equation F(x) = 0, namely

(44)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}, \quad n = 0, 1, 2, \dots$$

which means that

(45)
$$f(x_n) = x_n - \frac{F(x_n)}{F'(x_n)}$$

and k=2, then we obtain from (36) for u=1 the following method

(46)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \left(\frac{2stv + 1 - \left(1 - \frac{sF(x_n)F''(x_n)}{\left(F'(x_n)\right)^2}\right)^t}{2stv} \right)^v,$$

$$n = 0, 1, 2, \dots$$

According to Theorem 2, the iterative method (46) for fixed finite parameters s, t and v ($stv \neq 0$) is of order ≥ 3 , since as we know Newton's method (44) is of order 2.

The asymptotic error constant for the iterative metod (46) is

(47)
$$C_3 = \frac{3\left(3 + 2(t-1)s + \frac{1}{v}\right)\left(F''(\alpha)\right)^2 - 4F'(\alpha)F'''(\alpha)}{24\left(F'(\alpha)\right)^2}.$$

6.1. For s = t = 1, v = -1, we obtain from (46)

(48)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{2(F'(x_n))^2}{2(F'(x_n))^2 - F(x_n)F''(x_n)}, \quad n = 0, 1, 2, \dots$$

which is Halley's method (see [2], [3]).

6.2. For s = 2, $t = \frac{1}{2}$, v = -1, we have from (46) Euler's method (see [3])

(49)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{2}{1 + \left(1 - \frac{2F(x_n)F''(x_n)}{\left(F'(x_n)\right)^2}\right)^{\frac{1}{2}}}, \quad n = 0, 1, 2, \dots$$

6.3. For s = t = v = 1, we obtain from (46)

(50)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{2(F'(x_n))^2 + F(x_n)F''(x_n)}{2(F'(x_n))^2}, \quad n = 0, 1, 2, \dots$$

which represents Chebyshev's method (see [1]).

6.4. For $s = \frac{m}{m-1}$, $t = \frac{1}{2}$, v = -1, when F(x) is a polynomial of degree $m \ge 2$, we have from (46)

(51)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{m}{1 + (m-1)\left(1 - \frac{m}{m-1} \cdot \frac{F(x_n)F''(x_n)}{\left(F'(x_n)\right)^2}\right)^{\frac{1}{2}}},$$

$$n = 0, 1, 2, \dots$$

which is the Laguerre method (see [3]).

6.5. For s = 1, $t = -\frac{1}{2}$, v = 1, we obtain from (46)

(52)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \left(1 - \frac{F(x_n)F''(x_n)}{\left(F'(x_n)\right)^2} \right)^{-\frac{1}{2}}, \quad n = 0, 1, 2, \dots$$

which represents Ostrowski's square root method (see [6]).

6.6. For
$$s = \beta + 1$$
, $t = \frac{1}{2}$, $v = -1$, we have from (46)

(53)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{\beta + 1}{\beta + \left(1 - (\beta + 1) \cdot \frac{F(x_n)F''(x_n)}{\left(F'(x_n)\right)^2}\right)^{\frac{1}{2}}}, \quad n = 0, 1, 2, \cdots$$

which represents a one parameter family of iterative formulas obtained by E. Hansen and M. Patrick [3].

6.7. For s = 1, t = -1, v = 1, we have from (46)

(54)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \cdot \frac{2(F'(x_n))^2 - F(x_n)F''(x_n)}{2(F'(x_n))^2 - 2F(x_n)F''(x_n)}, \quad n = 0, 1, 2, \dots$$

which is the method obtained in [7].

6.8. For $s = \frac{m}{m-1}$, $t = \frac{m-1}{m}$, $v = -\frac{1}{2}$, when F(x) is a polynomial of degree $m \ge 2$, we obtain from (46) the method

(55)
$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \left(1 - \frac{m}{m-1} \cdot \frac{F(x_n)F''(x_n)}{\left(F'(x_n)\right)^2} \right)^{\frac{1-m}{2m}}, \quad n = 0, 1, 2, \cdots$$

7. References

- [1] И. С. Березин, Н. П. Жидков: Методы вычислений, том И. Государственное издательство физико-математической литературы, Москва 1960.
- [2] M. Davies, B. Dawson: On the global convergence of Halley's iteration formula, Numer. Math., 24 (1975), 133-135.
- [3] E. Hansen, M. Patrick: A family of root finding methods, Numer. Math., 27 (1977), 257-269.
- [4] B. Jovanović: A method for obtaining iterative formulas of higher order, Mat. Vesnik, 9 (24) (1972), 365-369.
- [5] G. V. Milovanović: A method to accelerate iterative processes in Banach space, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., N⁰461 - N⁰ 497 (1974), 67-71.

- [6] A. M. Ostrowski: Solution of equations and systems of equations, Second edition, Academic Press, New York and London 1966.
- [7] D. M. Simeunović: On a process for obtaining iterative formulas of higher order for roots of equations, Anal. Num. Theor. Approx., 24 (1995), 225-229.

Dragomir Simeunović Mike Alasa 8 11000 Belgrade Yugoslavia

Received March 24, 1999.