A NOTE ON GENERALIZED INVERSE FUNCTIONS

Vladimir Rakočević

Abstract. Robin Harte generalized an observation of Hochwald and Morell. In this note we offer a generalization of Harte's result.

Let \mathcal{A} be an associative ring with identity 1. We shall write \mathcal{A}^{-1} for the invertible group. The *commutant* of a subset $\mathcal{K} \subset \mathcal{A}$ is the set

(0.1)
$$\operatorname{comm}_{\mathcal{A}}(\mathcal{K}) = \{ a \in \mathcal{A} : ab = ba \text{ for each } b \in \mathcal{K} \},$$
 and in particular, the *centre* of \mathcal{A} is given by

(0.2) Centre
$$(A) = \text{comm }_{A}(A)$$
.

Following Harte [5] we shall call the ring A centre-commutative if

(0.3) for each $a \in \mathcal{A}$ there is $\lambda \in \text{Centre}(\mathcal{A})$ for which $a - \lambda \in \mathcal{A}^{-1}$. We write

$$\widehat{\mathcal{A}} = \{ a \in \mathcal{A} : a \in a \mathcal{A} a \}$$

for the subset of those elements of A which have generalized inverses, and set

(0.5)
$$A^{\mu} = \{a \in A : a \in a^m A a \text{ for some non-negative integer } m\}.$$

Let us recall that an element $a \in \mathcal{A}$ is said to have a Drazin inverse, or that a is Drazin invertible [4] if there exists $x \in \mathcal{A}$ such that

(0.6)
$$a^m = a^{m+1}x$$
 for some non-negative integer m ,

$$(0.7) x = ax^2, and ax = xa.$$

If a has Drazin inverse, then the smallest non-negative integer m in (0.6) above is called the $index\ i(a)$ of a. It is well known that there is at most one x such that equations (0.6) and (0.7) hold. The unique x is denoted by a^D and called the Drazin inverse of a. We write \mathcal{A}^D for the subset of those elements of \mathcal{A} which have Drazin inverses. Recall that if a has Drazin inverse, then a^D

AMS (MOS) Subject Classification 1991. Primary: 46H05, 39B70.

Key words and phrases: Generalized inverses, Drazin inverse (invertible), Harte's observation, Observation of Hochwald and Morell, Generalized Drazin inverse.

also has Drazin inverse, $i(a^D) \le 1$, $(a^D)^D = a^2 a^D$ and $((a^D)^D)^D = a^D$ [4]. If a has Drazin inverse then a may always be written as

$$(0.8) a = a^{(c)} + a^{(n)},$$

where $a^{(c)}, a^{(n)} \in \mathcal{A}$, $a^{(c)}$ has Drazin inverse, $i(a^{(c)}) \leq 1$, $a^{(c)}a^{(n)} = a^{(n)}a^{(c)} = 0$, and $(a^{(n)})^{i(a)} = 0$. The elements $a^{(c)}, a^{(n)}$ are unique. $a^{(c)}$ is called the *core* of a, and $a^{(n)}n$ the *nilpotent* part of a. Let us mention that in this case

(0.9)
$$a^{(c)} = a^2 a^D$$
 and $a^{(n)} = a - a^2 a^D$.

We shall refer to $a^{(c)} + a^{(n)}$ as the *core nilpotent* decomposition of a (see [1, 4,] or [7, 10] for recent applications).

Let us recall that Harte [5, Theorem 1] (see also [9, Teorema 5.8.1]) generalized an observation of Hochwald and Morell [6], which was stimulated by a question of Allan [1]. In this note we offer the following generalization of Harte's result.

Theorem 1. Let \mathcal{A} be a centre-commutative ring and $\mathcal{D} \subset \mathcal{A}$ a semi-group for which $\mathcal{A}^{-1} \subset \mathcal{D} \subset \mathcal{A}^{\mu}$. If $g: \mathcal{D} \mapsto \mathcal{A}$ is a mapping which satisfies, for each $a \in \mathcal{D}$,

$$(1.1) a^m = a^m g(a)a$$

for some non-negative integer m = m(a), and

$$(1.2) b \in \mathcal{A}^{-1} \cap \operatorname{comm}_{\mathcal{A}}(a) \Longrightarrow g(a)g(b) = g(b)g(a),$$

then

$$(1.3) a \in \mathcal{D} \Longrightarrow a \in a^m \mathcal{A}^{-1} a.$$

Proof. We claim that $\mathcal{D} \subset \mathcal{A}^D$. Let $a \in \mathcal{D}$. By Harte's proof [5, Theorem 1] we have

$$(1.4) ag(a) = g(a)a.$$

Set $v = a^m g(a)^{m+1}$. Then obviously av = va. Now, by (1.1) we remark that $a^{m+k}g(a)^k = a^m$ for all $k = 1, 2, \ldots$ Hence by (1.4) we get

(1.5)
$$a^{m+1}v = a^{2m+1}[g(a)]^{m+1} = a^m.$$

Further

$$(1.6) \ \ vav = a^{2m+1}g(a)^{2m+2} = a^{m+(m+1)}g(a)^{m+1}g(a)^{m+1} = a^mg(a)^{m+1} = v.$$

Thus a is Drazin invertible and $v=a^D$. Let us remark that $1+a^{(n)}$ is inverible, where $a^{(n)}=a(1-aa^D)$ is the nilpotent part of a. Now, it is easy to check that $u=a^D+(1-aa^D)$ is invertible and that $u^{-1}=[a+(1-aa^D)](1+a^{(n)})^{-1}$. Finally,

$$a^{m}ua = a^{m}[a^{D} + (1 - aa^{D})]a = a^{m}a^{D}a + a^{m}(1 - aa^{D})a = a^{m}.$$

Corollary 2. (Harte [5, Theorem 1]). If \mathcal{A} is a centre-commutative ring, if $\mathcal{D} \subset \mathcal{A}$ is a semigroup for which $\mathcal{A}^{-1} \subset \mathcal{D} \subset \widehat{\mathcal{A}}$, and if $g : \mathcal{D} \mapsto \mathcal{A}$ is a mapping which satisfies, for each $a \in \mathcal{D}$,

$$(2.1) a = ag(a)a$$

and

(2.2)
$$b \in \mathcal{A}^{-1} \cap \operatorname{comm}_{\mathcal{A}}(a) \Longrightarrow g(a)g(b) = g(b)g(a),$$

then

$$(2.3) a \in \mathcal{D} \Longrightarrow a \in a\mathcal{A}^{-1}a.$$

Proof. Apply Theorem 1 for m = 1.

Remark. Recently Koliha [7] (see [8] for applications also) has introduced and investigated a generalized inverse (he called it a *generalized Drazin inverse*) in associative rings and Banach algebras, i.e., if \mathcal{A} is a complex unital Banach algebra, then an element $a \in \mathcal{A}$ is said to have a *generalized Drazin* inverse if there exists $x \in \mathcal{A}$ such that

(3.1)
$$a - a^2x$$
 is quasinilpotent,

$$(3.2) x = ax^2 and ax = xa.$$

If a has generalized Drazin inverse, then there is at most one x such that equations (3.1) and (3.2) hold.

Concerning the proof of Theorem 1, we would like to finish this note with the following question:

Question. Let \mathcal{A} be a complex unital Banach algebra and $a \in \mathcal{A}$. If there exists $x \in \mathcal{A}$ such that $a - a^2x$ is quasinilpotent and ax = xa must a has generalized Drazin inverse?

1. References

- [1] G. R. Allan: *Holomorphic left inverse functions*, Proc. Conf. Banach Algebras and Several Complex Variables, Contemp. Math. vol. 32, Amer. Math. Soc., Providence, R. I., 1984.
- [2] S. L. Campbell and C. D. Meyer, Jr.: Continuity Properties of the Drazin Pseudoinverse, Linear Alg. Applic., 10(1975), 77-83.
- [3] S. L. Campbell and C. D. Meyer, Jr.: Generalized Inverses of Linear Transformations, Pitman, 1979.
- [4] M. P. Drazin: Pseudoinvese in associative rings and semigroups, Amer. Math. Monthly, 65(1958), 506-514.
- [5] R. Harte: A note on generalized inverse functions, Proc. Amer. Math. Soc., 104(1988), 551-552.

- [6] S. H. Hochwald and B. B. Morrel: Some consequences of left invertibility, Proc. Amer. Math. Soc., 100(1987), 109-110.
- [7] J. J. Koliha: A generalized Drazin inverse, Glasgow Math. J., 38(1996), 367-381.
- [8] J. J. Koliha and V. Rakočević: Continuity of the Drazin inverse II, Studia Math., 131(1998), 167-177.
- [9] V. Rakočević: Funkcionalna analiza, Naučna knjiga, Beograd, 1994.
- [10] V. Rakočević: Continuity of the Drazin inverse, J. Operator Theory, 41(1999), 55-68.

University of Niš, Faculty of Philosophy, Department of Mathematics, Ćirila and Metodija 2, 18000 Niš, Yugoslavia,

 $e ext{-}mail:$ vrakocarchimed.filfak.ni.ac.yu $e ext{-}mail:$ vrakocbankerinter.net

Received January 7, 1999.