SOME CHARACTERIZATIONS OF LORENTZIAN SPHERICAL SPACE-LIKE CURVES

Ümran Pekmen and Sibel Paşali

Abstract. In this paper, some characterizations of a unit speed space-like curve whose image lies on a Lorentzian sphere in R_1^3 Minkowski 3-space are given.

1. Introduction

In Euclidean space \mathbb{R}^3 a spherical unit speed curves and its characterizations are given in [3].

Instead of space \mathbb{R}^3 let us consider the Minkowski 3-space \mathbb{R}^3_1 provided with Lorentzian inner product

$$<\mathbf{a},\mathbf{b}>=a_1b_1+a_2b_2-a_3b_3.$$

Here $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$

Let (α) be a curve in space R_1^3 , α' is the tangent vector for every $s \in ICR$. If

$$<\alpha', \alpha'>>0$$
, then (α) is a space-like curve,
 $<\alpha', \alpha'><0$, then (α) is time-like curve,
 $<\alpha', \alpha'>=0$, then (α) is a light-like curve[2].

The Lorentzian sphere of radius 1 in R_1^3 is defined by

$$S_1^2 = \{ \mathbf{a} = (a_1, a_2, a_3) \in R_1^3 | \langle \mathbf{a}, \mathbf{a} \rangle = 1 \}.$$

Let, \mathbf{t} , \mathbf{n} , \mathbf{b} be tangent, principal normal and binormal unit vectors on $\alpha(s)$ space-like curve respectively. In $[\mathbf{t}, \mathbf{n}, \mathbf{b}]$ Frenet trihedron \mathbf{b} is time-like unit vector, \mathbf{t} , \mathbf{n} are space-like unit vectors. That is,

AMS (MOS) Subjects Classification 1991. Primary: 51M16, 65F35.

Key words and phrases: Lorentzian spherical curves, Minkowski's space, Minkowski 3-space, Lorentzian sphere, Frenet trihedron, space-like curve, time-like curve.

Frenet derivative formulas are

(2)
$$\frac{dt}{ds} = \rho n, \quad \frac{dn}{ds} = -\rho t + \tau b, \quad \frac{db}{ds} = \tau n.$$

On the point of $\alpha(s)$ space-like curve, ρ and τ are called curvature and torsion respectively ([1], [4]).

2. Lorentzian Spherical Space-Like Curves

Theorem 1. Let $\alpha(s)$ be a unit speed space-like curve whose image lies on a Lorentzian sphere of radius r and center m in R_1^3 Minkowski 3-space. Then $\rho \neq 0$. If $\tau \neq 0$ then

$$\alpha - \mathbf{m} = -R\mathbf{n} + R'T\mathbf{b}.$$

Here
$$R = \frac{1}{\rho}$$
, $T = \frac{1}{\tau}$.

Proof. We have

$$< \alpha(s) - \mathbf{m}, \quad \alpha(s) - \mathbf{m} > = r^2,$$

so that

(3)
$$0 = \langle \alpha(s) - \mathbf{m}, \quad \alpha(s) - \mathbf{m} \rangle' = 2 \langle \alpha(s) - \mathbf{m}, \mathbf{t} \rangle.$$

Then

$$0 = <\alpha(s) - \mathbf{m}, \ \mathbf{t}>' = <\mathbf{t}, \ \mathbf{t}> + <\alpha(s) - \mathbf{m}, \ \mathbf{t}'> = 1 + <\alpha(s) - \mathbf{m}, \ \rho \mathbf{n}>,$$

(4)
$$\rho < \alpha(s) - \mathbf{m}, \ \mathbf{n} > = -1 \neq 0.$$

Thus $\rho \neq 0$.

Assume $\tau \neq 0$, $\alpha(s) - \mathbf{m} = a\mathbf{t} + b\mathbf{n} + c\mathbf{b}$ where the coefficients a, b, c may be found by (1), (3) and (4). Then

$$< \alpha(s) - \mathbf{m}, \ \mathbf{t} > = a = 0,$$

 $< \alpha(s) - \mathbf{m}, \ \mathbf{n} > = b = -\frac{1}{\rho} = -\mathbf{R},$
 $< \alpha(s) - \mathbf{m}, \ \mathbf{b} > = -c.$

Since $< \alpha(s) - \mathbf{m}, \mathbf{n} > = -R,$

$$-R' = <\alpha(s) - \mathbf{m}, \ \mathbf{n}>' = <\alpha(s) - \mathbf{m}, \ -\rho \mathbf{t} + \tau \mathbf{b}> = \tau <\alpha(s) - \mathbf{m}, \ \mathbf{b}>.$$

Hence

$$-c = <\alpha(s) - \mathbf{m}, \mathbf{b}> = -R'T.$$

Thus $\alpha(s) - \mathbf{m} = -R\mathbf{n} + R'T\mathbf{b}$,

$$r^2 = <\alpha(s) - \mathbf{m}, \ \alpha(s) - \mathbf{m}> = R^2 - (R'T)^2.$$

Theorem 2. Let $\alpha(s)$ be a unit speed space-like curve with $R \neq 0$, $T \neq 0$ and $R = \frac{1}{\rho}$, $T = \frac{1}{\tau}$. Assume $R^2 - (R'T)^2 = r^2 = \text{constant}$, where r > 0. Then image of α lies on a Lorentzian sphere of radius r.

Proof. We will show that the following equation is constant

$$\mathbf{m} = \alpha + R\mathbf{n} - R'T\mathbf{b}.$$

Then m should be the center of the Lorentzian sphere. We have

$$\mathbf{m}' = \mathbf{t} + R'\mathbf{n} + R'\mathbf{n} - (R'T)'\mathbf{b} - (R'T)\mathbf{b}',$$

using (2) we get,

$$\mathbf{m}' = \left(\frac{R}{T} - R''T - R'T'\right)\mathbf{b}.$$

Since

$$R^2 - (R'T)^2 = r^2$$

we get RR' - R'T(R''T + R'T') = 0.

Hence

$$\frac{R}{T} - R''T = R'T'.$$

Then m' = 0.

Let $\mathbf{m} = \mathbf{c}$. Then we get

$$\alpha - \mathbf{c} = -R\mathbf{n} + R'T\mathbf{b}.$$

This shows that α lies on a Lorentzian sphere with center c and radius r.

Theorem 3. If $\alpha(s)$ is a space-like unit speed curve with $R \neq 0$, $T \neq 0$, then $\alpha(s)$ lies on a Lorentzian sphere if and only if

$$R\tau = \left(\frac{R'}{\tau}\right)'$$
.

Proof. Let $\alpha(s)$ be a Lorentzian spherical unit speed curve. Then by Theorem 1

$$r^2 = R^2 - (R'T)^2,$$

where r is the radius of the Lorentzian sphere. If we differentiate, we obtain the following equation

$$\frac{R}{T} = R''T + R'T' = (R'T)'.$$

Then

$$R\tau = \left(\frac{R'}{\tau}\right)'$$
.

We now assume that $R\tau = \left(\frac{R'}{\tau}\right)'$. Hence

$$\frac{R}{T} = R''T + R'T'.$$

Multiplying with 2R'T, we get

$$2RR' - 2R'T(R''T + R'T') = 0,$$

whence the differential of

$$R^2 - (R'T)^2 = r^2 = \text{constant.}$$

According to the Theorem 2 $\alpha(s)$ lies on a Lorentzian sphere.

Theorem 4. A unit speed space-like curve $\alpha(s)$ lies on a Lorentzian sphere if and only if $\rho > 0$ and there exists a differentiable function f(s) with $f\tau = R'$, $f' - R\tau = 0$.

Proof. Let $\alpha(s)$ be a unit speed space-like curve lies on a Lorentzian sphere. From Theorem 3 we get

$$R\tau = \left(\frac{R'}{\tau}\right)'$$
.

If we have

$$f(s) = \frac{R'}{\tau}, \qquad f' = R\tau$$

is obtained. That is $f\tau = R'$ and $f' - R\tau = 0$.

Conversely, let $f\tau = R'$, $f' - R\tau = 0$.

Then $f = \frac{R'}{\tau}$, $f' = R\tau$. We can write $R\tau = \left(\frac{R'}{\tau}\right)'$. From Theorem 3 $\alpha(s)$ space-lice curve lies on a Lorentzian sphere.

Theorem 5. Unit speed space-like curve $\alpha(s)$ lies on a Lorentzian sphere if and only if there are constants A and B with

$$ho\left(Ach\left(\int_0^s au ds
ight) - Bsh\left(\int_0^s au ds
ight)
ight) \equiv 1.$$

Proof. Let $\frac{1}{\rho} = Ach \int_0^s \tau ds - Bsh \int_0^s \tau ds$. From differentiation we write

$$\frac{d}{ds}\left(\frac{1}{\rho}\right) = \tau \left[Ash \int_0^s \tau ds - Bch \int_0^s \tau ds \right].$$

If the function f is defined by

$$f(s) = Ash \int_0^s \tau ds - Bch \int_0^s \tau ds,$$

then it satisfies the conditions

$$f\tau = R', \qquad f' = R\tau.$$

From Theorem 4 the proof of the sufficiency is complete.

Suppose that $\alpha(s)$ is a unit speed space-like curve lies on a Lorentzian sphere. Let us define c^2 -function θ and c^1 -functions g(s) and h(s) on [0, L] by

$$\theta(s) = \int_0^s \tau ds, \quad g(s) = \frac{1}{\rho} ch\theta - f(s)sh\theta, \quad h(s) = \frac{1}{\rho} sh\theta - f(s)ch\theta.$$

From differentiation with respect to s and taking account of $\theta(s) = \int_0^s \tau ds$ and $f\tau = R'$, $f' = R\tau$ we find that g' and h' are both identically zero. Therefore g(s) = A, h(s) = B, where A and B are constants. We write

$$A = \frac{1}{\rho}ch\theta - f(s)sh\theta, \qquad B = \frac{1}{\rho}sh\theta - f(s)ch\theta.$$

Solving the resulting equations for $\frac{1}{\rho}$, we get

$$\frac{1}{\rho} = Ach\theta - Bsh\theta,$$

that is,

$$\rho\left(Ach\left(\int_0^s \tau ds\right) - Bsh\left(\int_0^s \tau ds\right)\right) \equiv 1 \quad \blacksquare$$

3. References

- G. S. Birman, K. Nomizu: Trigonometry in Lorentzian Geometry, Amer. Math. Monthly, 91 (9) (1984), 543-549.
- [2] B. O'Neill: Semi Riemannian Geometry, Academic Press, New York, (1983).
- [3] Richard S. Millman, Georde D. Parker: *Elements of Differential Geometry*, Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1977).
- [4] I. Van de Woestijne: Minimal Surface of the 3-dimensional Minkowski Space, Word Scientific Publishing Signapore (1990), 334-369.

Ege University Science Faculty
Department of Mathematics
Bornova, Izmir, Turkey

Received January 15, 1999.