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Abstract. The purpose of this research is to investigate the exis-
tence and uniqueness of several solutions to the multi-point boundary
value problem of nonlinear fractional differential equations involving
two fractional derivatives. We demonstrate the existence of solutions
by applying a number of fixed point theorems, including Banach’s fixed
point theorem, nonlinear alternative of Leray-Schauder type, and Leray-
Schauder degree. Finally, two examples are presented to demonstrate
our results.

1. Introduction

Many physical processes, including charge transport in amorphous
semiconductors [30], electrochemistry, and material science, give rise to frac-
tional derivatives, which are in fact represented by differential equations of
fractional order [1, 11–15, 19, 20, 24, 25]. Recent years have seen an increase
in the number of papers on fractional differential equations that use various
operators, including Riemann-Liouville operators [26,34], Caputo operators
[4, 5, 22,35], Hadamard operators [32], and q-fractional operators [3].

In 1910, Frank Hilton Jackson pioneered the introduction and develop-
ment of q-calculus by defining the q-analog of the ordinary derivative [31].
Given the significance of this theory, q-difference equations and operators
have been thoroughly investigated and the definitions of the q-derivative (a
modification of the classical derivative), q-integral, q-factorial and specific
functions have been established by various researchers [3,6,10,21,23,27–29].

Furthermore, many authors have obtained the existence and uniqueness
of solutions for various classes of fractional differential equations by using
various nonlinear analysis techniques. As an example, we recommend that
the reader review the references listed in [4, 8, 9, 16–18,26,33].
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In [29], we considered the following fractional q-difference problem:(cDζ
qy)(t) = ℘(t, y(t)); t ∈ f := [0, β],

y(0) = y0 ∈ 𭟋,

where q ∈ (0, 1), ζ ∈ (0, 1], β > 0, ℘ : f × 𭟋 → 𭟋 is a given continuous
function, 𭟋 is a real (or complex) Banach space with norm ∥ · ∥, and cDζ

q is
the Caputo fractional q-difference derivative of order ζ.

In [23], the authors proved some existence of solutions for the following
problem with implicit fractional q-difference equations in Banach algebras:

cDζ
q

(
y(t)

h(t,y(t))

)
= ψ

(
t, y(t),cDζ

q

(
y(t)

h(t,y(t))

))
; t ∈ f := [0, β],

y(0) = y0 ∈ R,

where q ∈ (0, 1), ζ ∈ (0, 1], β > 0, h : f ×R → R∗, ψ : f ×R2 → R are given
functions.

In [10], the authors considered the following problem:y(t) = g(t); t ∈ [−ε, 0],
cDζ

q (y(t)−Υ(t, yt)) = ℘(t, y(t),cDζ
q (y(t)−Υ(t, yt))); t ∈ f := [0, β],

where q ∈ (0, 1), ζ ∈ (0, 1], β, ε > 0, g ∈ ℧, Υ : f×℧ → R, ℘ : f×R×R → R
are given continuous functions.

In this research, we consider the problem:

(1)


CDζ

qy(t) = f
(
t, y(t), y(λt)

)
, 0 < q < 1, t ∈ [0, beta],

y(0) = 0, Dqy(β) =
m∑
ϱ=1

νϱI
ζ−1
q y(ηϱ), 0 < ηϱ < β,

where CDζ
q is the fractional q-derivative of the Caputo type of orders ζ ∈

(1, 2], Dq is the first q-derivative, Iζ−1
q is the Riemann-Liouville fractional q-

integral of order ζ−1 > 0, 0 < λ, q < 1, νϱ are real constants for 1 ≤ ϱ ≤ m,
m ≥ 2 and f : [0, β]× R2 → R is continuous functions on [0, β].

The following are the primary novelties of the current paper:

• Considering the diverse conditions we applied to problem (1), our
work can be seen as a continuation of the studies mentioned above.

• Our findings expand upon those in [10, 23, 29] by introducing pan-
tograph arguments and a boundary value problem with a nonlocal
condition.

• To establish our results, we utilized several methods including fixed
point theorems, and we also demonstrate that these outcomes can
be achieved using the Leray-Schauder degree and Hölder inequality.
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2. Preliminaries

Let 0 < q ̸= 1 and consider a q-real number [a]q = 1−qa

1−q , for a ∈ R. The
q-analogue of the Pochhammer symbol (q-shifted factorial) is defined as

(a; q)m =

{
1, m = 0,∏m−1

ȷ̇=0 (1− aqȷ̇), m = 1, 2, 3, . . .

The q-analogue of the exponent (a− b)m is expressed by, for a, b ∈ R,

(a− b)m =

{
1, m = 0,∏m−1

ȷ̇=0 (a− bqȷ̇), m = 1, 2, 3, . . .

The q-factorial is given by

[m]q =

m−1∏
ȷ̇=0

[r]q =
(q; q)m
(1− q)m

, m ∈ N.

Definition 1 ([7]). The q-gamma function Γq(ζ) is defined as

Γq(ζ) =
(1− q)(ζ−1)

(1− q)ζ−1
= (q; q)ζ−1(1− q)ζ−1, ζ ∈ C \ {−n : n ∈ N ∪ {0}},

with Γq(ζ + 1) = [ζ]qΓq(ζ).

Definition 2 ([2]). For the given function µ which is defined on [0, 1], the
Riemann-Liouville q-integral of fractional order ζ ≥ 0 is (I0q µ)(t) = µ(t) and

Iζq µ (t) =

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
µ(s) dqs = tζ(1− q)ζ

∞∑
m=0

qm
(qζ ; q)m
(q; q)m

µ(tqm),

for ζ > 0, t ∈ [0, 1].

Definition 3 ([7]). The Caputo fractional q-derivative of order ζ ∈ (n−1, n)

of the continuos functionis µ : [0, β] → R, denoted by CDζ
q is defined by

(CDζ
q µ)(t) = I[ζ]−ζ

q D[ζ]
q µ(t).

Furthermore, the q-derivative of a function µ (t) is expressed as

(Dqµ)(t) =
µ(t)− µ(qt)

t− qt
, t ̸= 0; (Dqµ)(0) = lim

t→0
(Dqµ)(t).

Lemma 1 ([7]). Let ζ > 0 and m ∈ N. Then,

Iζq
CDζ

q µ (t) = µ (t)−
[ζ]∑
ϱ=0

cmt
m,(2)

CDζ
q I

ζ
q µ (t) = µ (t) ,(3)

for each t ∈ [0, β], where ϱ = 1, . . . , n− 1 and [ζ] = n− 1.
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Lemma 2. Let ζ ∈ (1, 2], 0 < λ, q < 1, νϱ are real constants for 1 ≤ ϱ ≤ m,
m ≥ 2 and g ∈ C([0, β],R) be a given function. Then the unique solution of

(4)


CDζ

qy(t) = g(t), 0 < q < 1, t ∈ [0, β],

y (0) = 0, Dqy (β) =
m∑
ϱ=1

νϱI
ζ−1
q y (ηϱ) , 0 < ηϱ < β,

is given by

y(t) =

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
g(s)dqs+ t

m∑
ϱ=1

νϱ

∫ ηϱ

0

(ηϱ − qs)(ζ−1)

Γq(ζ − 1)
g(s)dqs

− t

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
g(s)dqs.(5)

Proof. Applying Iζq on (4), we get

(6) y(t) =

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
g(s)dqs+ c0 + c1t,

for some constants c0, c1 ∈ R. Since y(0) = 0, we have c0 = 0 and

Dqy(t) = Iζ−1
q g(t) + c1.

From Dqy (β) =
m∑
ϱ=1

νϱI
ζ−1
q y (ηϱ), we have

c1 =

m∑
ϱ=1

νϱ
Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)g(s)dqs−

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
g(s)dqs.

So,

y(t) =

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
g(s)dqs+ t

m∑
ϱ=1

νϱ

∫ ηϱ

0

(ηϱ − qs)(ζ−2)

Γq(ζ − 1)
g(s)dqs

− t

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
g(s)dqs.

Conversely, let us now demonstrate that if (5) satisfies (4). Applying oper-
ator CDζ

q on both sides of (5), then, from Lemma 1 we obtain

(7) CDζ
qµ(t) = g(t).

Taking the limit t→ 0 of (5) we obtain

(8) y(0) = 0.

Now, Applying Dq and Definition 3 to both sides of (5) gives

Dqy(t) =Iζ−1
q g(t) +

m∑
ϱ=1

νϱI
ζ−1
q y (ηϱ)− Iζ−1

q g(t).(9)
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Taking the limit t→ β of (9) we have

Dqy(β) =

m∑
ϱ=1

νϱI
ζ−1
q y (ηϱ) .

Lastly, it is clear that the function in (5) meets the associated boundary
conditions. □

3. Main Results

We denote by F = C ([0, β] ,R) the Banach space of all continuous func-
tions from [0, β] to R with

∥y∥ = sup
t∈[0,β]

|y(t)| .

By Lemma 2, we define N : F → F by:

Ny(t) :=

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
f(s, y(s), y(λs))dqs

+

t
m∑
ϱ=1

νϱ

Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)f(s, y(s), y(λs))dqs

− t

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
f(s, y(s), y(λs))dqs.

Let

(10) Λ =
βζ

Γq(ζ + 1)
+ β


m max

1≤ϱ≤m
|νϱ|

m∑
ϱ=1

ηζ−1
ϱ

Γq(ζ)

+
βζ−1

Γq(ζ)
.

Now, we present the existence and uniqueness of solutions of (1) by using
Banach’s fixed point theorem.

Theorem 1. Let f : [0, β]×R2 → R be a continuous function satisfying the
hypothesis
(H1) There exists ϖi > 0, i = 1, 2, such that for all t ∈ [0, β] and all

y, ȳ, z, z̄ ∈ R, we have

|f(t, y, ȳ)− f(t, z, z̄)| ≤ ϖ1 |y − z|+ϖ2|ȳ − z̄|.
There exists to ∈ [0, β] such that f(t0, 0, 0) ̸= 0. Then the multi-point bound-
ary value problem (1) has a unique solution if

ϖΛ < 1,

where ϖ = ϖ1 +ϖ2.



88 Pantograph fractional hybrid equations

Proof. Let for y, z ∈ F and for any t ∈ [0, β], we get

∥Ny −Nz∥

≤ sup
t∈[0,β]

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
|f(s, y(s), y(λs))− f(s, z(s), z(λs))|dqs

+ t

 m∑
ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)|f(s, y(s), y(λs))− f(s, z(s), z(λs))|dqs

+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
|f(s, y(s), y(λs))− f(s, z(s), z(λs))|dqs

)}

≤ sup
t∈[0,β]


∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
dqs+ t

 m∑
ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)dqs

−
∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
dqs

)}
ϖ∥y − z∥

≤

 βζ

Γq(ζ + 1)
+ β

 m∑
ϱ=1

|νϱ|
ηζ−1
ϱ

Γq(ζ)

+
βζ−1

Γq(ζ)

ϖ∥y − z∥

= ϖΛ∥y − z∥,

which leads to ∥Ny −Nz∥ ≤ ϖΛ ∥y − z∥. Since ϖΛ < 1, N is a contraction
by utilizing Banach’s fixed theorem, the BVP (1) has a unique solution. □

Also, we give another variant of existence and uniqueness result based on
the Hölder inequality.

Theorem 2. Let f : [0, β]× R2 → R be a continuous function. In addition
we assume that:
(H2) |f(t, y, ȳ)− f(t, z, z̄)| ≤ u (t) |y − z| + v (t) |ȳ − z̄| , t ∈ [0, β] and

y, ȳ, z, z̄ ∈ R,

where u, v ∈ L
1
δ ([0, β] ,R+) and δ ∈ (0, 1). There exists to ∈ [0, β] such that

f(t0, 0, 0) ̸= 0.

Denote ∥θ∥
L

1
δ
=

(∫ β

0
|θ (s)|

1
δ dqs

)δ

, θ = u, v.

If

(11) (∥u∥
L

1
δ
+ ∥v∥

L
1
δ
)∆ < 1,

where

∆ =
1

Γq(ζ)

(∫ β

0
(β − qs)

(ζ−1)
1−δ dqs

)1−δ
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+ β


m∑
ϱ=1

|νϱ|

Γq(ζ − 1)

(∫ ηϱ

0
(ηϱ − qs)

(ζ−2)
1−δ dqs

)1−δ

+
1

Γq(ζ − 1)

(∫ β

0
(β − qs)

(ζ−2)
1−δ dqs

)1−δ
]
.(12)

Then the multi-point boundary value problem (1) has a unique solution.

Proof. For y, z ∈ F and t ∈ [0, β] , by Hölder inequality and using (H2), we
have:

∥Ny −Nz∥

≤ sup
t∈[0,β]

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
u(s)|y(s)− z(s)|dqs+

∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
v(s)|y(s)− z(s)|dqs

+ t

(
m∑

ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0

(ηϱ − qs)(ζ−2)u(s)|y(s)− z(s)|dqs

+

m∑
ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0

(ηϱ − qs)(ζ−2)v(s)|y(s)− z(s)|dqs

+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
v(s)|y(s)− z(s)|dqs+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
u(s)|y(s)− z(s)|dqs

)}

≤ sup
t∈[0,β]

{
1

Γq(ζ)

(∫ t

0

(t− qs)
(ζ−1)
1−δ dqs

)1−δ
[(∫ t

0

u(s)
1
δ dqs

)δ

+

(∫ t

0

v(s)
1
δ dqs

)δ
]

+ t

(
m∑

ϱ=1

|νϱ|
Γq(ζ − 1)

(∫ ηϱ

0

(ηϱ − qs)
(ζ−2)
1−δ dqs

)1−δ

×

[(∫ ηϱ

0

u(s)
1
δ dqs

)δ

+

(∫ ηϱ

0

v(s)
1
δ dqs

)δ
]

+
1

Γq(ζ − 1)

(∫ β

0

(β − qs)
(ζ−2)
1−δ dqs

)1−δ

×

(∫ β

0

u(s)
1
δ dqs

)δ

+

(∫ β

0

v(s)
1
δ dqs

)δ
)}× ∥y − z∥

= ∆(∥u∥
L

1
δ
+ ∥v∥

L
1
δ
)∥y − z∥.

Therefore,
∥Ny −Nz∥ ≤ ∆(∥u∥

L
1
δ
+ ∥v∥

L
1
δ
)∥y − z∥.

By (11), N is a contraction mapping. Hence, (1) has a unique solution. □
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Now, we prove the existence of solutions of multi-point boundary value
problem (1) by applying Leray-Schauder nonlinear alternative [35].

Theorem 3. Assume that f : [0, β] × R2 → R is a continuous function.
There exists to ∈ [0, β] such that f(t0, 0, 0) ̸= 0. Suppose that:
(H3) There exists a nondecreasing function ψ : [0,∞) → (0,∞), and a

function b ∈ C ([0, β] ,R+) , such that

|f(t, y, ȳ)| ≤ b (t)ψ (|y|) , for all (t, y, ȳ) ∈ [0, β]× R2.

(H4) There exists Z > 0 such that
Z

Λ ∥b∥ψ (Z)
> 1,

where Λ given by (10). Then (1) has at least one solution on [0, β].

Proof. The proof will be given in several steps.
Step 1: We demonstrate that the operator N : F → F be defined by
(10) is completely continuous on F. To achieve this, we first establish that
the operator N is continuous on F. Let {yn}n∈N be a sequence in F that
converges to a point y ∈ F. Applying the Lebesgue dominated convergence
theorem, we obtain

lim
n→+∞

Nyn(t) := lim
n→+∞

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
f(s, yn(s), yn(λs))dqs

+

t
m∑
ϱ=1

νϱ

Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)f(s, yn(s), yn(λs))dqs

−t
∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
f(s, yn(s), yn(λs))dqs

}
= Ny(t).(13)

For all t ∈ [0, β], we obtain

|Nyn(t)−Ny(t)| −→ 0, as n −→ 0.

Hence,
∥Nyn −Ny∥F −→ 0, as n −→ 0.

This shows that N is a continuous operator on F.
Step 2: We will show that N maps bounded sets into bounded sets in F.
Let us define L = sup

t∈[0,β]
|f(t, 0, 0)|. Setting γ ≥ ΛL

1−ϖΛ with 0 ≤ ϖΛ < 1, we

show that NBγ ⊂ Bγ , where Bγ = {y ∈ F : ∥y∥ ≤ γ}. For y ∈ Bγ and for
each t ∈ [0, β], from the definition of N and hypothesis (H1), we obtain

∥Ny∥ ≤ sup
t∈[0,β]

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
|f(s, y(s), y(λs))|dqs
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+ t

(
m∑

ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0

(ηϱ − qs)(ζ−2)|f(s, y(s), y(λs))|dqs

+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
|f(s, y(s), y(λs))|dqs

)}
.

≤ sup
t∈[0,β]

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
(|f(s, y(s), y(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|)dqs

+ t

(
m∑

ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0

(ηϱ − qs)(ζ−2)(|f(s, y(s), y(λs))− f(s, 0, 0)|

+ |f(s, 0, 0)|)dqs

+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
(|f(s, y(s), y(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|)dqs

)}

≤ (ϖ℘+ L) sup
t∈[0,β]

{∫ t

0

(t− qs)(ζ−1)

Γq(ζ)
dqs

+ t

(
m∑

ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0

(ηϱ − qs)(ζ−2)dqs−
∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
dqs

)}

≤ (ϖ℘+ L)

[
βζ

Γq(ζ + 1)
+ β

(
m∑

ϱ=1

|νϱ|
ηζ−1
ϱ

Γq(ζ)

)
+
βζ−1

Γq(ζ)

]
= (ϖγ + L)Λ ≤ γ,

which implies that NBγ ⊂ Bγ . Thus, N is uniformly bounded on Bγ .

Step 3: We show that N maps bounded sets into equicontinuous sets of F.
Let t1, t2 ∈ [0, β] with t1 < t2, y ∈ Bγ and by using hypothesis (H3), we
have

|Ny(t2)−Ny(t1)|

≤ 1

Γq(ζ)

∫ t1

0

(
(t2 − qs)ζ−1 − (t1 − qs)ζ−1)

)
|f(s, y(t)(s), y(t)(λs))|dqs

+
1

Γq(ζ)

∫ t2

t1

(t2 − qs)ζ−1|f(s, y(t)(s), y(t)(λs))|dqs

+ (t2 − t1)

 m∑
ϱ=1

|νϱ|
Γq(2ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(2ζ−2)|f(s, y(s), y(λs))|dqs

+

∫ β

0

(β − qs)(2ζ−3)

Γq(2ζ − 2)
|f(s, y(s), y(λs))|dqs

)

≤ 1

Γq(ζ)

∫ t1

0
[(t2 − qs)ζ−1 − (t1 − qs)ζ−1)]b (s)ψ (℘) dqs
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+
1

Γq(ζ)

∫ t2

t1

(t2 − qs)ζ−1b (s)ψ (℘) dqs

+ (t2 − t1)

 m∑
ϱ=1

|νϱ|
Γq(ζ − 1)

∫ ηϱ

0
(ηϱ − qs)(ζ−2)b(s)ψ(℘)dqs

+

∫ β

0

(β − qs)(ζ−2)

Γq(ζ − 1)
b (s)ψ (℘) dqs

)

≤ ∥b∥ψ(℘)2(t
ζ
2 − tζ1)

Γq(ζ + 1)
+ (t2 − t1)

 m∑
ϱ=1

∥b∥ψ(℘)|νϱ|
ηζ−1
ϱ

Γq(ζ)

+
βζ−1

Γq(ζ)
∥b∥ψ(℘)

)
.

The right-hand side of the above inequality tends to zero independently of
y ∈ Bγ as t2 − t1 → 0. Therefore, N : F → F is completely continuous by
application of the Arzelá-Ascoli theorem.
Step 4: Consider the equation y = σNy, for 0 < σ < 1 and assume that y
be a solution. Then,

∥y∥ = ∥σNy∥ ≤ Λ ∥b∥ψ (℘) .

Therefore,
∥y∥

Λ ∥b∥ψ (℘)
≤ 1.

By (H4), there exists Z such that Z ̸= ∥y(t)∥. Let us set

Θ = {y ∈ F : ∥y∥ < Z} .

We see that the operator N : Θ → F is continuous and completely continu-
ous. From the choice of Θ, there is no y ∈ ∂Θ such that y = σNy for some
0 < σ < 1. Consequently, we deduce that N has a fixed point y ∈ Θ which
is a solution of (1). □

We also prove the existence of solutions of multi-point boundary value
problem (1) by using Leray-Schauder degree.

Theorem 4. Let f : [0, β]×R2 → R be a continuous function. Suppose that
(H5) There exist constants 0 ≤ a < 1

Λ and r > 0 such that

|f(t, y, z)| ≤ r + a1|y|+ a2|z|, (t, y, z) ∈ [0, β]× R2,

where a = a1 + a2.

Then, the multi-point boundary value problem (1) has at least one solution
on [0, β].
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Proof. We define an operator N : F → F as in (10) and consider the fixed
point equation

y = Ny.

We shall prove that there exists a fixed point y ∈ F satisfying (1). It is
sufficient to show that F : Ω℘ → F satisfies

(14) y ̸= δNy, ∀ (y, δ) ∈ ∂Ω℘ × [0, 1] ,

where

Ω℘ :=

{
y ∈ F : sup

t∈[0,β]
|y(t)| < ℘, ℘ > 0

}
.

We define
S (µ, y(t)) = δNy(t), (y, δ) ∈ F× [0, 1] .

As in Theorem 3, N is continuous, uniformly bounded, and equicontinuous.
Then, by the Arzela-Ascoli theorem, a continuous map sδ defined by sδ =
y(t)−S (µ, y(t)) = y(t)−δNy(t) is completely continuous. If (14) holds, then
the following Leray-Schauder degrees are well defined and by the homotopy
invariance of topological degree, it follows that

deg (sδ,Ω℘, 0) = deg (I − δN,Ω℘, 0) = deg (s1,Ω℘, 0) = deg (s0,Ω℘, 0)

= deg (I,Ω℘, 0) = 1 ̸= 0, 0 ∈ Ω℘,

where I denotes the identity operator. By the nonzero property of Leray-
Schauder’s degree, s1(y(t)) = y(t) −Ny(t) = 0 for at least one y ∈ Ω℘. In
order to prove (14), we assume that y(t) = δNy(t) for some δ ∈ [0, 1] and
for all t ∈ [0, β]. Then

|y(t)| = |δNy(t)|
≤ aΛ |y(t)|+ rΛ.

Taking norm ∥y∥ = sup
t∈[0,β]

|y(t)|, we get

∥y∥ ≤ aΛ ∥y∥+ rΛ,

which implies that

∥y∥ ≤ rΛ

1− aΛ
.

If ℘ = rΛ
1−aΛ + 1, then inequality (14) holds. □

4. Applications

Example 1. Let us consider the following multi-point boundary value prob-
lem

(15)


CD

3
2
0.5y(t) = f(t, y(t), y (λt)), t ∈ [0, 1] ,

y (0) = 0, Dqy (1) =

m∑
ϱ=1

νϱI
1
2
0.5y (ηϱ) ,
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For this example, we have ζ = 3
2 , β = 1, q = 1

2 , λ = 1
2 , νϱ = 2, (ϱ = 1, 2) , η1 =

1
5 , η2 = 1

3 and f(t, y(t), y( t2)) =
cos(y(t))+sin(

y(t)
2

)

32π(tet2+1)
. Also for y, ȳ, z, z̄ ∈ R and

t ∈ [0, 1], we have

|f(t, y, ȳ)− f(t, z, z̄)| ≤ 1

32π
|y − z|+ 1

32π
|ȳ − z̄| .

Hence,

ϖ1 =
1

32π
, ϖ2 =

1

32π
,

Λ =
βζ

Γq(ζ + 1)
+ β


m max

1≤ϱ≤m
|νϱ|

m∑
ϱ=1

ηζ−1
ϱ

Γq(ζ)

+
βζ−1

Γq(ζ)
≈ 4.9025,

and

ϖ = ϖ1 +ϖ2 ≈
1

16π
.

Therefore, we have
ϖΛ ≃ 9.7532× 10−2 < 1

Hence, all the hypotheses of Theorem 1 are satisfied. Thus, by the conclusion
of Theorem 1, the multi-point boundary value problem (15) has a unique
solution.

Example 2. As a second illustrative example, let us take

(16)


CD

4
3
0.5y(t) = f(t, y(t), λy(t)), t ∈ [0, 1] ,

y (0) = 0, Dqy (1) =
m∑
ϱ=1

νϱI
1
3
0.5y(t) (ηϱ) .

Here, ζ = 4
3 , q =

1
2 , β = 1, λ = 1

5 , Ω1 =
√
3, Ω2 =

2
5 , η1 =

2
11 , η2 =

1
7 and

f(t, y(t), y( t5)) = et
y2(t) + ∥y∥+ 10−3

(1 + et) (15∥y∥+ t+ 7) + tan(y(t)( t5))
.

Then we can find that

Λ =
βζ

Γq(ζ + 1)
+ β


m max

1≤ϱ≤m
|νϱ|

m∑
ϱ=1

ηζ−1
ϱ

Γq(ζ)

+
βζ−1

Γq(ζ)
≈ 2.8276.
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Clearly,∣∣f(t, y(t), y( t5))∣∣ =
∣∣∣∣∣et

y(t)2

3 + ∥y∥+ 10−3

(1 + et) (15 ∥y∥+ t+ 7) + tan(y(t)( t5))

∣∣∣∣∣
≤ et

5 (1 + et)

(
∥y∥
3

+ 1

)
.

Choosing b (t) = et

5(1+et) with ∥b∥ = e
5 and ψ (∥y∥) = ∥y∥

3 + 1, we can show
that

Z

∥b∥
(
Z
3 + 1

)
Λ
> 1,

which implies Z > 3.1529. Hence, by Theorem 3, the multi-point boundary
value problem (16) has at least one solution on [0, 1].

5. Conclusion

In this paper, we address the existence and uniqueness of solutions of the
multi-point boundary value problem of nonlinear fractional differential equa-
tions with two fractional derivatives. The existence of solutions is demon-
strated by using a variety of fixed point theorems, including Banach’s fixed
point theorem, Leray Schauder’s nonlinear alternative, and Leray-degree
Schauder’s theory. We provide several examples to demonstrate the validity
of our results. In future studies, we can expand our work by incorporat-
ing several recently introduced fractional operators, including the ψ-Caputo
or ψ-Hilfer with q-fractional derivatives, hybrid equations, impulsive argu-
ments, problems with multipoint conditions and so much more.
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