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Existence and uniqueness of solutions to a coupled
system of implicit fractional differential equations
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Abstract. Using Perov’s fixed point theorem, the authors establish
the existence and uniqueness of solutions to the coupled system of im-
plicit fractional differential equations

cDαx(t) = f1(t, x(t), y(t),
cDαx(t)), t ∈ J,

cDβy(t) = f2(t, x(t), y(t),
cDβy(t)), t ∈ J,

x(0) = L1[x], x′(0) = L2[x],

y(0) = L3[y], y′(0) = L4[y],

where α, β ∈ [1, 2), J = [0, 1], cDα and cDβ are Caputo fractional deriva-
tives, fi : [0, 1]× R3 → R are continuous functions for i = 1, 2, and the
functionals Lj , j = 1, 2, 3, 4, are Stieltjes integrals. A second existence
result is obtained by using a vector version of a fixed point theorem for
a sum of two operators due to Krasnosel’skii. There is also a study of
the structure of the set of solutions to the problem. Examples illustrate
the results.

1. Introduction

The motivation for this work comes from two places. The primary source
is a very nice paper by Bolojan and Precup [6], who studied the first order
nonlocal implicit system

x′(t) = g1(t, x(t), y(t)) + h1(t, x
′(t), y′(t)), t ∈ [0, 1],

y′(t) = g2(t, x(t), y(t)) + h2(t, x
′(t), y′(t)), t ∈ [0, 1],

x(0) = α[x],

y(0) = β[y],

where gi, hi : [0, 1] × R2 → R are continuous functions for i = 1, 2, and α,
β : C[0, 1] → R are continuous linear functionals with α[1] ̸= 1 and β[1] ̸= 1.
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Additional motivation for the present paper comes from a forthcoming paper
by Oumansour, Kadari, Graef, and Ouahab, who considered the problem

cDαx(t) = g1(t, x(t), y(t)) + h1(t,
cDαx(t)), t ∈ J,

cDβy(t) = g2(t, x(t), y(t)) + h2(t,
cDβy(t)), t ∈ J,

x(0) = L1[x],

y(0) = L2[y],

where α, β ∈ [0, 1), J = [0, 1], cDα and cDβ are Caputo fractional derivatives
of order α and β, respectively, gi : [0, 1]×R×R → R, and hi : [0, 1]×R → R
are continuous functions for i = 1, 2, and the functionals L1 and L2 are given
by Stieltjes integrals with L1[1] ̸= 1 and L2[1] ̸= 1.

The study of fractional differential equations and their applications has
been a hot area of research in the last twenty years due in part to their
applicability to problems in the physical and social sciences as can be found,
for example, in [13, 14, 17]. Implicit systems have also been a popular area
of research as can be attested to by the monograph [1] and the references
contained therein.

Existence of solutions to fractional order differential equations and inclu-
sions is an important area of study that has been considered by a number
of authors using a variety of initial or boundary conditions; see, for exam-
ple, [3–5, 12, 16, 20] and the references contained therein. Coupled systems
of fractional differential equations with local and nonlocal boundary con-
ditions have been considered in the works [2, 4, 20, 22, 23, 25, 26]. In [11],
the authors considered systems of fractional differential equations with Ca-
puto fractional derivatives of orders in (0, 1]. They used Perov’s fixed point
theorem in vector Banach spaces to obtain existence of solutions and the
compactness of the solutions sets.

Here, we consider the coupled implicit fractional differential system with
nonlocal boundary conditions

(P)


cDαx(t) = f1(t, x(t), y(t),

cDαx(t)), t ∈ J,
cDβy(t) = f2(t, x(t), y(t),

cDβy(t)), t ∈ J,

x(0) = L1[x], x′(0) = L2[x],

y(0) = L3[y], y′(0) = L4[y],

where α, β ∈ [1, 2), J = [0, 1], cDα and cDβ , are Caputo fractional deriva-
tives, and fi : [0, 1] × R4 → R are continuous functions for i = 1, 2. The
linear functionals Lj , j = 1, 2, 3, 4, are given by Stieltjes integrals,

Lj [v(t)] =

∫ 1

0
v(s) dAj(s), j = 1, . . . , 4,

where Aj : [0, 1] → R are nondecreasing functions that are right continuous
on [0, 1), left-continuous at t = 1, and satisfy Aj(0) = 0; this makes the dAj
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positive Stieltjes measures. In order to insure that certain denominators do
not vanish, we ask that

(1) (1− L2i[1])(1− L2i−1[t])− L2i[t]L2i−1[1] ̸= 0, for i = 1, 2,

where Lj [t] =
∫ 1
0 s dAj(s). Notice that this is an improvement over the

condition Lj [1] ̸= 1 as is required, for example, in [6].
The Problem (P) is called coupled because the unknown functions x(t) and

y(t) appear in both equations in the system, and it is implicit because the
unknown function x(t) appears on both sides of the first equation in the sys-
tem. Having an increased order of the Caputo derivatives and the additional
initial conditions makes the calculations considerably more complicated.

Section 2 below contains some general results and preliminary concepts.
In Section 3, we formulate problem (P) as a fixed point problem. Section
4 contains our sufficient conditions for the existence and uniqueness of so-
lutions to (P) by applying Perov’s fixed point theorem. We end the paper
with an example of our main results.

2. Preliminaries

In this section, we give the necessary concepts and notation needed for
understanding what follows. We take the space C(J,R) × C(J,R) and use
the norm

∥(x, y)∥C×C := (∥x∥C , ∥y∥C)T ,
where

∥v∥C := sup
[0,1]

|v(t)|.

The norms of the functionals Lj are given by

∥Lj∥ = sup
∥v∥=1

∣∣∣∣∫ 1

0
v(s)dAj(s)

∣∣∣∣ .
Basic properties of Laplace transforms can be found in a variety of places,

so we will use them freely here. The function

F (s) = L(f(t)) =
∫ ∞

0
e−stf(t)dt

is the Laplace transform of the function f(t). We can recover f(t) from the
Laplace transform F (s) by using the inverse Laplace transform. As is well
known, the Laplace transform of the convolution

f(t) ∗ g(t) =
∫ t

0
f(t− τ)g(τ)dτ =

∫ t

0
f(τ)g(t− τ)dτ

of the functions f and g that are zero for t < 0 is the product of the Laplace
transforms of the two functions, that is,

L(f(t) ∗ g(t))(s) = F (s)G(s),
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assuming that both F (s) and G(s) exist. This property can be used to
evaluate the Laplace transform of the Riemann-Liouville fractional integral.
Also well known is that the Laplace transform of the n-th derivative of the
function f(t) is given by

(2) L(fn(t))(s) = snF (s)−
n−1∑
k=0

sn−k−1fk(0) = snF (s)−
n−1∑
k=0

skf (n−k−1)(0).

We will need the following definitions of the Riemann-Liouville fractional
integral and the Caputo fractional derivative of a function.

Definition 1 ([15]). The Riemann-Liouville fractional integral Iϵh of order
ϵ (ϵ > 0) of the function h is defined by

Iϵh(t) =
1

Γ(ϵ)

∫ t

0
(t− s)ϵ−1h(s)ds, t > 0,

provided the right hand side exists, where Γ is the Euler Gamma function

given by Γ(ϵ) =

∫ t

0
tϵ−1e−tdt, ϵ > 0.

Definition 2 ([1, Definition 1.6], [15, Definition 2.1]). For a function h ∈
ACn(J,R), the Caputo fractional-order derivative of order ϵ of h is defined
by

cDϵ
0h(t) =

1

Γ(n− ϵ)

∫ t

0
(t− s)n−ϵ−1h(n)(s)ds,

where n− 1 < ϵ < n and n = [ϵ] + 1.

We will also need some notions from vector metric spaces.

Definition 3 ([9, Definition 7.1], [21, Definition 2.1]). Let X be a nonempty
set. By a vector-valued metric on X we mean a map d : X ×X → Rn with
the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X, and if d(u, v) = 0, then u=v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

A set X with a vector-valued metric d is called a generalized metric space.
In this space, the notions of Cauchy sequence, convergence, completeness,
and open and closed sets are similar to those in usual metric spaces. Here,
if x, y ∈ Rn, where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), by x ≤ y
we mean xi ≤ yi for i = 1, 2, . . . , n. The pair (X, d) is a generalized metric
space with

d(x, y) :=

d1(x, y)...
dn(x, y)

 .
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Notice that d is a generalized metric on X if and only if di, i = 1, 2, . . . , n,
are metrics on X.

Similarly, a vector valued norm on a linear space X is a mapping ∥ · ∥ :
X → Rn

+ with ∥x∥ = 0 only for x = 0, ∥λx∥ = |λ|∥x∥ for x ∈ X and λ ∈ R,
and ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for every x, y ∈ X. Associated to a vector valued
norm ∥ · ∥ is a vector valued metric d(x, y) := ∥x − y∥, and we say that
(X, ∥ · ∥) is a generalized Banach space if X is complete with respect to d.

Next, we define what is meant by a matrix that is convergent to zero.
Here, Mn×n(R+) denotes the set of all n× n matrices over R+.

Definition 4 ([21, Definition 2.4], [24, Definition 1.9]). A square matrix
with real entries is said to be convergent to zero if and only if its spectral
radius ρ(M) is strictly less than 1. In other words, all the eigenvalues of M
are in the open unit disc |λ| < 1 for every λ ∈ C with det(M − λI) = 0,
where I denotes the identity matrix in Mn×n(R+).

The following result gives some characterizations of a matrix that con-
verges to zero.

Theorem 1 ([24]). Let M ∈ Mn×n(R+); the following assertions are equiv-
alent:

(a) M is convergent to zero;
(b) Mk → 0 as k → ∞;
(c) The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + · · ·+Mk + · · · ;
(d) The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative

elements.

Remark 1. Some simple examples of 2× 2 matrices that converge to zero
are:

(i) A =

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

(ii) A =

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

(iii) A =

(
a −a
b −b

)
, where a, b, c ∈ R+ and |a− b| < 1, a > 1, b > 0.

Next, we define what we mean by a contractive operator.

Definition 5 ([9, Section 2.3]). Let (X, d) be a generalized metric space.
An operator N : X → X is contractive associated with a generalized metric
d on X, if there exists a convergent to zero matrix M such that

d(T (x), T (y)) ≤Md(x, y), for all x, y ∈ X.
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The following theorem is known as Perov’s fixed point theorem.

Theorem 2 ([18], [19]). Let (X, d) be a complete generalized metric space
and T : X → X be a contractive operator with matrix M . Then T has a
unique fixed point u, and for each u0 ∈ X,

d(T k(u0), u) ≤Mk(I −M)−1d(u0, T (u0)), where k ∈ N.

3. Formulating the Fixed Point Problem

To apply Perov’s theorem, we must first transform (P) into a fixed point
problem. For t ∈ J , it is easy to see that

cDϵh(t) = In−ϵg(t) =
1

Γ(n− ϵ)

∫ t

0
(t− s)n−ϵ−1g(s)ds = (ψϵ ∗ g)(t),

where g(t) = h(n)(t) and

ψϵ(t) =

{
1

Γ(n−ϵ) t
n−ϵ−1, t > 0,

0, t ≤ 0.

The Laplace transform of the function tn−ϵ−1 is

N(s) = L{tn−ϵ−1} = Γ(n− ϵ)sϵ−n, for n− ϵ− 1 > −1.

If n = 2, as it would be for α, β ∈ [1, 2), then using the Laplace transform
of the convolution of tn−ϵ−1 and g(t), we obtain the transform of the Caputo
fractional derivative as

(3) L{cDϵx(t)} = s−(1−ϵ)G2(s),

where

(4) G2(s) = s2X(s)− sx′(0)− x(0)

by (2).
To obtain an equivalent fixed point form for (P), we set

(5) u(t) = cDαx(t) and v(t) = cDβy(t).

Applying the Laplace transform gives

L{u(t)} = L{cDαx(t)}

= s−(1−α)G2(s)

= s1+αX(s)− sαx′(0)− sα−1x(0) = U(s).(6)

Similarly,

L{v(t)} = s1+βY (s)− sβy′(0)− sβ−1y(0) = V (s),

where X(s), U(s), Y (s), and V (s) are the Laplace transforms of x(t), u(t),
y(t), and v(t), respectively.

It follows that

X(s) = s−1−αU(s) + s−1x′(0) + s−2x(0),
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and taking the inverse transform gives

(7) x(t) =
1

Γ(α+ 1)

∫ t

0
(t− s)αu(s)ds+ x′(0) + tx(0).

From the condition x(0) = L1[x] in (P), we see that

x(0) = L1

[
1

Γ(α+ 1)

∫ t

0
(t− s)αu(s)ds+ x′(0) + tx(0)

]
=

1

Γ(α+ 1)
L1

[∫ t

0
(t− s)αu(s)ds

]
+ L1

[
x′(0)

]
+ L1 [tx(0)]

=
1

Γ(α+ 1)
L1

[∫ t

0
(t− s)αu(s)ds

]
+ L1 [1]x

′(0) + L1 [t]x(0),(8)

so

(1− L1[t])x(0) =
1

Γ(α+ 1)
L1

[∫ t

0
(t− s)αu(s)ds

]
+ L1 [1]x

′(0).

Hence,

(9) x(0) =
1

(1− L1[t])

(
1

Γ(α+ 1)
L1

[∫ t

0
(t− s)αu(s)ds

]
+ L1 [1]x

′(0)

)
.

A similar calculation gives

(10) x′(0) =
1

(1− L2[1])

(
1

Γ(α+ 1)
L2

[∫ t

0
(t− s)αu(s)ds

]
+ L2 [t]x(0)

)
.

Remark 2. If in fact, L1[t] = 1, then (8) could be solved for x′(0) and
the result would be the same as (10) with L1[t] = 1. That is, the solutions
process would still work, but the resulting expression for x(t) in (13) below
would be somewhat simplified.

Solving the system consisting of (9) and (10), we obtain

x(0) =
(1− L2[1])

1
Γ(α+1)L1

[∫ t
0 (t− s)αu(s)ds

]
(1− L1[t])(1− L2[1])− L1[1]L2[t]

+
L1[1]

1
Γ(α+1)L2

[∫ t
0 (t− s)αu(s)ds

]
(1− L1[t])(1− L2[1])− L1[1]L2[t]

(11)

and

x′(0) =
(1− L1[t])

1
Γ(α+1)L2

[∫ t
0 (t− s)αu(s)ds

]
(1− L2[1])(1− L1[t])− L2[t]L1[1]

+
L2[t]

1
Γ(α+1)L1

[∫ t
0 (t− s)αu(s)ds

]
(1− L2[1])(1− L1[t])− L2[t]L1[1]

.(12)
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Using (11) and (12) in (7) gives

x(t) =
1

Γ(α+ 1)

∫ t

0
(t− s)αu(s)ds

+
(1− L1[t])

1
Γ(α+1)L2

[∫ t
0 (t− s)αu(s)ds

]
(1− L2[1])(1− L1[t])− L2[t]L1[1]

+
L2[t]

1
Γ(α+1)L1

[∫ t
0 (t− s)αu(s)ds

]
(1− L2[1])(1− L1[t])− L2[t]L1[1]

+ t
(1− L2[1])

1
Γ(α+1)L1

[∫ t
0 (t− s)αu(s)ds

]
(1− L1[t])(1− L2[1])− L1[1]L2[t]

+ t
L1[1]

1
Γ(α+1)L2

[∫ t
0 (t− s)αu(s)ds

]
(1− L1[t])(1− L2[1])− L1[1]L2[t]

.(13)

In a completely analogous way we have:

y(t) =
1

Γ(β + 1)

∫ t

0
(t− s)βv(s)ds+ y′(0) + ty(0),

y(0) =
1

(1− L3[t])

(
1

Γ(β + 1)
L3

[∫ t

0
(t− s)βv(s)ds

]
+ L3[1]y

′(0)

)
,

y′(0) =
1

(1− L4[1])

(
1

Γ(β + 1)
L4

[∫ t

0
(t− s)βv(s)ds

]
+ L4[t]y(0)

)
,

y(0) =
(1− L4[1])

1
Γ(β+1)L3

[∫ t
0 (t− s)βv(s)ds

]
(1− L3[t])(1− L4[1])− L3[1]L4[t]

+
L3[1]

1
Γ(β+1)L4

[∫ t
0 (t− s)βv(s)ds

]
(1− L3[t])(1− L4[1])− L3[1]L4[t]

,

and

y′(0) =
(1− L3[t])

1
Γ(β+1)L4

[∫ t
0 (t− s)βv(s)ds

]
(1− L4[1])(1− L3[t])− L4[t]L3[1]

+
L4[t]

1
Γ(β+1)L3

[∫ t
0 (t− s)βv(s)ds

]
(1− L4[1])(1− L3[t])− L4[t]L3[1]

+
L4[t]

1
Γ(β+1)L3

[∫ t
0 (t− s)βv(s)ds

]
(1− L4[1])(1− L3[t])− L4[t]L3[1]

.

Thus,
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y(t) =
1

Γ(β + 1)

∫ t

0
(t− s)βv(s)ds

+
(1− L2[t])

1
Γ(β+1)L4

[∫ t
0 (t− s)βv(s)ds

]
(1− L4[1])(1− L3[t])− L4[t]L3[1]

+
L4[t]

1
Γ(β+1)L3

[∫ t
0 (t− s)βv(s)ds

]
(1− L4[1])(1− L3[t])− L4[t]L3[1]

+ t
(1− L4[1])

1
Γ(β+1)L3

[∫ t
0 (t− s)βv(s)ds

]
(1− L3[t])(1− L4[1])− L3[1]L4[t]

+ t
L3[1]

1
Γ(β+1)L4

[∫ t
0 (t− s)βv(s)ds

]
(1− L3[t])(1− L4[1])− L3[1]L4[t]

.(14)

Let

F1(u, v)(t)

= f1

(
t, Iα+1u(t) +

(1− L1[t])
1

Γ(α+1)L2[k1(t)] + L2[t]
1

Γ(α+1)L1[k1(t)]

(1− L2[1])(1− L1[t])− L2[t]L1[1]

+ t
(1− L2[1])

1
Γ(α+1)L1[k1(t)] + L1[1]

1
Γ(α+1)L2[k1(t)]

(1− L1[t])(1− L2[1])− L1[1]L2[t]
,

Iβ+1v(t) +
(1− L2[t])

1
Γ(β+1)L4[k2(t)] + L4[t]

1
Γ(β+1)L3[k2(t)]

(1− L4[1])(1− L3[t])− L4[t]L3[1]

+ t
(1− L4[1])

1
Γ(β+1)L3[k2(t)] + L3[1]

1
Γ(β+1)L4[k2(t)]

(1− L3[t])(1− L4[1])− L3[1]L4[t]
, u

)(15)

and

F2(u, v)(t)

= f2

(
t, Iα+1u(t) +

(1− L1[t])
1

Γ(α+1)L2[k1(t)] + L2[t]
1

Γ(α+1)L1[k1(t)]

(1− L2[1])(1− L1[t])− L2[t]L1[1]

+ t
(1− L2[1])

1
Γ(α+1)L1[k1(t)] + L1[1]

1
Γ(α+1)L2[k1(t)]

(1− L1[t])(1− L2[1])− L1[1]L2[t]
,

Iβ+1v(t) +
(1− L2[t])

1
Γ(β+1)L4[k2(t)] + L4[t]

1
Γ(β+1)L3[k2(t)]

(1− L4[1])(1− L3[t])− L4[t]L3[1]

+ t
(1− L4[1])

1
Γ(β+1)L3[k2(t)] + L3[1]

1
Γ(β+1)L4[k2(t)]

(1− L3[t])(1− L4[1])− L3[1]L4[t]
, v

)
,

(16)
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where

k1(t) =

∫ t

0
(t− s)αu(s)ds and k2(t) =

∫ t

0
(t− s)βv(s)ds.

Problem (P) is then equivalent to the system

(17)

{
u = F1(u, v),

v = F2(u, v).

We define the operator

T : C(J,R)× C(J,R) → C(J,R)× C(J,R)

by

(18) T (u, v) = (T1(u, v), T2(u, v)), (u, v) ∈ C(J,R)× C(J,R),

where

(19)

{
T1(u, v) = F1(u, v),

T2(u, v) = F2(u, v).

System (17) can then be regarded as a fixed point problem for T .

4. Existence and uniqueness of solutions

We are now able to present our main existence and uniqueness result. In
so doing, we need to make the following assumptions on our problem.

(C) fi : [0, 1] × R × R × R → R for i ∈ {1, 2} are jointly continuous
functions and there exist nonnegative numbers ai, bi, and ci, for
i ∈ {1, 2} such that for all u, v, w, ū, v̄, w̄ ∈ R and t ∈ [0, 1],

|f1(t, u, v, w)− f1(t, ū, v̄, w̄))| ≤ a1|u− ū|+ b1|v − v̄|+ c1|w − w̄|,
|f2(t, u, v, w)− f2(t, ū, v̄, w̄))| ≤ a2|u− ū|+ b2|v − v̄|+ c2|w − w̄|.

Next, we define the constants

L̄i = Li[t] =

∫ 1

0
sdAi(s), i = 1, . . . , 4.

Notice that with this notation, (1) becomes

(20) (1− L2i[1])(1− L̄2i−1)− L̄2iL2i−1[1] ̸= 0, for i = 1, 2.

We also define the quantities

M1 =

(
a1

Γ(α+ 2)
+ c1

)
+

a1(1−L̄1)
Γ(α+1) ∥L2∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a1L̄2
Γ(α+1)∥L1∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]
+

a1(1−L2[1])
Γ(α+1) ∥L1∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2
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+

a1L1[1]
Γ(α+1)∥L2∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

M2 = +
b1

Γ(β + 2)
+

b1(1−L̄2)
Γ(β+1) ∥L4∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b1L̄4
Γ(β+1)∥L3∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]
+

b1(1−L4[1])
Γ(β+1) ∥L3∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b1L3[1]
Γ(β+1)∥L4∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4
,

M3 =

(
a2

Γ(α+ 2)
+ c2

)
+

a2(1−L̄1)
Γ(α+1) ∥L2∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a2L̄2
Γ(α+1)∥L1∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]
+

a2(1−L2[1])
Γ(α+1) ∥L1∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2

+

a2L1[1]
Γ(α+1)∥L2∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

and

M4 =
b2

Γ(β + 2)
+

b2(1−L̄2)
Γ(β+1) ∥L4∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b2L̄4
Γ(β+1)∥L3∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]
+

b2(1−L4[1])
Γ(β+1) ∥L3∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b2L3[1]
Γ(β+1)∥L4∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4
.

Theorem 3. Assume that condition (C) holds. If the matrix

(21) M =

(
M1 M2

M3 M4

)
converges to 0, then the problem (P) has a unique solution.

Proof. Let (u, v), (ū, v̄) ∈ C(J,R)× C(J,R). Then, we have

|T1(u, v)(t)− T1(ū, v̄)(t)| ≤ |F1(u, v)(t)− F1(ū, v̄)(t)|

≤ a1
Γ(α+ 1)

∫ t

0
(t− s)α|u(s)− ū(s)|ds

+ a1
(1− L̄1)

1
Γ(α+1)(L2[k1(t)]− L2[k̄1(t)]) + L̄2

1
Γ(α+1)(L1[k1(t)]− L1[k̄1(t)])

(1− L2[1])(1− L̄1)− L̄2L1[1]
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+ a1
(1− L2[1])

1
Γ(α+1)(L1[k1(t)]− L1[k̄1(t)]) + L1[1]

1
Γ(α+1)(L2[k1(t)]− L2[k̄1(t)])

(1− L̄1)(1− L2[1])− L1[1]L̄2

+
b1

Γ(β + 1)

∫ t

0
(t− s)β|v(s)− v̄(s)|ds

+ b1
(1− L̄2)

1
Γ(β+1)(L4[k2(t)]− L4[k̄2(t)]) + L̄4

1
Γ(β+1)(L3[k2(t)]− L3[k̄2(t)])

(1− L4[1])(1− L̄3)− L̄4L3[1]

+ b1
(1− L4[1])

1
Γ(β+1)(L3[k2(t)]− L3[k̄2(t)]) + L3[1]

1
Γ(β+1)(L4[k2(t)]− L4[k̄2(t)])

(1− L̄3)(1− L4[1])− L3[1]L̄4

+ c1|u− ū|

≤ a1t
α+1

Γ(α+ 2)
∥u− ū∥+

a1(1−L̄1)
Γ(α+1) L2[k1(t)− k̄1(t)]

(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a1L̄2
Γ(α+1)L1[k1(t)− k̄1(t)]

(1− L2[1])(1− L̄1)− L̄2L1[1]
+

a1
(1−L2[1])
Γ(α+1) L1[k1(t)− k̄1(t)]

(1− L̄1)(1− L2[1])− L1[1]L̄2

+

a1L1[1]
Γ(α+1)L2[k1(t)− k̄1(t)])

(1− L̄1)(1− L2[1])− L1[1]L̄2

+
b1t

β+1

Γ(β + 2)
∥v − v̄∥+

b1(1−L̄2)
Γ(β+1) L4[k2(t)− k̄2(t)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b1L̄4
Γ(β+1)L3[k2(t)− k̄2(t)]

(1− L4[1])(1− L̄3)− L̄4L3[1]
+

b1
(1−L4[1])
Γ(β+1) L3[k2(t)− k̄2(t)]

(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b1L3[1]
Γ(β+1)(L4[k2(t)− k̄2(t)]

(1− L̄3)(1− L4[1])− L3[1]L̄4

+ c1∥u− ū∥.

Now in view of the facts that

(22) ∥Li[ki − k̄i]∥ ≤ ∥Li∥∥ki − k̄i∥, i = 1, 2, 3, 4,

and

∥k1 − k̄1∥ ≤ 1

α
∥u− ū∥ and ∥k2 − k̄2|| ≤

1

β
∥v − v̄∥,

we see that

∥T1(u, v)(t)− T1(ū, v̄)(t)∥

≤
(

a1
Γ(α+ 2)

+ c1

)
∥u− ū∥+

a1(1−L̄1)
Γ(α+1) ∥L2∥ 1

α∥u− ū∥
(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a1L̄2
Γ(α+1)∥L1∥ 1

α∥u− ū∥
(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a1(1−L2[1])
Γ(α+1) ∥L1∥ 1

α∥u− ū∥
(1− L̄1)(1− L2[1])− L1[1]L̄2
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+

a1L1[1]
Γ(α+1)∥L2∥ 1

α∥u− ū∥
(1− L̄1)(1− L2[1])− L1[1]L̄2

+
b1

Γ(β + 2)
∥v − v̄∥

+

b1(1−L̄2)
Γ(β+1) ∥L4∥ 1

β∥v − v̄∥
(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b1L̄4
Γ(β+1)∥L3∥ 1

β∥v − v̄∥
(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b1(1−L4[1])
Γ(β+1) ∥L3∥ 1

β∥v − v̄∥
(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b1L3[1]
Γ(β+1)∥L4∥ 1

β∥v − v̄∥
(1− L̄3)(1− L4[1])− L3[1]L̄4

≤


(

a1
Γ(α+ 2)

+ c1

)
+

a1(1−L̄1)
Γ(α+1) ∥L2∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a1L̄2
Γ(α+1)∥L1∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]
+

a1(1−L2[1])
Γ(α+1) ∥L1∥ 1

α∥u− ū∥
(1− L̄1)(1− L2[1])− L1[1]L̄2

+

a1L1[1]
Γ(α+1)∥L2∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2

 ∥u− ū∥

+

 b1
Γ(β + 2)

+

b1(1−L̄2)
Γ(β+1) ∥L4∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b1L̄4
Γ(β+1)∥L3∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]
+

b1(1−L4[1])
Γ(β+1) ∥L3∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b1L3[1]
Γ(β+1)∥L4∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

 ∥v − v̄∥

We now see that we can write this as

∥T1(u, v)− T1(ū, v̄)∥C ≤M1∥u− ū∥C +M2∥v − v̄∥C .

Similar to what we did above, we can obtain

∥T2(u, v)− T2(ū, v̄)∥C

≤


(

a2
Γ(α+ 2)

+ c2

)
+

a2(1−L̄1)
Γ(α+1) ∥L2∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]

+

a2L̄2
Γ(α+1)∥L1∥ 1

α

(1− L2[1])(1− L̄1)− L̄2L1[1]
+

a2(1−L2[1])
Γ(α+1) ∥L1∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2

+

a2L1[1]
Γ(α+1)∥L2∥ 1

α

(1− L̄1)(1− L2[1])− L1[1]L̄2

 ∥u− ū∥C
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+

 b2
Γ(β + 2)

+

b2(1−L̄2)
Γ(β+1) ∥L4∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]

+

b2L̄4
Γ(β+1)∥L3∥ 1

β

(1− L4[1])(1− L̄3)− L̄4L3[1]
+

b2(1−L4[1])
Γ(β+1) ∥L3∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

+

b2L3[1]
Γ(β+1)∥L4∥ 1

β

(1− L̄3)(1− L4[1])− L3[1]L̄4

 ∥v − v̄∥C .

This can be written as

∥T2(u, v)− T2(ū, v̄)∥C ≤M3∥u− ū∥+M4∥v − v̄∥.

We then have[
∥T1(u, v)− T1(ū, v̄)∥C
∥T2(u, v)− T2(ū, v̄)∥C

]
≤ M

[
∥u− ū∥C
∥v − v̄∥C

]
,

where

M =

(
M1 M2

M3 M4

)
.

This can be written in the equivalent form as

∥T (U)− T (Ū)∥C×C ≤ M∥U − Ū∥C×C

for U = (u, v) and Ū = (ū, v̄). Since the matrix M converges to 0, by Perov’s
theorem, system (P) has a unique solution (u, v) ∈ C(J,R)× C(J,R). □

To illustrate how this theorem can be applied, we consider the simple
example of a coupled implicit fractional problem

cD
3
2x(t) = 90

√
π

640 x(t) +
45

√
π

640 y(t) +
1
10

(
cD

3
2x(t)

)
, t ∈ [0, 1],

cD
3
2 y(t) = 45

√
π

640 x(t) +
45

√
π

640 y(t) +
1
5(

cD
3
2 y(t)),

x(0) = 1
2 x′(0) = 0

y(0) = 0, y′(0) = 1
2

Here we have α = 3
2 = β, L1[x] = L4[y] =

1
2 , L2[x] = L3[y] = 0. This

problem can be regarded as being in the form of (P) with

f1(t, u, v, w) =
90
√
π

640
u+

45
√
π

640
v +

1

10
w,

f2(t, u, v, w) =
45

√
π

640
u+

45
√
π

640
v +

1

5
w.

Hence, condition (C) is satisfied with

a1 =
90
√
π

640
, b1 =

45
√
π

640
, c1 =

1

10
, a2 =

45
√
π

640
, b2 =

45
√
π

640
, c2 =

1

5
.
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Since Γ(12) =
√
π, we see that Γ(32) =

√
π
2 , Γ(52) =

3
√
π

4 , Γ(72) =
15

√
π

8 .
Consequently, we see that M becomes

M =

(
3
10

1
10

3
10

1
10

)
.

Since 3
10 +

1
10 = .4 < 1, in view of Remark 1(i), we see that the matrix M

converges to 0. By Theorem 3, the this problem has a unique solution.

5. Another existence result

In this section we obtain another existence result by applying a fixed
point theorem for a sum of two operators due to Krasnosel’skii, which we
next state.

Theorem 4 ([6], Krasnosel’skii’s fixed point theorem). Let (X, ∥ · ∥) be a
generalized Banach space, D be a nonempty, closed, bounded, and convex
subset of X, and T : D → X satisfy

(i) T = G+H with G : D → X completely continuous and H : D → X
a generalized contraction, i.e., there exists a matrix M ∈ Mn×n(R+)
with ρ(M) < 1, such that

∥H(x)−H(y)∥ ≤M∥x− y∥, for all x, y ∈ D;

(ii) G(x) +H(y) ∈ D for all x, y ∈ D.
Then T has at least one fixed point in D.

To obtain our result, we ask that the following condition holds.
(C1) fi : [0, 1] × R × R × R → R for i ∈ {1, 2} are jointly continuous

functions and there exist nonnegative numbers di, ei, mi, and ℓi for
i ∈ {1, 2} such that for all u, v, w, ū, v̄, w̄ ∈ R and t ∈ [0, 1],

|f1(t, u, v, w)| ≤ d1|u|+ e1|v|+m1|w|+ ℓ1

and
|f2(t, u, v, w)| ≤ d2|u|+ e2|v|+m2|w|+ ℓ2.

For convenience in what follows, we define the quantities

N1 = d1

(
1

Γ(α+ 2)
+

|1− L̄1| 1
αΓ(α+1)∥L2∥+ ∥L2∥ 1

αΓ(α+1)∥L1∥
|(1− L2[1])(1− L̄1)− L̄2L1[1]|

+
|1− L2[1]| 1

αΓ(α+1)∥L1∥+ ∥L1∥ 1
αΓ(α+1)∥L2∥

|(1− L̄1)(1− L2[1])− L1[1]L̄2|

)
,

N2 = e1

(
1

Γ(β + 2)
+

|1− L̄2| 1
βΓ(β+1)∥L4∥+ ∥L4∥ 1

βΓ(β+1)∥L3∥|
|(1− L4[1])(1− L̄3)− L̄4L3[1]|
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+
|1− L4[1]| 1

βΓ(β+1)∥L3∥+ ∥L3∥ 1
βΓ(β+1)∥L4∥

|(1− L̄3)(1− L4[1])− L3[1]L̄4|

)
,

N3 = d2

(
1

Γ(α+ 2)
+

|1− L̄1| 1
αΓ(α+1)∥L2∥+ ∥L2∥ 1

αΓ(α+1)∥L1∥
|(1− L2[1])(1− L̄1)− L̄2L1[1]|

+
|1− L2[1]| 1

αΓ(α+1)∥L1∥+ ∥L1∥ 1
αΓ(α+1)∥L2∥

|(1− L̄1)(1− L2[1])− L1[1]L̄2|

)
,

N4 = e2

(
1

Γ(β + 2)
+

|1− L̄2| 1
βΓ(β+1)∥L4∥+ ∥L4∥ 1

βΓ(β+1)∥L3∥|
|(1− L4[1])(1− L̄3)− L̄4L3[1]|

+
|1− L4[1]| 1

βΓ(β+1)∥L3∥+ ∥L3∥ 1
βΓ(β+1)∥L4∥

|(1− L̄3)(1− L4[1])− L3[1]L̄4|

)
.

We also define the matrices

N =

(
N1 N2

N3 N4

)
, Ñ =

(
m1 0

0 m2

)
, N̂ =

(
ℓ1 0

0 ℓ2

)
.

Here is our main result in this section.

Theorem 5. Assume that condition (C1) holds. If the spectral radius of the
matrix N + Ñ + N̂ is less than one, then the problem (P) has a least one
solution.

Proof. In order to apply Krasnosel’skii’s fixed point theorem, Theorem 4
above, we need to define the operator T = G+H : D → X as follows:

G(t, u, v) =

[
G1(u, v)

G2(u, v)

]
and H(u, v) =

[
H1(u)

H2(v)

]
,

where

(23)
G1(u, v) = f1(t, u, v, ·), G2(u, v) = f2(t, u, v, ·),
H1(u) = f1(·, ·, ·, u), H2(v) = f2(·, ·, ·, v).

We will first show that solutions exist, which we will do in a series of
steps.

Step 1: H(u, v) =

[
H1(u)
H2(v)

]
is a generalized contraction mapping. Let (u, v),

(ū, v̄) ∈ C(J,R)× C(J,R); by (C1), we have

|H1(u)(t)−H1(ū)(t)| = |f1(·, ·, ·, u(t))− f1(·, ·, ·, ū(t))| ≤ m1|u(t)− ū(t)|,
|H2(v)−H2(v̄)| = |f2(·, ·, ·, v(t))− f2(·, ·, ·, v̄(t))| ≤ m2|v(t)− v̄(t)|.
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Taking the supremum, this implies

(24) ∥H1(u, v)−H1(ū, v̄)∥C ≤ m1∥u− ū∥C

and

(25) ∥H2(u, v)−H2(v̄, v̄)∥C ≤ m2∥v − v̄∥C .

If we view this as a vector norm, we see that

(26) ∥H(U)−H(Ū)∥C×C ≤ Ñ∥U − Ū∥C×C

for U = (u, v) and Ū = Ū = (ū, v̄). Since ρ(N + Ñ + N̂) < 1 and Ñ <

N+ Ñ+ N̂, we have ρ(Ñ) < 1. Hence, H is a generalized contraction as is
needed in Theorem 4(i).

Step 2: G = G(u, v) =

[
G1(u, v)
G2(u, v)

]
is continuous. Let (un, vn) be a sequence

such that (un, vn) → (u, v) in C(J,R)× C(J,R); then for each t ∈ [0, 1],

|G1(un, vn)(t)−G1(u, v)(t)|
≤ |f1(t, un, vn, ·)− f1(t, u, v, ·)|

≤ Iα+1un(t) +
(1− L̄1)

1
Γ(α+1)L2[k1,n(t)] + L̄2

1
Γ(α+1)L1[k1,n(t)]

(1− L2[1])(1− L̄1)− L̄2L1[1]

+ t
(1− L2[1])

1
Γ(α+1)L1[k1,n(t)] + L1[1]

1
Γ(α+1)L2[k1,n(t)]

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

Iβ+1vn(t) +
(1− L̄2)

1
Γ(β+1)L4[k2,n(t)] + L̄4

1
Γ(β+1)L3[k2,n(t)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

+ t
(1− L4[1])

1
Γ(β+1)L3[k2,n(t)] + L3[1]

1
Γ(β+1)L4[k2,n(t)]

(1− L̄3)(1− L4[1])− L3[1]L̄4

− Iα+1u(t)−
(1− L̄1)

1
Γ(α+1)L2[k1,n1(t)] + L̄2

1
Γ(α+1)L1[k1,n(t)]

(1− L2[1])(1− L̄1)− L̄2L1[1]

− t
(1− L2[1])

1
Γ(α+1)L1[k1,n(t)] + L1[1]

1
Γ(α+1)L2[k1,n(t)]

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

− Iβ+1v(t)−
(1− L̄2)

1
Γ(β+1)L4[k2,n(t)] + L̄4

1
Γ(β+1)L3[k2,n(t)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

− t
(1− L4[1])

1
Γ(β+1)L3[k2,n(t)] + L3[1]

1
Γ(β+1)L4[k2,n(t)]

(1− L̄3)(1− L4[1])− L3[1]L̄4
,

where

k1,n(t) =

∫ t

0
(t− s)αu(s)ds, k2,n(t) =

∫ t

0
(t− s)βv(s)ds
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and

|k1,n(t)− k1(t)| ≤
∫ t

0
(t− s)α|un(s)− u(s)|ds ≤ tα

α
∥un − u∥.

Similarly, we have

|k2,n(t)− k2(t)| ≤
t̃β

β
∥vn − v∥.

Hence,
ki,n → ki, asn→ ∞, i = 1, 2,

and so

(27) ∥G1(un, vn)−G1(u, v)∥ → 0, asn→ ∞,

i.e., G1 is continuous.
A similar argument shows that G2 is continuous, and so G is continuous.

Step 3: G maps bounded sets in D into bounded sets in D. It suffices to
show that for any R = (R1, R2) ∈ R2

+, there exists a constant l > 0 such
that, for each (u, v) ∈ D with ∥(u, v)∥ ≤ R, we have

∥G(u, v)∥C×C ≤ l = (l1, l2)
T .

From condition (C1), we have

|G1(u, v)(t)| ≤ d1

∣∣∣∣∣Iα+1u(t) +
(1− L̄1)

1
Γ(α+1)L2[k1(t)] + L̄2

1
Γ(α+1)L1[k1(t)]

(1− L2[1])(1− L̄1)− L̄2L1[1]

∣∣∣∣∣
+ d1

∣∣∣∣∣(1− L2[1])
1

Γ(α+1)L1[k1(t)] + L1[1]
1

Γ(α+1)L2[k1(t)]

(1− L̄1)(1− L2[1])− L1[1]L̄2

∣∣∣∣∣
+ e1

∣∣∣∣∣Iβ+1v(t) +
(1− L̄2)

1
Γ(β+1)L4[k2(t)] + L̄4

1
Γ(β+1)L3[k2(t)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

∣∣∣∣∣
+ e1

∣∣∣∣∣(1− L4[1])
1

Γ(β+1)L3[k2(t)] + L3[1]
1

Γ(β+1)L4[k2(t)]

(1− L̄3)(1− L4[1])− L3[1]L̄4

∣∣∣∣∣+ ℓ1.

Since

|k1(t)| =
∣∣∣∣∫ t

0
(t− s)α−1u(s)ds

∣∣∣∣ ≤ 1

α
∥u∥ ,

we have

(28) ∥k1∥ ≤ 1

α
R1 and similarly ∥k2∥ ≤ 1

β
R2.

Hence, in view of (28) and (22),

∥G1(u, v)∥C ≤ d1

(
1

Γ(α+ 2)
+

|1− L̄1| 1
αΓ(α+1)∥L2∥+ ∥L2∥ 1

αΓ(α+1)∥L1∥
|(1− L2[1])(1− L̄1)− L̄2L1[1]|



J. R. Graef, A. Ouahab 61

+
|1− L2[1]| 1

αΓ(α+1)∥L1∥+ ∥L1∥ 1
αΓ(α+1)∥L2∥

|(1− L̄1)(1− L2[1])− L1[1]L̄2|

)
R1

+ e1

(
1

Γ(β + 2)
+

|1− L̄2| 1
βΓ(β+1)∥L4∥+ ∥L4∥ 1

βΓ(β+1)∥L3∥|
|(1− L4[1])(1− L̄3)− L̄4L3[1]|

+
|1− L4[1]| 1

βΓ(β+1)∥L3∥+ ∥L3∥ 1
βΓ(β+1)∥L4∥

|(1− L̄3)(1− L4[1])− L3[1]L̄4|

)
R2 + ℓ1 := l1.(29)

In a completely analogous, way we can obtain

∥G2(u, v)∥C ≤ d2

(
1

Γ(α+ 2)
+

|1− L̄1| 1
αΓ(α+1)∥L2∥+ ∥L2∥ 1

αΓ(α+1)∥L1∥
|(1− L2[1])(1− L̄1)− L̄2L1[1]|

+
|1− L2[1]| 1

αΓ(α+1)∥L1∥+ ∥L1∥ 1
αΓ(α+1)∥L2∥

|(1− L̄1)(1− L2[1])− L1[1]L̄2|

)
R1

+ e2

(
1

Γ(β + 2)
+

|1− L̄2| 1
βΓ(β+1)∥L4∥+ ∥L4∥ 1

βΓ(β+1)∥L3∥|
|(1− L4[1])(1− L̄3)− L̄4L3[1]|

+
|1− L4[1]| 1

βΓ(β+1)∥L3∥+ ∥L3∥ 1
βΓ(β+1)∥L4∥

|(1− L̄3)(1− L4[1])− L3[1]L̄4|

)
R2 + ℓ2 := l2.(30)

Thus,
∥G(u, v)∥C ≤ (l1, l2),

which is what we needed to show.

Step 4: G maps bounded sets into equicontinuous sets in C(J,R)×C(J,R).
Let D ⊂ C(J,R) be bounded, r1, r2 ∈ [0, 1] with r1 < r2, and (u, v) ∈ D.
Then,

|G1(u, v)(r2)−G1(u, v)(r1)| = |f1(r2, u, v, ·)− f1(r1, u, v, ·)|

≤ Iα+1u(r2) +
(1− L̄1)

1
Γ(α+1)L2[k1(r2)] + L̄2

1
Γ(α+1)L1[k1(r2)]

(1− L2[1])(1− L̄1)− L̄2L1[1]

+ r2
(1− L2[1])

1
Γ(α+1)L1[k1(r2)] + L1[1]

1
Γ(α+1)L2[k1(r2)]

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

Iβ+1v(r2) +
(1− L̄2)

1
Γ(β+1)L4[k2(r2)] + L̄4

1
Γ(β+1)L3[k2(r2)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

+ r2
(1− L4[1])

1
Γ(β+1)L3[k2(r2)] + L3[1]

1
Γ(β+1)L4[k2(r2)]

(1− L̄3)(1− L4[1])− L3[1]L̄4

− Iα+1u(r1)−
(1− L̄1)

1
Γ(α+1)L2[k1(r1)] + L̄2

1
Γ(α+1)L1[k1(r1)]

(1− L2[1])(1− L̄1)− L̄2L1[1]
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− r1
(1− L2[1])

1
Γ(α+1)L1[k1(r1)] + L1[1]

1
Γ(α+1)L2[k1(r1)]

(1− L̄1)(1− L2[1])− L1[1]L̄2
,

− Iβ+1v(r1)−
(1− L̄2)

1
Γ(β+1)L4[k2(r1)] + L̄4

1
Γ(β+1)L3[k2(r1)]

(1− L4[1])(1− L̄3)− L̄4L3[1]

− r1
(1− L4[1])

1
Γ(β+1)L3[k2(r1)] + L3[1]

1
Γ(β+1)L4[k2(r1)]

(1− L̄3)(1− L4[1])− L3[1]L̄4
.

We observe that

|Iα+1u(r2)− Iα+1u(r1)| ≤
1

Γ(α+ 1)

∫ r1

0
|(r2 − s)α − (r1 − s)α||u(s)|ds

+
1

Γ(α+ 1)

∫ r2

r1

(r2 − s)α|u(s)|ds

≤ R1

αΓ(α+ 1)

[
rα+1
2 − rα+1

1 + (r2 − r1)
α+1
]
.

Similarly,

|Iβ+1v(r2)− Iβ+1v(r1)| ≤
R2

βΓ(β + 1)

[
rβ+1
2 − rβ+1

1 + (r2 − r1)
β+1
]
.

Hence, we can easily conclude that

|G1(u, v)(r2)−G1(u, v)(r1)| → 0 as r2 → r1,

and a similar statement is true for G2.
Steps 2–4 above show that the operator G is completely continuous.

Step 5: There is there is a closed, bounded, convex set D ⊂ C(J,R)×C(J,R)
such that G(D) +H(D) ⊆ D.

The inequalities (29) and (30) imply that[
∥G1(u, v)∥C
∥G2(u, v)∥C

]
≤ N

[
∥u∥C
∥v∥C

]
+

[
ℓ1

ℓ2

]
,

where

N =

(
N1 N2

N3 N4

)
.

Equivalently, we have

(31) ∥G(u, v)∥C×C ≤ N∥(u, v)∥C×C + N̂.

It follows from (26) that

(32) ∥H(u, v)∥C×C ≤ Ñ∥(u, v)∥C×C + P for (u, v) ∈ C(J,R)× C(J,R),

where
P = ∥H(0, 0)∥C×C .
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We need to find R = (R1, R2) ∈ R2
+ such that

∥G(u, v) +H(u, v)∥C×C ≤ R

for (u, v) ∈ C(J,R)× C(J,R) with ∥(u, v)∥C×C ≤ R. To do this, in view of
(31) and (32), it suffices to show that

(N)R+ P + Ñ+ N̂ ≤ R.

Or equivalently,

(33) P + Ñ+ N̂ ≤ (I −N)R.

Since ρ(N) < 1, we know that I−N is invertible, and its inverse (I −N)−1

is a nonnegative matrix (see Theorem 1 above). Thus, (33) is equivalent to

(I −N)−1 (P + Ñ+ Ñ) ≤ R,

so
G(D) +H(D) ⊆ D.

Therefore, by Theorem 4, problem (P) has at least one solution. □

6. Structure of the solution set

In this section we wish to examine the structure of the set of solutions to
problem (P), i.e., the set

S(x0, y0) =
{
(u, v) ∈ C(J,R)× C(J,R) : (u, v) is a solution of (P)

}
.

In order to do this, we will need the following concepts and results.

Theorem 6 ([7]). Let E be a normed space, X be a metric space, and let
f : X → E be a continuous map. Then for every ϵ > 0, there is a locally
Lipschitz function fϵ : X → E such that

∥f(x)− fϵ(x)∥ < ϵ for all x ∈ X.

We denote by Pcv,cl(X) the set of all subsets of X that are convex and
closed.

Definition 6 ([10, Section 9.1]). The set A is contractible if there exists a
continuous homotopy H : A× [0, 1] → A and x0 ∈ A such that

(a) H(x, 0) = x for every x ∈ A,
(b) H(x, 1) = x0 for every x ∈ A.

This says that A is contractible provided the identity map is homotopic
to a constant map (A is homotopically equivalent to a point).

Remark 3. If A ∈ Pcv,cl(X), then A is contractible, but the class of con-
tractible sets is much larger than the class of closed convex sets.

The following concept of an Rδ-set will be used in Section 4, where we
discuss the topological structure of the solution set to our problem.
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Definition 7 ([10, defiition 9.5]). A compact nonempty set X is called
an Rδ-set if there exists a decreasing sequence of compact nonempty con-
tractible sets {Xn}∞n=1 such that

X =
∞⋂
n=1

Xn.

The next result gives a useful criteria for identifying an Rδ-set.

Theorem 7 ([7]). Let (X, d) be a metric space, (E, ∥ · ∥) be a Banach space
and F : X → E be a proper map, i.e., F is continuous and for every compact
set K ⊂ E, the set F−1(K) is compact. Assume that for each ϵ > 0, a proper
map Fϵ : X → E is given, and the following two conditions are satisfied:

(a) ∥Fϵ(x)− F (x)∥ < ϵ for every x ∈ X;
(b) for every ϵ > 0 and u ∈ E in a neighborhood of the origin such that

∥u∥ < ϵ, the equation Fϵ(x) = u has exactly one solution xϵ.
Then the set S = F−1(0) is an Rδ-set.

Our next lemma gives a criteria for determining if a function is a proper
map.

Lemma 1 ([8]). Let E be a Banach space, C ⊂ E be a nonempty, closed,
and bounded subset of E, and F : C → E be a completely continuous map.
Then G = Id− F is a proper map.

Our first result in this direction shows the compactness of the solution
set.

Theorem 8. Under the hypotheses of Theorem 5, the set

S(x0, y0) =
{
(u, v) ∈ C(J,R)× C(J,R) : (u, v) is solution of (P)

}
is compact.

Proof. Let {(un, vn)}n≥1 be a sequence in S(x0, y0). Then for n ∈ N,

(un, vn) = G(un, vn) +H(un, vn),

or
(un, vn)−H(un, vn) = G(un, vn).

From Steps 2–4 in the proof of Theorem 5, we see that G is a completely con-
tinuous operator, and since (I−H)−1 is continuous, the operator (I−H)−1G
is compact. Since {(un, vn)}n≥1 ⊂ (I −H)−1G(D), there is a subsequence
{(unk

, vnk
)} of {(un, vn)} that converges to say (u, v). Hence,

(I −H)−1G(unk
, vnk

) → (I −H)−1G(u, v), as k → ∞

by the continuity of (I −H)−1G. Therefore,

(I −H)−1G(u, v) = (u, v),
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or
(u, v)−H(u, v) = G(u, v).

That is, there exists a subsequence of {(un, vn)}n≥1 converging to (u, v) ∈
S(x0, y0), and so S(x0, y0) is a compact set. This proves the theorem. □

Next, we show that the set S(x0, y0) is in fact an Rδ set.

Theorem 9. Under the hypotheses of Theorem 5, the set S(x0, y0) is an Rδ

set.

Proof. Let
T : C(J,R)× C(J,R) → C(J,R)× C(J,R)

be defined as in (18) and (19) and using (15), (16), and (23).
Then FixT = S(x0, y0), and by Step 5 in the proof of Theorem 5, it is

clear that there exists R = (R1, R2) ∈ R∗
+ such that

∥(u, v)∥C×C ≤ R, for all (u, v) ∈ S(x0, y0).

Therefore, there exists M∗ = (M∗
1 ,M

∗
2 ) > 0 such that

∥(x, y)∥C = (∥x∥C , ∥y∥C) ≤M∗.

For i = 1, 2, we define

f̃i(t, u(t), v(t), w(t)) =

{
fi(t, u(t), v(t), ·), if ∥(u, v)∥C×C ≤ (M∗

1 ,M
∗
2 ),

fi

(
t,

M∗
1 u(t)
|u(t)| ,

M∗
2 v(t)
|v(t)| , ·

)
, if ∥(u, v)∥C×C ≥ (M∗

1 ,M
∗
2 ),

and

f̃1(·, ·, ·, w(t)) =

{
f1 (·, ·, ·, w(t)) , if ∥(u, v)∥C×C ≤ (R1, R2),

f1

(
·, ·, ·, R1u(t)

|u(t)|

)
, if ∥(u, v)∥C×C ≥ (R1, R2).

f̃2(·, ·, ·, w(t)) =

{
f2(·, ·, ·, w(t)), if ∥(u, v)∥C×C ≤ (R1, R2),

f2

(
·, ·, ·, R2v(t)

|v(t)|

)
, if ∥(u, v)∥C×C ≥ (R1, R2).

with u(t) = cDαx(t) and v(t) = cDβy(t).
Since (f1, f2) are continuous functions, (f̃1, f̃2) are also continuous.
Now consider the problem

(34)


cDαx(t) = f̃1(t, x(t), y(t),

cDαx(t)), t ∈ J,
cDβy(t) = f̃2(t, x(t), y(t),

cDβy(t)), t ∈ J,

x(0) = L1[x], x′(0) = L2[x],

y(0) = L3[y], y′(0) = L4[y],

and set

S̃(x0, y0) = {(u, v) ∈ C(J,R)× C(J,R) : (u, v) is solution of (34)}.
Let

G̃1(u, v)(t) = f̃1(t, u, v, ·)
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and
G̃2(u, v)(t) = f̃2(t, u, v, ·),

where

k̃1(t) =

∫ t

0
(t− s)α−1u(s)ds and k̃2(t) =

∫ t

0
(t− s)β−1v(s)ds.

Also, we define

H̃1(u, v)(t) = f̃1(·, ·, ·, u) and H̃2(u, v)(t) = f̃2(·, ·, ·, v).

Now problem (34) is equivalent to

(35)

{
u = G̃1(u, v) + H̃1(u, v),

v = G̃2(u, v) + H̃2(u, v).

It is easy to see that

S(x0, y0) = S̃(x0, y0) = Fix T̃ ,

where T̃ (u, v) = (T̃1(u, v), T̃2(u, v)) for (x, y) ∈ C(J,R)× C(J,R) and{
T̃1(u, v) = G̃1(u, v) + H̃1(u, v),

T̃2(u, v) = G̃2(u, v) + H̃2(u, v).

Clearly, T̃ is uniformly bounded, and as we did above, we can prove that
T̃ (u, v) : C(J,R)× C(J,R) → C(J,R)× C(J,R) is completely continuous.

Now consider a perturbation of the identity map, namely

F̃ (u, v) = (u, v)− T̃ (u, v).

We then have

(I − H̃)−1F̃ (u, v) = (u, v)− (I − H̃)−1G̃(u, v).

As in Steps 2–4 in the proof of Theorem 5, we can prove that G̃(u, v) is
completely continuous, and since I − H̃ is continuous, (I − H̃)−1G̃(u, v) is a
completely continuous map and (I−H̃)−1F̃ (u, v) is a proper map. From the
compactness of (I−H̃)−1G̃, it is easy to show that all conditions of Theorem
7 are satisfied, and so ((I− H̃)−1F̃ )−1(0) is an Rδ set. Since (I− H̃)−1 ̸= 0,
the solution set Fix T̃ = S̃(x0, y0) = F̃−1(0) is an Rδ set. This proves the
theorem. □

To illustrate our results in Sections 5 and 6, we again consider the problem

(36)


cD

3
2x(t) = 90

√
π

640 x(t) +
45

√
π

640 y(t) +
1
10

(
cD

3
2x(t)

)
, t ∈ [0, 1],

cD
3
2 y(t) =

√
45π
640 x(t) +

45
√
π

640 y(t) +
1
5(

cD
4
3 y(t)),

x(0) = 1
2 , x′(0) = 0,

y(0) = 0, y′(0) = 1
2 .
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As before, α = 3
2 = β, L1[x] = L4[y] =

1
2 , L2[x] = L3[y] = 0. Also, (C1) is

satisfied with

d1 =
90

√
π

640
, e1 =

45
√
π

640
, m1 =

1

10
, d2 =

45
√
π

640
, e2 =

45
√
π

640
, m2 =

1

5
.

The matrices become

N =

(
88
640

44
640

44
640

44
640

)
, Ñ =

(
1
10 0

0 1
5

)
, N̂ =

(
0 0

0 0

)
.

The eigenvalues of N+Ñ+N̂ are 0.324 and 0.183, so by Theorem 5 problem
(36) has a least one solution. By Theorems 8 and 9, the set of solutions to
(36) is a compact Rδ-set.
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