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Fixed and coincidence point theorems on
partial metric spaces with an application

Rohit Kumar, Neeraj Garakoti,
Naveen Chandra∗, Mahesh C. Joshi

Abstract. The aim of this paper is to investigate some fixed and co-
incidence point theorems in complete, orbitally complete and (T, f)-
orbitally complete partial metric spaces under the generalized contrac-
tive type conditions of mappings. Moreover, our results generalize and
extend the several obtained results in the literature. Additionally some
non-trivial examples are demonstrated, and an application has discussed
to integral equations.

1. Introduction

Fixed point theory is an interdisciplinary branch of mathematical sciences
which can be applied in several areas of mathematics and other fields, viz.,
game theory, mathematical economics, optimization problems, approxima-
tion theory, initial and boundary value problems in ordinary and partial
differential equations, integral equations, variational inequalities, and many
others. The most fundamental result in fixed point theory that influenced
several researchers was due to the Polish mathematician Stefan Banach [9] in
1922, and this result is popularly known as the Banach contraction principle
(BCP).

Because new discoveries of spaces and their properties are always inter-
esting to researchers in mathematics, so many researchers have attempted
to generalize the metric space structure by weakening the properties of the
metric. Among them, Matthews [22] introduced the concept of the partial
metric space which is one of the most important generalization of the metric
space. Interestingly, Matthews explored applications of partial metric spaces
in the field of computer science, especially in the study of denotational se-
mantics of programming languages and algorithms. In fact, partial metrics

2020 Mathematics Subject Classification. Primary: 47H10, 54H25.
Key words and phrases. Fixed point, coincidence point, orbital continuity, orbital com-
pleteness, partial metric and Hausdorff metric.
Full paper. Received 26 January 2023, accepted 27 September 2023, available online 20
October 2023 .
∗Corresponding Author.

©2023 Mathematica Moravica
33



34 Fixed and coincidence point theorems on partial metric spaces. . .

play an important role to construct models in the theory of computation
and domain theory of computer science (see also [16]). Moreover, Matthews
[22] also extended the BCP in the setting of partial metric spaces. There-
after, in the view of several applications, this result has been generalized in
various ways in partial metric spaces, see [1–6, 8, 10, 13, 14, 20, 24, 25, 28–30]
and references therein.

Throughout the further discussion, N and R+ will denote the set of posi-
tive integers and set of non-negative reals, respectively. We now recall some
important definitions and lemmas as follow.

Definition 1 ([22]). A partial metric on a non-empty set X is a function
p : X ×X → R+, such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y;
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

Remark 1. Let (X, p) be a partial metric space. Then p(x, x) = 0 implies
x = y, but on the contrary p(x, x) need not be zero.

Remark 2. Let (X, p) be a partial metric space. Then open p-ball at x ∈ X
with radius ϵ > 0 is defined by Bp(x, ϵ) = {y ∈ X : p(x, y) < ϵ + p(x, x)}.
Also, the family of open p-balls {Bp(x, ϵ) : x ∈ X, ϵ > 0} is a base for the
topology τp on X, and with respect to this topology, the space (X, p) is a
T0 space.

Remark 3. Let (X, p) be a partial metric space. Then the functions ps, pt :
X ×X → R+ given by ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) and pt(x, y) =
max{p(x, y)− p(x, x), p(x, y)− p(y, y)} are metrics on X.

Definition 2 ([3, 19,22,23]). Let (X, p) be a partial metric space. Then,
(i) a sequence {xn} in X is convergent to a point x ∈ X if and only if

p(x, x) = lim
n→∞

p(xn, x);
(ii) a sequence {xn} in X is called Cauchy sequence if lim

n,m→∞
p(xn, xm)

exists and is finite;
(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x, x) =
lim

n,m→∞
p(xn, xm);

(iv) a mapping T : X → X is said to be continuous at x0 ∈ X if for
every ϵ > 0, there exists δ > 0 such that T (Bp(x0, δ)) ⊆ Bp(Tx0, ϵ).

Lemma 1 ([3, 19,22,23]). Let (X, p) be a partial metric space. Then,
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy

sequence in (X, ps);
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(ii) (X, p) is complete if and only if (X, ps) is complete. Furthermore,
lim
n→∞

d(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Lemma 2 ([17]). Assume xn → x as n → ∞ in a partial metric space
(X, p) such that p(x, x) = 0. Then lim

n→∞
p(xn, y) = p(x, y) for every y ∈ X.

Recently, Kumar et al. [21] have proved a fixed point result on a complete
metric space (X, d) for a mapping T : X → X satisfying a non-expansive
type condition, such that for all x, y ∈ X:

d(Tx, Ty) ≤ αd(x, y) + β [d(x, Tx) + d(y, Ty)]

+ γ [d(x, Ty) + d(y, Tx)] + δ [M(x, y) + hm(x, y)],

where α ≥ 0; β, γ, δ > 0; 0 < h < 1; α + 2β + 2γ + 2δ = 1; M(x, y) =
max{d(x, Ty), d(y, Tx)} and m(x, y) = min{d(x, Ty), d(y, Tx)}.

In this paper, we will present some fixed and coincidence point theorems
for generalized type contractions in partial metric spaces. The approach is
based on fixed point results obtained by Kumar et al. [21] in the settings of
the partial metric under similar type of contractive conditions. Our results
are the extensions of Banach’s contraction, Kannan’s contraction, Chatter-
jea’s contraction and Ćirić’s contraction of metric spaces to partial metric
spaces. Moreover, we show that our results are also true in orbitally com-
plete and (T, f)-orbitally complete partial metric spaces, which generalize
and extend the conclusions obtained in the literature. In addition, we have
given some non-trivial examples to demonstrate our results, and applications
have obtained to integral equations.

2. Main results

Theorem 1. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping satisfying

(1)

p(Tx, Ty) ≤ αp(x, y) + β [p(x, Tx) + p(y, Ty)]

+ γ [p(x, Ty) + p(y, Tx)]

+ δ [Mp(x, y) + hmp(x, y)],

for all x, y ∈ X, where 0 < h < 1 and α ≥ 0, β, γ, δ > 0 with α+ 2β + 2γ +
2δ < 1, and

Mp(x, y) = max{p(x, Ty), p(y, Tx)},
mp(x, y) = min{p(x, Ty), p(y, Tx)}.

Then T has a unique fixed point.
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Proof. Let x0 ∈ X be an arbitrary. Now, we define a sequence {xn ∈ X :
n ∈ N ∪ {0}} such that xn+1 = Txn = Tnx0. Then, by (1), we have

p(xn, xn+1) = p(Txn−1, Txn)

≤ αp(xn−1, xn) + β[p(xn−1, xn) + p(xn, xn+1)]

+ γ[p(xn−1, xn+1) + p(xn, xn)]

+ δ[Mp(xn−1, xn) + hmp(xn−1, xn)],

which implies

(2)

p(xn, xn+1) ≤ δ
[
max{p(xn−1, xn+1), p(xn, xn)}

+ h min{p(xn−1, xn+1), p(xn, xn)}
]

+ (α+ β + γ)p(xn−1, xn) + (β + γ)p(xn, xn+1).

If p(xn, xn+1) > p(xn−1, xn) for some n, then (2) implies

p(xn, xn+1) < δ
[
max{p(xn−1, xn+1), p(xn, xn)}

+ h min{p(xn−1, xn+1), p(xn, xn)}
]

+ (α+ 2β + 2γ)p(xn, xn+1).

Now either p(xn−1, xn+1) ≥ p(xn, xn) or p(xn−1, xn+1) ≤ p(xn, xn) in above
inequality. But, in both cases, we get p(xn, xn+1) < p(xn, xn+1), which is
not true. Hence, p(xn, xn+1) ≤ p(xn−1, xn) for all n. Also, by (2), we have

(3)

p(xn, xn+1) ≤ δ
[
max{p(xn−1, xn+1), p(xn, xn)}

+ h min{p(xn−1, xn+1), p(xn, xn)}
]

+ (α+ 2β + 2γ)p(xn−1, xn).

We consider the following two cases:
Case 1: If max{p(xn−1, xn+1), p(xn, xn)} = p(xn−1, xn+1), then (3) implies

p(xn, xn+1) ≤ δ[2 p(xn−1, xn)− (1− h)p(xn, xn)]

+ (α+ 2β + 2γ) p(xn−1, xn)

≤ (α+ 2β + 2γ + 2δ)p(xn−1, xn), since h < 1.

Case 2: If max{p(xn−1, xn+1), p(xn, xn)} = p(xn, xn), then (3) implies

p(xn, xn+1) ≤ δ[p(xn, xn) + h p(xn−1, xn+1)]

+ (α+ 2β + 2γ) p(xn−1, xn)

≤ δ(1 + h)p(xn, xn) + (α+ 2β + 2γ) p(xn−1, xn)

≤ δ(1 + h)p(xn−1, xn) + (α+ 2β + 2γ) p(xn−1, xn) (by (p2))
< (α+ 2β + 2γ + 2δ)p(xn−1, xn), since h < 1.

Thus, in both cases, we conclude that p(xn, xn+1) ≤ k p(xn−1, xn) for all
n ∈ N, where k = (α+ 2β + 2γ + 2δ) < 1.
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We now show that {xn} is a Cauchy sequence in X. Let m,n > 0 with
m > n, then by (p4), we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + . . .+ p(xn+m−1, xm)

− p(xn+1, xn+1)− p(xn+2, xn+2)− . . .− p(xn+m−1, xn+m−1)

≤ knp(x0, x1) + kn+1p(x0, x1) + . . . + kn+m−1p(x0, x1)

≤ kn
(
1− km−1

1− k

)
p(x0, x1).

Making n,m → ∞, we get lim
n,m→∞

p(xn, xm) = 0. Hence {xn} is a Cauchy

sequence in X, so by Lemma 1, it is also a Cauchy sequence in the metric
space (X, ps). Thus the sequence {xn} converges to x ∈ X because (X, p)
is complete. Moreover,

(4) lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x) = 0.

Further, we show that x is a fixed point of T . Also, for every n, we have

p(x, Tx) ≤ p(x, Txn) + p(Txn, Tx)− p(Txn, Txn).

Taking n → ∞ in this inequality, we get p(x, Tx) ≤ p(Tx, Tx). Hence, by
(p2), we get

(5) p(x, Tx) = p(Tx, Tx).

Again from (1), we have

p(x, Tx) ≤ p(x, Txn) + p(Txn, Tx)− p(Txn, Txn)

≤ p(x, xn+1) + αp(xn, x) + β[p(xn, Txn) + p(x, Tx)]

+ γ[p(xn, Tx) + p(x, Txn)] + δ[Mp(xn, x) + hmp(xn, x)]

≤ p(x, xn+1) + αp(xn, x)

+ β[p(xn, x) + p(x, xn+1)− p(x, x) + p(x, Tx)]

+ γ[p(xn, x) + p(x, Tx)− p(x, x) + p(x, xn+1)]

+ δ[Mp(xn, x) + hmp(xn, x)]

≤ (1 + β + γ)p(x, xn+1) + (α+ β + γ)p(xn, x) + (β + γ)p(x, Tx)

+ δ[max{p(xn, Tx), p(x, Txn)}+ h min{p(xn, Tx), p(x, Txn)}].

Again we consider the following cases:
Case 1: If max{p(xn, Tx), p(x, Txn)} = p(xn, Tx), then

p(x, Tx) ≤
(1 + β + γ + hδ

1− β − γ − δ

)
p(x, xn+1) +

(α+ β + γ + δ

1− β − γ − δ

)
p(xn, x).

Case 2: If max{p(xn, Tx), p(x, Txn)} = p(x, Txn), then

p(x, Tx) ≤
( 1 + β + γ + δ

1− β − γ − hδ

)
p(x, xn+1) +

(α+ β + γ + hδ

1− β − γ − hδ

)
p(xn, x).
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Thus, taking n → ∞ in both cases, we get

(6) p(x, Tx) = 0.

From (4), (5) and (6), we get

(7) p(Tx, Tx) = p(x, Tx) = p(x, x) = 0.

Hence, by (p1) and (7), we get x = Tx, i.e., x is a fixed point of T .
To show the uniqueness, we suppose that y is another fixed point of T .

Then, by (1), we get

p(x, y) = p(Tx, Ty)

≤ αp(x, y) + β[p(x, Tx) + p(y, Ty)] + γ[p(x, Ty) + p(y, Tx)]

+ δ[max{p(x, Ty), p(y, Tx)}+ hmin{p(x, Ty), p(y, Tx)}]
≤ [α+ 2γ + (1 + h)δ]p(x, y),

which implies p(x, y) = 0, that is, x = y. This completes the theorem. □

We now consider the following example in the support of Theorem 1.

Example 1. Let X = [0,+∞). Then (X, p), where p(x, y) = max{x, y}, is
a complete partial metric space. Define T : X → X by

T (t) =

{
t
4 , if 0 ≤ t < 1;
t

3+t , if t ≥ 1.

Then T satisfies all the conditions of the Theorem 1 for α = 1
4 , β, γ, δ ∈ (0, 18)

and 0 < h < 1. Moreover, 0 ∈ X is the only fixed point of T .

Next we prove another result for a pair of mappings as follows.

Theorem 2. Let (X, p) be a complete partial metric space and let T, f :
X → X be mappings satisfying

(8)

p(Tx, Ty) ≤ αp(fx, fy) + β[p(fx, Tx) + p(fy, Ty)]

+ γ[p(fx, Ty) + p(fy, Tx)]

+ δ[Mf
p (x, y) + hmf

p(x, y)],

for all x, y ∈ X, where 0 < h < 1 and α ≥ 0, β, γ, δ > 0, with α+2β +2γ +
2δ < 1, and

Mf
p (x, y) = max{p(fx, Ty), p(fy, Tx)},

mf
p(x, y) = min{p(fx, Ty), p(fy, Tx)}.

If T (X) ⊂ f(X) and f(X) is a complete subspace of X, then T and f have
a unique coincidence point.
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Proof. Let x0 ∈ X be an arbitrary. Since T (X) ⊂ f(X), we define a se-
quence {fxn : n ∈ N ∪ {0}} such that fxn+1 = Txn. Then, by (8), we
have

p(fxn+1, fxn+2) ≤ αp(fxn, fxn+1) + β[p(fxn, Txn) + p(fxn+1, Txn+1)]

+ γ[p(fxn, Txn+1) + p(fxn+1, Txn)]

+ δ[Mf
p (xn, xn+1) + hmf

p(xn, xn+1)],

which implies

(9)

p(fxn+1, fxn+2) ≤ δ
[
max{p(fxn, fxn+2), p(fxn+1, fxn+1)

+ hmin{p(fxn, fxn+2), p(fxn+1, fxn+1)}
]

+ (α+ β + γ)p(fxn, fxn+1)

+ (β + γ)p(fxn+1, fxn+2).

If p(fxn+1, fxn+2) > p(fxn, fxn+1) for some n, then (9) implies

p(fxn+1, fxn+2) ≤ δ
[
max{p(fxn, fxn+2), p(fxn+1, fxn+1)

+ hmin{p(fxn, fxn+2), p(fxn+1, fxn+1)}
]

+ (α+ 2β + 2γ)p(fxn+1, fxn+2).

Now, in above inequality, either p(fxn, fxn+2) ≥ p(fxn+1, fxn+1) or
p(fxn, fxn+2) ≤ p(fxn+1, fxn+1). But, in both cases, we get p(fxn+1, fxn+2)
< p(fxn+1, fxn+2), which is not true.
Hence, p(fxn+1, fxn+2) ≤ p(fxn, fxn+1) for all n. Also, by (9), we have

(10)

p(fxn+1, fxn+2) ≤ δ
[
max{p(fxn, fxn+2), p(fxn+1, fxn+1)

+ hmin{p(fxn, fxn+2), p(fxn+1, fxn+1)}
]

+ (α+ 2β + 2γ)p(fxn, fxn+1).

We consider the following two cases:
Case 1: If max{p(fxn, fxn+2), p(fxn+1, fxn+1)} = p(fxn, fxn+2), then (10)

implies

p(fxn+1, fxn+2) ≤ δ[2p(fxn, fxn+1)− (1− h)p(fxn+1, fxn+1)]

+ (α+ 2β + 2γ)p(fxn, fxn+1)

≤ (α+ 2β + 2γ + 2δ)p(fxn, fxn+1), since h < 1.

Case 2: If max{p(fxn, fxn+2), p(fxn+1, fxn+1)} = p(fxn+1, fxn+1), then
(10) implies

p(fxn+1, fxn+2) ≤ δ[p(fxn+1, fxn+1) + hp(fxn, fxn+2)]

+ (α+ 2β + 2γ)p(fxn, fxn+1)

≤ δ[(1 + h)p(fxn, fxn+1)] + (α+ 2β + 2γ)p(fxn, fxn+1)

≤ (α+ 2β + 2γ + 2δ)p(fxn, fxn+1), since h < 1.
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Thus, in both cases, we conclude that p(fxn+1, fxn+2) ≤ k p(fxn, fxn+1),
for all n ∈ N ∪ {0}, where k = (α+ 2β + 2γ + 2δ) < 1.

We now show that {fxn} is a Cauchy sequence in X. Let m,n > 0 with
m > n, then by (p4), we have

p(fxn, fxm) ≤ p(fxn, fxn+1) + p(fxn+1, fxn+2) + · · ·+ p(fxn+m−1, fxm)

− p(fxn+1, fxn+1)− . . .− p(fxn+m−1, fxn+m−1)

≤ knp(fx0, fx1) + kn+1p(fx0, fx1) + · · ·+ kn+m−1p(fx0, fx1)

≤ kn
(
1− km−1

1− k

)
p(fx0, fx1).

Making n,m → ∞, we get lim
n,m→∞

p(fxn, fxm) = 0. Hence {fxn} is Cauchy

sequence in X, so by Lemma 1, it is also a Cauchy sequence in the metric
space (X, ps). Thus the sequence {fxn} will converge to x ∈ X because
(X, p) is complete. Moreover,

(11) lim
n,m→∞

p(fxn, fxm) = lim
n→∞

p(fxn, fx) = p(fx, fx) = 0.

Further, we show that x is a coincidence point of f and T . Also, for every
n, we have

p(fx, Tx) ≤ p(fx, Txn) + p(Txn, Tx)− p(Txn, Txn).

Taking n → ∞ in this inequality, we get p(fx, Tx) ≤ p(Tx, Tx). Hence, by
(p2), we get

(12) p(fx, Tx) = p(Tx, Tx).

Again from (8), we have

p(fx, Tx) ≤ p(fx, Txn) + p(Txn, Tx)− p(Txn, Txn)

≤ p(fx, fxn+1) + αp(fxn, fx) + β[p(fxn, Txn) + p(fx, Tx)]

+ γ[p(fxn, Tx) + p(fx, Txn)] + δ[Mf
p (xn, x) + hmf

p(xn, x)].

≤ p(fx, fxn+1) + αp(fxn, fx)

+ β[p(fxn, fx) + p(fx, fxn+1)− p(fx, fx) + p(fx, Tx)]

+ γ[p(fxn, fx) + p(fx, Tx)− p(fx, fx) + p(fx, fxn+1)]

+ δ[Mf
p (xn, x) + hmf

p(xn, x)]

≤ (1 + β + γ)p(fx, fxn+1) + (α+ β + γ)p(fxn, fx)

+ (β + γ)p(fx, Tx) + δ
[
max{p(fxn, Tx), p(fx, Txn)}

+ h min{p(fxn, Tx), p(fx, Txn)}
]
.

Again we consider the following cases:
Case 1: If max{p(fxn, Tx), p(fx, Txn)} = p(fxn, Tx), then

p(fx, Tx) ≤
(1 + β + γ + hδ

1− β − γ − δ

)
p(fx, fxn+1) +

(α+ β + γ + δ

1− β − γ − δ

)
p(fxn, fx).
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Case 2: If max{p(fxn, Tx), p(fx, Txn)} = p(fx, Txn), then

p(fx, Tx) ≤
( 1 + β + γ + δ

1− β − γ − hδ

)
p(fx, fxn+1)+

(α+ β + γ + hδ

1− β − γ − hδ

)
p(fxn, fx).

Thus, taking n → ∞ in both the cases, we get

(13) p(fx, Tx) ≤ 0 ⇒ p(fx, Tx) = 0.

Using equations (11), (12) and (13), we get

(14) p(Tx, Tx) = p(fx, Tx) = p(fx, fx) = 0.

Hence, by (p1) and (14), we get fx = Tx, i.e., x is a coincidence point of f
and T .

To show the uniqueness, we suppose that y is another coincidence point
of f and T , i.e., fy = Ty, fx = Tx. Then, from (8), we get

p(Tx, Ty) ≤ αp(fx, fy) + β[p(fx, Tx) + p(fy, Ty)]

+ γ[p(fx, Ty) + p(fy, Tx)] +
[
max{p(fx, Ty), p(fy, Tx)}

+ hmin{p(fx, Ty), d(fy, Tx)}
]

⇒ p(Tx, Ty) ≤ (α+ 2γ + (1 + h)δ)d(Tx, Ty),

which implies Tx = Ty, and so fx = fy. This completes the proof. □

We further provide the following example in the support of Theorem 2.

Example 2. Let X = [0, 12 ]. Then (X, p), where p(x, y) = max{x, y}, is a
complete partial metric space. Define mappings f and T on X by

f(x) = x and T (x) =
x

2
.

Then f and T satisfy all the conditions of the Theorem 2, and zero is the
only coincidence point of f and T .

Remark 4. Theorem 2 represents Theorem 1 for f = I (identity mapping).
Moreover, Theorem 5.3 of [22], Theorem 3 of [21], Theorem 1 of [18] and
Theorem 2.1 of [12] are special cases of Theorem 2.

Now we recall the notions of orbitally continuous mappings and orbitally
complete partial metric spaces defined by Karapinar and Erhan [19].

Definition 3 ([19]). Let (X, p) be a partial metric space. A mapping T :
X → X is called orbitally continuous if

lim
i→∞

p(Tnix, z) = p(z, z) ⇒ lim
i→∞

p(TTnix, Tz) = p(Tz, Tz), for each x ∈ X.

Definition 4 ([19]). A partial metric space (X, p) is called orbitally com-
plete if every Cauchy sequence {Tnix} converges in (X, p), i.e., if

lim
i,j→∞

p(Tnix, Tnjx) = lim
i→∞

p(Tnix, z) = p(z, z), for each x ∈ X.
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We further prove the following fixed point result under the assumption of
orbitally continuous mapping on orbitally complete partial metric spaces.

Theorem 3. Let (X, p) be an orbitally complete partial metric space and let
T : X → X be an orbitally continuous mapping satisfying

(15)

p(Tx, Ty) ≤ αp(x, y) + β[p(x, Tx) + p(y, Ty)]

+ γ[p(x, Ty) + p(y, Tx)]

+ δ[Mp(x, y) + hmp(x, y)],

for all x, y ∈ X, where 0 < h < 1 and α ≥ 0, β, γ, δ > 0 with α+ 2β + 2γ +
2δ < 1, while Mp(x, y) and mp(x, y) are defined as in Theorem 1. Then T
has a unique fixed point.

Proof. Let x0 be an arbitrary. We define a sequence {xn ∈ X : n ∈ N∪{0}}
such that xn+1 = Txn = Tnx0. If there exist n ∈ N ∪ {0} such that
p(xn, xn−1) = 0, then by (p2), we have p(xn−1, xn−1) = p(xn, xn). Thus,
by (p1), we get xn−1 = xn = Txn−1. Suppose that p(xn, xn+1) > 0 for all
n ≥ 0. Now, using (15), we get

(16)

p(xn+1, xn+2) ≤ αp(xn, xn+1) + β[p(xn, xn+1) + p(xn+1, xn+2)]

+ γ[p(xn, xn+2) + p(xn+1, xn+1)]

+ δ[Mp(xn, xn+1) + hmp(xn, xn+1)].

We consider the following two cases:
Case 1: If max{p(xn, xn+2), p(xn+1, xn+1)} = p(xn, xn+2), then (16) implies

p(xn+1, xn+2) ≤ (α+ β + γ + δ) p(xn, xn+1) + (β + γ + δ) p(xn+1, xn+2)

− (1− h)δp(xn+1, xn+1)

≤
(α+ β + γ + δ

1− β − γ − δ

)
p(xn, xn+1) (since h < 1)

= k1p(xn, xn+1), where k1 =
(α+ β + γ + δ

1− β − γ − δ

)
< 1.

Case 2: If max{p(xn, xn+2), p(xn+1, xn+1)} = p(xn+1, xn+1), then (16) im-
plies

p(xn+1, xn+2) ≤ (α+ β + γ + hδ) p(xn, xn+1) + (β + γ + δ) p(xn+1, xn+2)

≤
(α+ β + γ + hδ

1− β − γ − δ

)
p(xn, xn+1)

= k2p(xn, xn+1), where k2 =
(α+ β + γ + hδ

1− β − γ − δ

)
< 1.

Thus, in both cases, we conclude that p(xn+1, xn+2) ≤ k p(xn, xn+1) for all
n ∈ N ∪ {0}, where k = min{k1, k2}.

Now, we show that {xn} is a Cauchy sequence in X. Without loss of
generality, we assume that n > m. Then, using above inequality and (p4),
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we have

p(xn, xn+m) ≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+m)

− p(xn+1, xn+1)− p(xn+2, xn+2)

≤ p(xn, xn+1) + p(xn+1, xn+2) + . . .+ p(xn+m−1, xn+m)

≤ knp(x0, x1) + kn+1p(x0, x1) + . . .+ kn+m−1p(x0, x1)

≤ kn
(
1− km−1

1− k

)
p(x0, x1).

Making n,m → ∞, we get lim
n,m→∞

p(xn, xm) = 0. Thus, by (p2), we

have lim
n→∞

p(xn, xn) = 0 and lim
m→∞

p(xm, xm) = 0. Hence ps(xn, xm) =

2p(xn, xm) − p(xn, xn) − p(xm, xm) → 0 as n → ∞. So, we conclude that
{xn} = {Tnx0} is a Cauchy sequence in (X, ps). Since (X, p) is orbitally
complete, the sequence {Tnx0} converges in the metric space (X, ps) to
z ∈ X, i.e., lim

n→∞
ps(Tnx0, z) = 0. Again from Lemma 1, we have

(17) p(z, z) = lim
n→∞

p(Tnx0, z) = lim
n,m→∞

p(Tnx0, T
mx0) = 0.

Suppose that p(z, Tz) > 0. Since T is orbitally continuous, by (17) we get

(18) lim
n→∞

p(Tnx0, z) = p(z, z) ⇒ lim
n→∞

p(TTnx0, T z) = p(Tz, Tz).

Now, we have

p(z, Tz) ≤ p(z, Tn+1x0) + p(Tn+1x0, T z)− p(Tn+1x0, T
n+1x0)

≤ p(z, Tn+1x0) + p(Tn+1x0, T z).

Taking n → ∞ and using Lemma 2 with (18), we get

p(z, Tz) ≤ lim
n→∞

p(z, xn+2) + lim
n→∞

p(Tn+1x0, T z) = p(Tz, Tz).

From (p2) this is possible only if

(19) p(z, Tz) = p(Tz, Tz).

Hence, by (15), we get

p(z, Tz) ≤ p(z, xn+1) + p(xn+1, T z)− p(xn+1, xn+1)

≤ p(z, xn+1) + αp(xn, z) + β[p(xn, xn+1) + p(z, Tz)]

+ γ[p(xn, T z) + p(z, Txn)] + δ[Mp(x, y) + hmp(x, y)].

We also consider the following two cases:
Case 1: If Mp(x, y) = p(xn, T z), then

p(z, Tz) ≤
(1 + β + γ + hδ

1− β − γ − δ

)
p(z, xn+1) +

(α+ β + γ + δ

1− β − γ − δ

)
p(xn, z).
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Case 2: If Mp(x, y) = p(z, Txn), then

p(z, Tz) ≤
( 1 + β + γ + δ

1− β − γ − hδ

)
p(z, xn+1) +

(α+ β + γ + hδ

1− β − γ − hδ

)
p(xn, z).

Thus, taking n → ∞ in both cases, we get

(20) p(z, Tz) ≤ 0 ⇒ p(z, Tz) = 0.

Using (17), (19) and (20), we have

(21) p(Tz, Tz) = p(z, Tz) = p(z, z) = 0.

From (p1) and (21), we get z = Tz, i.e., z is a fixed point of T .
Furthermore, let t be another fixed point of T , then from (15), we have

p(z, t) = p(Tz, T t) ≤ αp(z, t) + β[p(z, Tz) + p(t, T t)]

+ γ[p(z, T t) + p(t, T z)] + δ
[
max{p(z, T t), p(t, T z)}

+ hmin{p(z, T t), p(t, T z)}
]

≤ (α+ 2γ + (1 + h)δ)p(z, t)

p(z, t) ≤ 0 ⇒ p(z, t) = 0, that is z = t,

which completes the proof. □

In 2012, Aydi et al. [7] introduced the concept of a partial Hausdorff metric
with CBp(X), the collection of all non-empty closed and bounded subsets
of X with respect to partial metric p. Thereafter, in 2016, Abdessalem
Benterki [11] used the concept of collection of closed subsets of X with
respect to partial metric p (say, CLp(X)) instead of closed and bounded
subsets of X. For any A,B,C ∈ CLp(X) (resp. CBp(X)):

(i) p(a,C) = inf{p(a, x) : x ∈ C}.
(ii) δp(A,B) = sup{p(a,B) : a ∈ A}.
(iii) δp(B,A) = sup{p(b, A) : b ∈ B}.
(iv) ρp(A,B) = sup{p(a, b) : a ∈ A, b ∈ B}.

Moreover, for all A,B ∈ CLp(X) (resp. CBp(X)), we have

Hp(A,B) = max
{
δp(A,B), δp(B,A)

}
.

Then Hp is called the generalized partial Hausdorff metric (resp. partial
Hausdorff metric) induced by p.

We also cite the following definitions which are very useful to our next
result (see also, N. Chandra et al. [13] and references therein).

Definition 5. Let T be a self mapping of a partial metric space X. Then,
an orbit of T at a point x0 ∈ X is a sequence {xn : xn ∈ Txn−1}.

Definition 6. Let T be a multi-valued mapping on a partial metric space
X. Then X is said to be T -orbitally complete if every Cauchy sequence of
the form {xn : xn ∈ Txn−1} is convergent in X in the sense of the partial
metric.
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Definition 7. Let f and T be a self mapping and a multi-valued mapping
on a partial metric space (X, p), respectively. If, for x0 ∈ X, there exists a
sequence {xn} such that fxn ∈ Txn−1, n ∈ N, then Of (x0) = {fxn : n ∈ N}
is called the orbit of (T, f) at x0. Furthermore, Of (x0) is called a regular
orbit of (T, f) at x0, if p(fxn, fxn+1) ≤ Hp(Txn−1, Txn), for every n ∈ N.

Definition 8. Let f and T be a self mapping and a multi-valued map-
ping on a partial metric space (X, p), respectively. Then X is said to be
(T, f)-orbitally complete if every Cauchy sequence of the form {fxn : fxn ∈
Txn−1} is convergent in the sense of the partial metric.

Lemma 3 ([7, 8, 13]). Let (X, p) be a partial metric space. Then,

(i) (X, p) is T -orbitally complete if and only if (X, ps) is T -orbitally
complete;

(ii) (X, p) is (T, f)-orbitally complete if and only if (X, ps) is (T, f)-
orbitally complete.

Lemma 4 ([7, 8, 13]). Let A,B ∈ CLp(X) and a ∈ A. Then, for any ϵ > 0
there exists a point b ∈ B such that p(a, b) ≤ Hp(A,B) + ϵ.

Furthermost, we prove the following result for a pair of mappings under
the assumption of (T, f)-orbitally complete as follows.

Theorem 4. Let (X, p) be a partial metric spaces. Suppose that T : X →
CLp(X) and f : X → X are such that T (X) ⊆ f(X). If f(X) is (T, f)-
orbitally complete and, for all x, y ∈ X, the following condition is satisfying:

(22)

Hp(Tx, Ty) ≤ αp(fx, fy) + β[p(fx, Tx) + p(fy, Ty)]

+ γ[p(fx, Ty) + p(fy, Tx)]

+ δ[Mf
p (x, y) + hmf

p(x, y)],

where 0 < h < 1 and α ≥ 0, β, γ, δ > 0 with α+2β+2γ+2δ ≤ k < 1, while
Mf

p (x, y) and mf
p(x, y) are defined as in Theorem 2. Then T and f have a

coincidence point, i.e., there exists a point z ∈ X such that fz ∈ Tz.

Proof. Let ϵ > 0 such that µ = k+ ϵ < 1, and x0 be an arbitrary point of X.
Since T (X) ⊂ f(X), we choose a point x1 ∈ X such that fx1 ∈ Tx0. Clearly
p(fx1, Tx1) ≥ 0. If p(fx1, Tx1) = 0, then nothing to prove because in this
case fx1 ∈ Tx1. Assume p(fx1, Tx1) > 0, then by Lemma 4, there exists
fx2 ∈ Tx1 such that p(fx1, fx2) ≤ Hp(Tx0, Tx1)+ ϵp(fx1, Tx1). Similarly,
if p(fx2, Tx2) > 0, then there exists fx3 ∈ Tx2 such that p(fx2, fx3) ≤
Hp(Tx1, Tx2) + ϵp(fx2, Tx2). Continuing this process, we construct a se-
quence {fxn} ⊂ f(X) such that p(fxn+1, fxn+2) ≤ Hp(Txn, Txn+1) +
ϵp(fxn, Txn) and fxn+1 ∈ Txn for all n ∈ N ∪ {0}. Using (22), we get
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p(fxn+1, fxn+2) ≤ Hp(Txn, Txn+1) + ϵp(fxn, Txn)

≤ αp(fxn, fxn+1) + β[p(fxn, Txn) + p(fxn+1, Txn+1)]

+ γ[p(fxn, Txn+1) + p(fxn+1, Txn)]

+ δ[max{p(fxn, Txn+1), p(fxn+1, Txn)}
+ hmin{p(fxn, Txn+1), p(fxn+1, Txn)}]
+ ϵp(fxn, Txn)

≤ αp(fxn, fxn+1) + β[p(fxn, fxn+1) + p(fxn+1, fxn+2)]

+ γ[p(fxn, fxn+2) + p(fxn+1, Txn)] + δ[p(fxn, fxn+2),

+ hp(fxn+1, Txn)] + ϵp(fxn, fxn+1)

≤ αp(fxn, fxn+1) + β[p(fxn, fxn+1) + p(fxn+1, fxn+2)]

+ γp(fxn, fxn+2) + δp(fxn, fxn+2) + ϵp(fxn, fxn+1).

Now, if p(fxn, fxn+1) < p(fxn+1, fxn+2) for some n ∈ N, then p(fxn+1, fxn+2)
≤ αp(fxn+1, fxn+2) < p(fxn+1, fxn+2), which is a contradiction.

Hence p(fxn+1, fxn+2) ≤ p(fxn, fxn+1) for all n ∈ N ∪ {0}, and so

p(fxn+1, fxn+2) ≤ µp(fxn, fxn+1).

Continuing in this way, we get

p(fxn+1, fxn+2) ≤ µnp(fx0, fx1).

Since µ < 1, taking n → ∞, we get p(fxn+1, fxn+2) → 0 implies {fxn}
is a Cauchy sequence in f(X). Since f(X) is (T, f)-orbitally complete, the
sequence {fxn} is convergent to a point a ∈ f(X), that is,

(23) p(fxn+1, fxn+2) = p(a, a) = 0.

Also, a ∈ f(X) implies that there exists a point z ∈ X such that fz = a.
Now, we get

p(fz, Tz) ≤ p(fz, fxn+1) + p(fxn+1, T z)

≤ p(fz, fxn+1) +Hp(Txn, T z)

≤ p(fz, fxn+1) + αp(fxn, fz) + β[p(fxn, Txn) + p(fz, Tz)]

+ γ[p(fxn, T z) + p(fz, Txn)] + δ[Mp(x, y) + hmp(x, y)].

We now consider the following cases:
Case 1: If Mp(x, y) = p(fxn, T z), then

p(fz, Tz) ≤ p(fz, fxn+1) + αp(fxn, fz) + β[p(fxn, fxn+1) + p(fz, Tz)]

+ γ[p(fxn, T z) + p(fz, fxn) + p(fxn, fn+1)] + δ[p(fxn, T z)

+ h{p(fz, fxn) + p(fxn, fxn+1)}].

Making n → ∞, we get p(fz, Tz) ≤ (β + γ + δ)p(fz, Tz) which
implies p(fz, Tz) = 0, since β + γ + δ < 1.
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Case 2: If Mp(x, y) = p(fz, Txn), then

p(fz, Tz) ≤ p(fz, fxn+1) + αp(fxn, fz) + β[p(fxn, fxn+1) + p(fz, Tz)]

+ γ[p(fxn, T z) + p(fz, fxn) + p(fxn, fxn+1)] + δ[p(fz, fxn)

+ p(fxn, fxn+1) + hp(fxn, T z)].

Making n → ∞, we get p(fz, Tz) ≤ (β + γ + hδ)p(fz, Tz) which
implies p(fz, Tz) = 0, since β + γ + hδ < 1.

Thus, in both cases, we conclude that fz ∈ Tz, i.e., z is the coincidence
point of f and T . □

Remark 5. Theorem 4 is a proper generalization of Theorem 3 whenever
f = I (identity mapping) and X is T -orbitally complete. Moreover, The-
orem 5.3 of [22], Theorems 3 and 4 of [21], Theorems 1 and 2 of [18] and
Theorem 2.2 of [12] are also special cases of Theorem 4.

3. An application to integral equations

In this section, we study the existence of the solution to a nonlinear
integral equation by using a result obtained in the previous section. First,
we consider the following integral equation:

u(t) =

∫ T

0
G(t, s)f(s, u(s))ds, for all t ∈ [0, T ],(24)

where T > 0, f : [0, T ]× R+ → R+ and G : [0, T ]× [0, T ] → [0,∞) are con-
tinuous functions. Let X = C([0, T ]) be the set of positive real continuous
functions on [0, T ]. We endow X with partial metric Dp defined by

Dp(u, v) = max
t∈[0,T ]

{
u(t), v(t)

}
, for all u, v ∈ X.

Obviously, (X,Dp) is a complete partial metric space. Let (α, β) ∈ X ×
X, (α0, β0) ∈ R+ × R+ be such that

(25) α0 ≤ α(t) ≤ β(t) ≤ β0, for all t ∈ [0, T ].

Assume that for all t ∈ [0, T ], we have

(26) α(t) ≤
∫ T

0
G(t, s)f(s, β(s))ds

and

(27) β(t) ≥
∫ T

0
G(t, s)f(s, α(s))ds.

Let f(s, ·) be a decreasing function for all s ∈ [0, T ], that is,

(28) x, y ∈ R+ with y ≤ x ⇒ f(s, x) ≤ f(s, y).
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Assume that

(29) max
t∈[0,T ]

∫ T

0
G(t, s)ds ≤ 1.

Moreover, for any mapping T : X → X, we suppose that for all s ∈ [0, T ],
and for all x, y ∈ R+ with (x ≤ β0 and y ≥ α0) or (x ≥ α0 and y ≤ β0),

(30)

max
{
f(s, x), f(s, y)

}
≤ αmax{x, y}

+ β
(
max{x, Tx}+max{y, Ty)}

)
+ γ

(
max{x, Ty}+max{y, Tx}

)
+ δ

(
M(x, y) + hm(x, y)

)
,

where 0 < h < 1 and α ≥ 0, β, γ, δ > 0 such that α+2β+2γ+2δ < 1, and

M(x, y) = max
{
max{x, Ty},max{y, Tx}

}
,

m(x, y) = min
{
max{x, Ty},max{y, Tx}

}
.

Theorem 5. Under assumptions (25)-(30), the integral equation (24) has a
solution in {u ∈ C([0, T ]) : α ≤ u(t) ≤ β, for all t ∈ [0, T ]}.

Proof. We consider the closed subsets A1 and A2 of X, defined by

A1 = {u ∈ X : u ≤ β}
and

A2 = {u ∈ X : u ≥ α}.
Also, we define a mapping T : X → X by

Tu(t) =

∫ T

0
G(t, s)f(s, u(s))ds, for all t ∈ [0, T ].

Let us prove that

(31) T (A1) ⊂ A2 and T (A2) ⊂ A1.

Suppose that u ∈ A1, that is, u(s) ≤ β(s) for all s ∈ [0, T ]. Since G(t, s) ≥ 0
for all t, s ∈ [0, T ], by (28) we obtain

G(t, s)f(s, u(s)) ≥ G(t, s)f(s, β(s)), for all t, s ∈ [0, T ].

This inequality and condition (26) imply that∫ T

0
G(t, s)f(s, u(s))ds ≥

∫ T

0
G(t, s)f(s, β(s))ds ≥ α(t), for all t ∈ [0, T ].

Hence, Tu ∈ A2. Similarly, let u ∈ A2, that is, u(s) ≥ α(s), for all s ∈ [0, T ].
Since G(t, s) ≥ 0 for all t, s ∈ [0, T ], by (28) we obtain

G(t, s)f(s, u(s)) ≥ G(t, s)f(s, α(s)), for all t, s ∈ [0, T ].
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This inequality and condition (27) imply that∫ T

0
G(t, s)f(s, u(s))ds ≤

∫ T

0
G(t, s)f(s, α(s))ds ≤ β(t), for all t ∈ [0, T ].

Hence Tu ∈ A1, and therefore condition (31) holds.
Now, let (u, v) ∈ A1 × A2, that is, u(t) ≤ β(t), v(t) ≥ α(t), for all

t ∈ [0, T ]. Thus condition (25) implies that

u(t) ≤ β0, v(t) ≥ α0, for all t ∈ [0, T ].

By conditions (29) and (30), for all t ∈ [0, T ], we have

max{Tx, Ty} = max
{∫ T

0
G(t, s)f(s, x(s))ds,

∫ T

0
G(t, s)f(s, y(s))ds

}
≤

∫ T

0
G(t, s)max{f(s, x(s)), f(s, y(s))}ds

≤
∫ T

0
G(t, s)

[
αmax{x, y}

+ β
(
max{x, Tx}+max{y, Ty)}

)
+ γ

(
max{x, Ty}+max{y, Tx}

)
+ δ

(
M(x, y) + hm(x, y)

)]
ds

=

∫ T

0
G(t, s)

[
α
(
max{x, y)}

)]
ds

+

∫ T

0
G(t, s)

[
β
(
max{x, Tx}+max{y, Ty)}

)]
ds

+

∫ T

0
G(t, s)

[
γ
(
max{x, Ty}+max{y, Tx}

)]
ds

+

∫ T

0
G(t, s)

[
δ
(
M(x, y) + hm(x, y)

)]
ds.

Thus, we have

DP (Tx, Ty) ≤
[
αDp(x, y)

+ β
(
Dp(x, Tx) +Dp(y, Ty)

)
+ γ

(
Dp(x, Ty) +Dp(y, Tx)

)
+ δ

(
M(x, y) + hm(x, y)

)]
×
∫ T

0
G(t, s)ds

≤ αDp(x, y) + β
[
Dp(x, Tx) +Dp(y, Ty)

]
+ γ

[
Dp(x, Ty) +Dp(y, Tx)

]
+ δ

[
M(x, y) + hm(x, y)

]
.
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Now, if M(x, y) = max{x, Ty}, we have

DP (Tx, Ty) ≤ αDp(x, y) + β
[
Dp(x, Tx) +Dp(y, Ty)

]
+ γ

[
Dp(x, Ty) +Dp(y, Tx)

]
+ δ

[
Dp(x, Ty) + hDp(y, Tx)

]
,

and if M(x, y) = max{y, Tx}, we have

DP (Tx, Ty) ≤ αDp(x, y) + β
[
Dp(x, Tx) +Dp(y, Ty)

]
+ γ

[
Dp(x, Ty) +Dp(y, Tx)

]
+ δ

[
Dp(y, Tx) + hDp(x, Ty)

]
.

By a similar method, we can show that the above inequality holds if (u, v) ∈
A2 × A1. Thus, all the conditions of Theorem 1 hold, and therefore, T has
a unique fixed point z in the set

A1 ∩A2 = {u ∈ C([0, T ]) : α ≤ u(t) ≤ β, for all t ∈ [0, T ]}.s

That is, z ∈ A1 ∩A2 is the solution to (24). □

4. Conclusion

We have established some fixed and coincidence point results for general-
ized contractive type conditions in complete partial metric spaces. Also, we
prove the results are valid for analogous contractive conditions on orbitally
complete and (T, f)-orbitally complete partial metric spaces. Established
theorems extend and generalize several theorems due to various researchers
in the literature to partial metric spaces, for example, see G. S. Saluja [26,27],
M. Dinarvand [15], R. Kumar et al. [20,21], and others. Moreover, we have
given some examples for justification as well as provided an application for
our obtained results. Henceforth, our theorems open a direction to new fixed
point results and applications in partial metric spaces.
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