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A geometric approach to
the Proinov type contractions

Nı̇hal Taş

Abstract. In this paper, we prove some fixed-circle, fixed-disc and
fixed-ellipse results on metric spaces. To do this, we define the no-
tions of Proinov type a0-contraction and generalized Proinov type a0-
contraction. Also, we give some illustrative examples to show the va-
lidity of our obtained results. Finally, we present a nice application to
exponential linear unit activation functions.

1. Introduction and motivation

What is the “Fixed-circle problem”?
Before we recall the definition of a fixed circle, we give a brief history of

this problem.
Now, let us consider the following self-mappings T1 : R → R and T2 :

R→ R defined as
T1a =

a

1 + e−a

and
T2a =

{
0.01a, for a < 0,

a, for a ≥ 0,

for all a ∈ R. Then the fixed point set of T1 is Fix(T1) = {0} and the fixed
point set of T2 is Fix(T2) = {a ∈ R : a ≥ 0}. We note that the self-mapping
T1 has a unique fixed point and the self-mapping T2 has infinitely number
of fixed point.

Also, if we consider the self-mapping T3 : R→ R defined as

T3x = e−x
2
,

for all a ∈ R, then the fixed point set of T3 is Fix(T3) = ∅, that is, T3 does
not have a fixed point.

On the other hand, these self-mappings T1, T2 and T3 are activation func-
tions. T1 is a Sigmoid linear unit activation function, T2 is a Leakly rectified
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linear unit activation function and T3 is a Gaussian activation function (see
[6, 8, 11, 21]).

After the above motivations, “Fixed-circle problem” has been occurred
as a geometric approach to the fixed-point theory when the self-mapping
T : X → X has more than one fixed point [14]. Now, we recall the notion
of a fixed circle.

Let (X, d) be a metric space and T : X → X a self-mapping. Then the
circle is defined by

Ca0,µ = {a ∈ X : d(a, a0) = µ} .
If Ta = a for every a ∈ Ca0,µ, then Ca0,µ is called the fixed circle of T (see
[14]).

After that, the notion of a fixed circle was generalized to the notion of a
fixed disc as follows.

Let (X, d) be a metric space and T : X → X a self-mapping. Then the
disc is defined by

Da0,µ = {a ∈ X : d(a, a0) ≤ µ} .
If Ta = a for every a ∈ Da0,µ, then Da0,µ is called the fixed disc of T (see
[12] and [15]).

In many studies, some solutions were presented using various approaches,
techniques and contractive conditions (see, for example, [12, 13, 15, 17, 18,
19, 22, 23] and the references therein). Recently, the notions of a fixed circle
and a fixed disc were generalized the notion of a fixed figure.

A geometric figure F (a circle, an ellipse, a hyperbola, a Cassini curve,
etc.) contained in the fixed point set Fix (T ) is called a fixed figure (a fixed
circle, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of the
self-mapping T (see [16]). In this context, some fixed-ellipse theorems were
obtained using different aspects (see, for example, [7, 9, 16] for more details).

The main goal of this paper is to obtain new solutions to the fixed-circle
problem on metric spaces. To do this, we inspire some known techniques
given in [20]. We introduce the notions of Proinov type a0-contraction and
generalized Proinov type a0-contraction. Using these new notions, we prove
two fixed-circle theorems and two fixed-disc results. On the other hand,
using the similar approaches, we obtain two fixed-ellipse theorems. The
obtained results are supported by some necessary examples. Finally, we
give an application to exponential linear unit activation functions.

2. Main results

In this section, we present new solutions to the fixed-circle problem using
Proinov type contractions.

Definition 1. Let (X, d) be a metric space and T : X → X a self-mapping.
If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ (d(a, a0)) ,
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for all a ∈ X, where ψ,ϕ : (0,∞)→ R are two functions with ϕ(t) < ψ(t) for
t > 0 and ψ is nondecreasing, then T is called Proinov type a0-contraction.

Proposition 1. Let (X, d) be a metric space and T : X → X Proinov type
a0-contraction with a0 ∈ X. Then we get Ta0 = a0.

Proof. Suppose d(Ta0, a0) > 0, that is, Ta0 6= a0. Then using the Proinov
type a0-contractive condition, we get

ψ (d(Ta0, a0)) ≤ ϕ (d(a0, a0)) = ϕ(0),

which is a contradiction with the definition of ϕ. So, it should be Ta0 =
a0. �

Using Definition 1 and Proposition 1, we prove the following fixed-circle
theorem.

Theorem 1. Let (X, d) be a metric space, T : X → X Proinov type a0-
contraction with a0 ∈ X and µ defined as

(1) µ = inf {d(Ta, a) : Ta 6= a, a ∈ X} .
Then T fixes the circle Ca0,µ.

Proof. Now we consider the following two cases:
Case 1 : Let µ = 0. Hence we get Ca0,µ = {a0}. Using Proposition 1, we

have Ta0 = a0, that is, Ca0,µ is a fixed circle of T .
Case 2 : Let µ > 0 and a ∈ Ca0,µ be any point such that d(Ta, a) > 0.

Using the Proinov type a0-contraction hypothesis, we obtain

ψ (d(Ta, a)) ≤ ϕ (d(a, a0)) = ϕ (µ) < ψ (µ) ≤ ψ (d(Ta, a)) ,

a contradiction. It should be d(Ta, a) = 0, that is, Ta = a.
Under the above cases, we see that T fixes the circle Ca0,µ. �

Corollary 1. Let (X, d) be a metric space, T : X → X Proinov type a0-
contraction with a0 ∈ X and µ defined as in (1). Then T fixes the disc
Da0,µ.

Proof. By the similar arguments used in the proof of Theorem 1, the proof
can be easily obtained. �

Now we give the following examples for Proposition 1, Theorem 1 and
Corollary 1.

Example 1. Let X = R be the usual metric space with the usual metric d
defined as

d(a, b) = |a− b| ,
for all a, b ∈ R . Let us define the function T : R→ R as

Ta =

{
a, for |a| ≤ 2,

a+ 1, for |a| > 2,
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for all a ∈ R. Then the function T is Proinov type a0-contraction with
a0 = 0, the function ψ : (0,∞) → R defined by ψ(t) = 3t and the function
ϕ : (0,∞) → R defined by ϕ(t) = 2t. Consequently, we have µ = 1 and so
T fixes the circle C0,1 = {−1, 1} and the disc D0,1 = [−1, 1].

In the following example we can see that the selection of a point a0 ∈ X
doesn’t have to be unique.

Example 2. Let X = R be the usual metric space with the usual metric d.
Let us define the function T : R→ R as

Ta =

{
a, for a ∈ [−3,∞),

a+ 1, for a ∈ (−∞,−3) ,
for all a ∈ R. Then the function T is Proinov type a0-contraction with both
a0 = 0 and a0 = 6, the function ψ : (0,∞) → R defined by ψ(t) = 3t and
the function ϕ : (0,∞) → R defined by ϕ(t) = 2t. Consequently, we have
µ = 1 and so T fixes the circles C0,1 = {−1, 1}, C6,1 = {5, 7} and the discs
D0,1 = [−1, 1], D6,1 = [5, 7].

The following theorem can be considered as a fixed-ellipse theorem. Let
Eµ (a1, a2) be the ellipse defined as

Eµ (a1, a2) = {a ∈ X : d(a, a1) + d(a, a2) = µ} .
Theorem 2. Let (X, d) be a metric space, T : X → X a self-mapping and
µ defined as in (1). If there exist a1, a2 ∈ X such that

(2) d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ (d(a, a1) + d(a, a2)) ,

for all a ∈ X, where ψ,ϕ : (0,∞) → R are two functions with ϕ(t) < ψ(t)
for t > 0 and ψ is nondecreasing, then Eµ (a1, a2) ⊆ Fix(T ).
Proof. We show Eµ (a1, a2) ⊆ Fix(T ) under the following cases:

Case 1 : Let µ = 0. Then we get

Eµ (a1, a2) = Ca1,µ = Ca2,µ = {a1} = {a2}.
Assume that d(Ta1, a1) = d(Ta2, a2) > 0. Using the inequality (2), we have

ψ (d(Ta1, a1)) ≤ ϕ (d(a1, a1) + d(a1, a1)) = ϕ(0),

which is a contradiction with the definition of ϕ. Hence, it should be Ta1 =
a1 = a2 = Ta2.

Case 2 : Let µ > 0 and a ∈ Eµ (a1, a2) be any point such that Ta 6= a,
that is, d(Ta, a) > 0. Using the inequality (2), we obtain

ψ (d(Ta, a)) ≤ ϕ (d(a, a1) + d(a, a2)) = ϕ (µ) < ψ (µ) ≤ ψ (d(Ta, a)) ,

a contradiction. So, it should be Ta = a.
Consequently, we prove Eµ (a1, a2) ⊆ Fix(T ). �

We give the following example to show the validity of Theorem 2. Also,
in this example, we see that the selection of points a1, a2 ∈ X and the fixed
ellipse Eµ (a1, a2) are not to be unique.
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Example 3. Let X = {−2,−1, 1, 2, 8, 12} be a metric space with the usual
metric d. Let us define the function T : X → X as

Ta =

{
a+ 4, for a = 8,

a, for a ∈ X − {8},
for all a ∈ X. Then T satisfies the conditions of Theorem 2 with a1 = −1,
a2 = 1, the function ψ : (0,∞) → R defined by ψ(t) = 4t and the function
ϕ : (0,∞) → R defined by ϕ(t) = 3

2 t. We have µ = 4 and so E4 (−1, 1) =
{−2, 2} ⊆ Fix(T ) = X − {8}. Also, T satisfies the conditions of Theorem
2 with a1 = −2, a2 = 2, the function ψ : (0,∞) → R defined by ψ(t) = 4t
and the function ϕ : (0,∞) → R defined by ϕ(t) = 3

2 t. Consequently, we
get E4 (−2, 2) = {−2,−1, 1, 2} ⊆ Fix(T ) = X − {8}.

Now, we give a new notion of a generalized contraction.

Definition 2. Let (X, d) be a metric space and T : X → X a self-mapping.
If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ (m(a, a0)) ,

for all a ∈ X, where ψ,ϕ : (0,∞) → R are two functions with ϕ(t) < ψ(t)
for t > 0, ψ is nondecreasing and

m(a, b) = max

{
d(a, b), d(a, Ta), d(b, T b),

d(a, T b) + d(b, Ta)

2

}
,

then T is called generalized Proinov type a0-contraction.

Proposition 2. Let (X, d) be a metric space and T : X → X generalized
Proinov type a0-contraction with a0 ∈ X. Then we get Ta0 = a0.

Proof. Suppose d(Ta0, a0) > 0. Using the generalized Proinov type a0-
contractive condition and the symmetry property, we obtain

m(a0, a0) = d(a0, Ta0)

and

ψ (d(Ta0, a0)) ≤ ϕ (m(a0, a0)) = ϕ (d(a0, Ta0)) = ϕ (d(Ta0, a0)) < ψ (d(Ta0, a0)) ,

a contradiction. Hence, it should be Ta0 = a0. �

We prove the following fixed-circle theorem using the notion of generalized
Proinov type a0-contraction.

Theorem 3. Let (X, d) be a metric space, T : X → X generalized Proinov
type a0-contraction with a0 ∈ X and µ defined as in (1). If d(Ta, a0) ≤ µ,
then T fixes the circle Ca0,µ.

Proof. Let us consider the following cases:
Case 1 : Let µ = 0. Then we get Ca0,µ = {a0}. From Proposition 2, we

have Ta0 = a0.
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Case 2 : Let µ > 0 and a ∈ Ca0,µ be any point such that d(Ta, a) > 0.
Using the hypothesis and symmetry property, we get

m(a, a0) ≤ d(Ta, a)
and

ψ (d(Ta, a)) ≤ ϕ (m(a, a0)) < ψ (m(a, a0)) ≤ ψ (d(Ta, a)) ,

a contradiction. It should be Ta = a.
Consequently, T fixes the circle Ca0,µ. �

Corollary 2. Let (X, d) be a metric space, T : X → X generalized Proinov
type a0-contraction with a0 ∈ X and µ defined as in (1). If d(Ta, a0) ≤ µ,
then T fixes the disc Da0,µ.

Proof. From the similar arguments used in the proof of Theorem 3, it can
be easily proved. �

We give the following example for Proposition 2, Theorem 3 and Corollary
2. From this example, we can say that the selection of a point a0 ∈ X doesn’t
have to be unique.

Example 4. Let X = R be the usual metric space with the usual metric d.
Let us define the function T : R→ R as

Ta =

{
a, for a ∈ [−5,∞),

a+ 2, for a ∈ (−∞,−5) ,
for all a ∈ R. Then the function T is generalized Proinov type a0-contraction
with both a0 = 0 and a0 = 4, the function ψ : (0,∞)→ R defined by ψ(t) =
5t and the function ϕ : (0,∞)→ R defined by ϕ(t) = 3t. Consequently, we
have µ = 2 and so T fixes the circles C0,2 = {−2, 2}, C4,2 = {2, 6} and the
discs D0,2 = [−2, 2], D4,2 = [2, 6].

Now we prove the following fixed-ellipse theorem.

Theorem 4. Let (X, d) be a metric space, T : X → X a self-mapping, µ
defined as in (1) and the number m(a, b) defined as in Definition 2. Suppose
that there exist a1, a2 ∈ X such that

(3) d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ
(
m(a, a1) +m(a, a2)

2

)
,

for all a ∈ X, where ψ,ϕ : (0,∞) → R are two functions with ϕ(t) < ψ(t)
for t > 0, ψ is nondecreasing. If

(4) d(Ta, a1) ≤ µ and d(Ta, a2) ≤ µ,
for a ∈ Eµ (a1, a2), then Eµ (a1, a2) ⊆ Fix(T ).

Proof. We investigate the following cases:
Case 1 : Let µ = 0. Then we get

Eµ (a1, a2) = Ca1,µ = Ca2,µ = {a1} = {a2}.
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Suppose that d(Ta1, a1) > 0. Using the inequality (3) and the condition
a1 = a2, we obtain

ψ (d(Ta1, a1)) ≤ ϕ

(
m(a1, a1) +m(a1, a1)

2

)
= ϕ (m(a1, a1))

= ϕ (d(Ta1, a1)) < ψ (d(Ta1, a1)) ,

a contradiction. So, it should be

(5) Ta1 = a1 = a2 = Ta2.

Case 2 : Let µ > 0 and a ∈ Eµ (a1, a2) be any point such that Ta 6= a.
Using the inequalities (3), (4) and the equality (5), we get

ψ (d(Ta, a)) ≤ ϕ
(
m(a,a1)+m(a,a2)

2

)
< ψ

(
m(a,a1)+m(a,a2)

2

)
≤ ψ (d(Ta, a)) ,

a contradiction. Hence, it should be Ta = a.
Under the above cases, we see Eµ (a1, a2) ⊆ Fix(T ). �

In the following example, we see that an example shows the validity of
Theorem 4 and the selection of points a1, a2 ∈ X doesn’t have to be unique.

Example 5. Let X = {−4,−1, 1, 4, 6, 14} be a metric space with the usual
metric d. Let us define the function T : X → X as

Ta =

{
a+ 8, for a = 6,

a, for a ∈ X − {6},
for all a ∈ X. Then T satisfies the conditions of Theorem 4 with a1 = −1,
a2 = 1, the function ψ : (0,∞) → R defined by ψ(t) = 3t and the function
ϕ : (0,∞) → R defined by ϕ(t) = 5

2 t. We have µ = 8 and so E8 (−1, 1) =
{−4, 4} ⊆ Fix(T ) = X − {8}. Also, T satisfies the conditions of Theorem
4 with a1 = −4, a2 = 4, the function ψ : (0,∞) → R defined by ψ(t) = 3t
and the function ϕ : (0,∞) → R defined by ϕ(t) = 5

2 t. Consequently, we
get E8 (−4, 4) = {−4,−1, 1, 4} ⊆ Fix(T ) = X − {8}.

If we inspire the notion of a Proinov type a0-contraction and Amini-
Harandi and Petruşel’s fixed point theorem given in [1], then we get the
following theorem.

Theorem 5. Let (X, d) be a metric space, T : X → X a self-mapping and
µ defined as in (1). If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ (d(a, a0)) ,

for all a ∈ X, where ψ,ϕ : [0,∞) → [0,∞), ϕ(t) < ψ(t) for t > 0 with
ψ(0) = ϕ(0) = 0 and ψ is nondecreasing, then we have Ca0,µ ⊆ Fix(T )
(especially, Da0,µ ⊆ Fix(T )).

Proof. By the similar approaches used in the proofs of Proposition 1 and
Theorem 1, it can be easily seen. �
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We note that Theorem 5 can be considered as an Amini-Harandi and
Petruşel type fixed-circle (resp. Amini-Harandi and Petruşel type fixed-disc)
theorem.

Theorem 6. Let (X, d) be a metric space, T : X → X a self-mapping and
µ defined as in (1). If there exist a1, a2 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ ϕ (d(a, a1) + d(a, a2)) ,

for all a ∈ X, where ψ,ϕ : [0,∞) → [0,∞), ϕ(t) < ψ(t) for t > 0 with
ψ(0) = ϕ(0) = 0 and ψ is nondecreasing, then we have Eµ (a1, a2) ⊆ Fix(T ).

Proof. By the similar arguments used in the proof of Theorem 2, it can be
easily proved. �

We note that Theorem 6 can be considered as an Amini-Harandi and
Petruşel type fixed-ellipse theorem.

From the above results with inspiring some known fixed-point theorems
given in [2, 3, 4], we obtain the following important remarks.

Remark 1. (1) If we take ψ(t) = t and ϕ(t) = λt (0 ≤ λ < 1) in Definition
1, then we obtain the notion of Banach type a0-contraction. Theorem 1
can be considered as a Banach type fixed-circle theorem under this case.
Similarly, Corollary 1 can be considered as a Banach type fixed-disc result
and Theorem 2 can be considered as a Banach type fixed-ellipse theorem.

(2) If we take ψ(t) = t and ϕ(t) = λt (0 ≤ λ < 1) in Definition 2, then we
obtain the notion of Ćirić type a0-contraction. Under this case, Theorem
3 (resp. Corollary 2 and Theorem 4) can be considered as a Ćirić type
fixed-circle theorem (resp. a Ćirić type fixed-disc result and a Ćirić type
fixed-ellipse theorem).

(3) If we take ψ(t) = t in Definition 1, then we have the notion of Boyd-
Wong type a0-contraction. In this case, Theorem 1 (resp. Corollary 1 and
Theorem 2) can be considered as a Boyd-Wong type fixed-circle theorem
(resp. a Boyd-Wong type fixed-disc result and a Boyd-Wong type fixed-
ellipse theorem).

3. An application to exponential linear
unit activation functions

In this section, we obtain an application to activation functions to show
the applicable of the obtained results.

What are activation functions? What is the importance of them?
Activation functions are mathematical functions used to convert an input

signal of a node in the neural networks to an output signal. The importance
of them is that they are used for constructing a neural network to learn and
make sense of something. In the literature, a lot of activation functions are
used in the neural networks. One of them is “Scaled exponential linear unit
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activation function (SELU )” and another one is “Exponential linear unit
activation function (ELU )” (see [5] and [10]).

What is the significance of the activation functions for the fixed-circle
problem?

Activation functions are important by means of an application to the
fixed-circle problem. The obtained theoretical results related to the fixed-
circle problem are applicable to various activation functions. Some authors
gave some nice applications for this subject (see, for example, [15, 17, 18,
19, 22]).

In the light of the above questions, we give an application to exponential
linear unit activation functions as follows.

At first, we recall the definitions of the activation functions SELU and
ELU.

SELU(a) = λ

{
α (ea − 1) , for a < 0,

a, for a ≥ 0,

where λ = 1.0507, α = 1.67326 and

ELU(a) =

{
α (ea − 1) , for a < 0,

a, for a ≥ 0,

where α ≥ 0.
Let us take α = 0 in ELU(a). Then we get

Ta =

{
0, for a < 0,
a, for a ≥ 0.

Now let X = {−e, 0, e, 3− e, 3, 3 + e} and d be the usual metric on X.
Then T satisfies the condition of Theorem 1 with a0 = 3 and the functions
ψ(t) = t+1, ϕ(t) = t. Consequently, T fixes the circle C3,e = {3− e, 3 + e}
and the disc D3,e = {3− e, e, 3, 3 + e}.
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