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On a family of bi-univalent functions
related to the Fibonacci numbers

Arzu Akgül

Abstract. In this study, we construct a new family of holomorphic bi-
univalent functions in the open unit disc by the help of q−analogue of
Noor integral operator, principle of subordination and Fibonacci poly-
nomials. Also we obtain coefficient bounds and Fekete Szegö inequality
for functions belonging this family. We have illustrated relevant families
and consequences.

1. Introduction

Let A indicate the collection of functions h having the form

(1) h(z) = z +
∞∑
ϑ=2

dϑz
ϑ,

also holomorphic in the open unit disc D = {z : |z| < 1}. Let

S = {h ∈ A : h is univalent in D} .

According to the Koebe one-quarter theorem ([9]), the range of every func-
tion h ∈ S contains the disc of radius

{
w : |w| < 1

4

}
. Thus every such func-

tion h ∈ S has an inverse h−1 which satisfies

h−1 (h (z)) = z (z ∈ D)

and

h
(
h−1 (w)

)
= w

(
|w| < r0 (h) , r0 (h) ≥ 1

4

)
, (w ∈ D)

where

(2)
k(w) = h−1 (w) =

= w − d2w
2 +

(
2d2

2 − d3

)
w3 −

(
5d3

2 − 5d2d3 + d4

)
w4 + · · · .
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Definition 1. If both h and h−1 are univalent in D, then a function h ∈ A
is called to be bi-univalent in D. We say that h is in the class Σ for such
functions.

Definition 2. For analytic functions h and k, h is called to be subordinate
to k, denoted by

h(z) ≺ k(z),

if there is a function w, analytic, such that

w(0) = 0 , |w(z)| < 1 and h(z) = k(w(z)).

Definition 3. For q ∈ (0, 1), the q-derivative of function h ∈ A is defined
by (see [23])

∂qh(z) =
h(qz)− h(z)

(q − 1)z
, z 6= 0

and
∂qh(0) = h′(0).

Thus we have

∂qh(z) = 1 +

∞∑
ϑ=2

[ϑ, q] dϑz
ϑ−1,

where [ϑ, q] is given by

[ϑ, q] =
1− qϑ

1− q
, [0, q] = 0

and define the q-fractional by

[ϑ, q]! =

{∏ϑ
n=1 [n, q] , ϑ ∈ N,

1, ϑ = 0.

On the other hand, the q−generalized Pochhammer symbol for p ≥ 0 is
defined by

[p, q]ϑ =

{∏ϑ
n=1 [p + n− 1, q] , ϑ ∈ N,

1, ϑ = 0.

In addition, as q → 1, [ϑ, q]→ 1, taking k(z) = zϑ, then we get

∂qk(z) = ∂qz
ϑ = [ϑ, q] zϑ−1 = k′(z),

where k′ is the ordinary derivative. Recently, the function F−1
q,µ+1(z), given

with the following relation, was defined by Arif et al. (see [8])

F−1
q,µ+1(z) ∗ Fq,µ+1(z) = z∂qh(z), (µ > −1)

where

Fq,µ+1(z) = z +

∞∑
ϑ=2

[µ+ 1, q]ϑ−1

[ϑ− 1, q]!
zϑ, z ∈ D.
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Due to the fact that series defined in last equation is convergent absolutely
in z ∈ D, by taking advantage of the characterization of q-derivative via
convolution, one can define the integral operator ζµq : D→ D by

ζµq h(z) = F−1
q,µ+1(z) ∗ h(z) = z +

∞∑
ϑ=2

φϑ−1dϑz
ϑ, (z ∈ D)

where

φϑ−1 =
[ϑ, q]!

[µ+ 1, q]ϑ−1
.

We note that
ζ0
qh(z) = z∂qh(z), ζ ′qh(z) = h(z),

also

lim
q→1

ζµq h(z) = z +
∞∑
ϑ=2

ϑ!

(µ+ 1)ϑ−1

dϑz
ϑ.

Last equation means that by letting q → 1, the operator ζµq h, defined as
above, reduces to the Noor integral operator introduced in [19,20]. One can
find more details on the q-analogue of differential and integral operators, in
the study of Aldweby and Darus (see [21]).

Such polynomials as the Fibonacci polynomials, the Lucas polynomials,
the Chebyshev polynomials, the Pell polynomials, Lucas–Lehmer polynomi-
als, and the families of orthogonal polynomials also other special polyno-
mials and their generalizations are very important in different disciplines of
sciences (also, see [2, 3, 11, 12,14,15,17,26,28]).

Up to now, coefficient estimates for bi-univalent holomorphic functions
was studied by many authors. This subject goes back the studies in [1, 5, 9,
16,23–25]. In the literature, there are limited number of studies (by help of
the Faber polynomial expansions) determining the general coefficient bounds
|dϑ| for bi-univalent functions ([6, 7, 13, 18, 22, 27]). Thus, identification of
the bounds for each of |dϑ| (ϑ = 3, 4, 5, · · · , ϑ ∈ N) is still an open problem
for functions in the collection Σ.

In this study, we introduce the family Bµ,q
Σ (β, γ;

∼
℘) associated with the

Fibonacci numbers and q-analogue of Noor integral operators. For functions
in Bµ,q

Σ (β, γ;
∼
℘), we have obtained coefficient inequalities.

2. The class Bµ,q
Σ (β, γ;

∼
℘)

Definition 4. A function h ∈ Σ, given by (1), is called to be in the class
Bµ,q

Σ (β, γ;
∼
℘) if it satisfies the conditions:

(3) 1 +
1

γ

[
(1− β)

ζµq h(z)

z
+ β∂q(ζ

µ
q h(z))− 1

]
≺ ∼℘(z) =

1 + τ2z2

1− τ2z2 − τz
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and

(4)
1 +

1

γ

[
(1− β)

ζµq k(w)

w
+ β∂q(ζ

µ
q k(w))− 1

]
≺ ∼℘(w) =

1 + τ2w2

1− τ2w2 − τw
,

where (0 < µ ≤ 1, 0 < q < 1, γ > 0, β ≥ 0), the k is given by (2) and
τ = 1−

√
5

2 ≈ −0, 618.

Remark 1. The function ∼℘(z) is not univalent in D,
∼
℘(z) is univalent in the

disc |z| < 3−
√

5
2 ≈ 0, 38. Assume that ∼℘(0) =

∼
℘(− 1

2τ ) and ∼℘(e∓i arccos( 1
4

)) =
√

5
5 . Additionally, we can write it as

1

|τ |
=

|τ |
1− |τ |

,

which indicates the number |τ | divides [0, 1] such that it fulfills the golden
section (see for details [10, 27]).

Also, a relation between the function ∼℘(z) and the Fibonacci numbers
was found in [10].

Assume that Fn is the sequence of Fibonacci numbers.

Fn+2 = Fn + Fn+1, n ∈ N0 = 0, 1, 2, . . .

with F0 = 0,F1 = 1, then

Fn =
(1− τ)n − τn√

5
, τ =

1−
√

5

2
.

If we let
∼
℘(z) = 1 +

∑
n=1

∼
℘nz

n = 1 + (F0 + F2) τz + (F1 + F3) τ2z2

+
∑
n=3

(Fn−3 + Fn−2 + Fn) τnzn,

then we arrive at

∼
℘n =


τ, n = 1,

3τ2, n = 2,

τ
∼
℘n−1 + τ2∼℘n−2, n ≥ 3.

It should be noted that the special values of β, γ, µ, q give us different sub-
families.

Remark 2. For q → 1−, easy to see that h ∈ Bµ,1
Σ (β, γ;

∼
℘) if it satisfies the

conditions

1 +
1

γ

[
(1− β)

ζµh(z)

z
+ β(ζµh(z))′ − 1

]
≺ ∼℘(z) =

1 + τ2z2

1− τ2z2 − τz
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and

1 +
1

γ

[
(1− β)

ζµk(w)

w
+ β(ζµk(w))′ − 1

]
≺ ∼℘(w) =

1 + τ2w2

1− τ2w2 − τw
,

where k = h−1 is given by (2) .

Remark 3. For q → 1−, γ = 1 and β = 1, easy to see that h ∈ Σ is in

Bµ,1
Σ (1, 1;

∼
℘) = Bµ,q

Σ (
∼
℘)

if it satisfies the conditions

(ζµh(z))′ ≺ 1 + τ2z2

1− τ2z2 − τz
and

(ζµk(w))′ ≺ 1 + τ2w2

1− τ2w2 − τw
,

where k = h−1 is given by (2) .

Remark 4. For q → 1−, γ = 1, β = 1 and µ = 1, easy to see that h ∈ Σ is
in

B1,1
Σ (1, 1;

∼
℘) = BΣ(

∼
℘) = Σ′(

∼
℘)

if it satisfies the conditions

h′(z) ≺ 1 + τ2z2

1− τ2z2 − τz
and

k′(w) ≺ 1 + τ2w2

1− τ2w2 − τw
,

where k = h−1 is given by (2) . The class Σ′(℘) was investigated and studied
by Alamous [4].

Remark 5. For q → 1− ,γ = 1,for β = 1 and µ = 0, easy to see that h ∈ Σ
is in

B0,1
Σ (1, 1;

∼
℘) = BΣ(

∼
℘)

if it satisfies the conditions

(z∂h(z))′ ≺ 1 + τ2z2

1− τ2z2 − τz
and

(w∂k(w))′ ≺ 1 + τ2w2

1− τ2w2 − τw
,

where k = h−1 is given by (2).
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3. Initial coefficient estimates

We first state and prove the following result.

Theorem 1. Let h ∈ Bµ,q
Σ (β, γ;

∼
℘) given by (1). Then,

|d2| ≤ γ
|τ |√∣∣(1 + βq)2φ2

1 +
[
γ(1 + βq + βq2)φ2 − 3(1 + βq)2φ2

1

]
τ
∣∣

and

|d3| ≤ γ
τ2

(1 + βq)2φ2
1

+ γ2 |τ |
(1 + βq + βq2)φ2

,

where
0 < µ ≤ 1, 0 < q < 1, γ > 0, β ≥ 0.

Proof. Let h ∈ Bµ,q
Σ (β, γ;

∼
℘), 0 < µ ≤ 1, 0 < q < 1, γ > 0, β ≥ 0. From

the subordination relations given in (3) and (4), there exists two analytic
functions f, g : D→ D ,with f(0) = g(0) such that

1 +
1

γ

[
(1− β)

ζµq h(z)

z
+ β∂q(ζ

µ
q h(z))− 1

]
=
∼
℘(f(z))

and

1 +
1

γ

[
(1− β)

ζµq k(w)

w
+ β∂q(ζ

µ
q k(w))− 1

]
=
∼
℘(g(w)).

If we determine the functions p1 and p2 as

p1(z) =
1 + f(z)

1− f(z)
= 1 + x1z + x2z

2 + · · ·

and
p2(w) =

1 + g(w)

1− g(w)
= 1 + y1w + y2w

2 + · · · ,

then p1 and p2 are analytic in D with p1(0) = p2(0) = 1. Thus,

f(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
x1z +

(
x2 −

x2
1

2

)
z2 + · · ·

]
and

g(w) =
p2(w)− 1

p2(w) + 1
=

1

2

[
y1w +

(
y2 −

y2
1

2

)
w2 + · · ·

]
lead to

∼
℘(f(z)) = 1 +

∼
℘1x1

2
z +

{(
x2 −

x2
1

2

) ∼
℘1

2
+
x2

1

4

∼
℘2

}
z2 + · · ·

and

∼
℘(g(w)) = 1 +

∼
℘1y1

2
w +

{(
y2 −

y2
1

2

) ∼
℘1

2
+
y2

1

4

∼
℘2

}
w2 + · · · .
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Hence,

1 +
1

γ

[
(1− β)

ζµq h(z)

z
+ β∂q(ζ

µ
q h(z))− 1

]
=

1 +

∼
℘1x1

2
z +

{(
x2 −

x2
1

2

) ∼
℘1

2
+
x2

1

4

∼
℘2

}
z2 + · · ·

and

1 +
1

γ

[
(1− β)

ζµq k(w)

w
+ β∂q(ζ

µ
q k(w))− 1

]
=

1 +

∼
℘1y1

2
w +

{(
y2 −

y2
1

2

) ∼
℘1

2
+
y2

1

4

∼
℘2

}
w2 + · · · .

If we compare the corresponding coefficients in last two equations, then we
can obtain

(5)
1

γ
(1 + βq)φ1d2 =

∼
℘1x1

2
,

(6)
1

γ

[
(1 + βq + βq2)φ2d3

]
=

1

2

(
x2−

x2
1

2

)
∼
℘1 +

x2
1

4

∼
℘2

and

(7) −1

γ
(1 + βq)φ1d2 =

∼
℘1y1

2
,

(8)
1

γ

[
(1 + βq + βq2)φ2

(
2d2

2 − d3

)]
=

1

2

(
y2−

y2
1

2

)
∼
℘1 +

y2
1

4

∼
℘2.

From equalities (5) and (6), we find that

x1 = −y1,

and

(9) 2

[
1

γ
(1 + βq)φ1

]2

d2
2 =

∼
℘

2

1

4

(
x2

1 + y2
1

)
.

Also, by using (6) and (8), we obtain

(10)
2

γ
(1 + βq + βq2)φ2d

2
2 =

∼
℘1

2
(x2 + y2) +

∼
℘2 −

∼
℘1

4

(
x2

1 + y2
1

)
.

By substituting x2
1 + y2

1 from (9) and putting in (10), we reduce that

d2
2 =

γ2∼℘
3

1 (x2 + y2)

4
[
γ
∼
℘

2

1(1 + βq + βq2)φ2 − (1 + βq)2φ2
1(
∼
℘2 −

∼
℘1)
] ,
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which yields

|d2| ≤ γ
|τ |√∣∣(1 + βq)2φ2

1 +
[
γ(1 + βq + βq2)φ2 − 3(1 + βq)2φ2

1

]
τ
∣∣ .

Moreover, if we subtract (6) from (8), we have

2

γ
(1 + βq + βq2)φ2(d3 − d2

2) =

∼
℘1

2
(x2 − y2) .

Then, in view of (9), the last equation becomes

d3 = γ2
∼
℘

2

1

8(1 + βq)2φ2
1

(
x2

1 + y2
1

)
+ γ

∼
℘1 (x2 − y2)

4(1 + βq + βq2)φ2
.

Applying h2(x) and taking modulus, we deduce that

|d3| ≤ γ2 τ2

(1 + βq)2φ2
1

+ γ
|τ |

(1 + βq + βq2)φ2
.

�

4. Consequences

In this study, we studied the analytic bi-univalent function classBµ,q
Σ (β, γ;

∼
℘)

associated with the Fibonacci numbers. For functions belonging to this class,
we have derived Taylor-Maclaurin coefficient inequalities. The geometric
properties this new class varies to the values according to the parameters
included. This approach has been extended to find more examples of bi-
univalent functions with the Fibonacci numbers.

Upon setting q → 1−in Theorem 1, we get the following corollaries.

Corollary 1. Let h ∈ Bµ,1
Σ (β, γ;

∼
℘), given by (1). Then,

|d2| ≤ |γ|
|τ |√∣∣(1 + β)2φ2

1 +
[
γ(1 + 2β)φ2 − 3(1 + β)2φ2

1

]
τ
∣∣

and

|d3| ≤ γ2 τ2

(1 + β)2φ2
1

+ |γ| |τ |
(1 + 2β)φ2

,

where
0 < µ ≤ 1, γ > 0, β ≥ 0.

Upon setting q → 1−, γ = 1 and β = 1 in Theorem 1, we get next
corollary.

Corollary 2. Let h ∈ Bµ,1
Σ (1, 1;

∼
℘), given by (1). Then,

|d2| ≤
|τ |√∣∣4φ2

1 + 3(φ2 − 4φ2
1)τ
∣∣
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and

|d3| ≤
τ2

4φ2
1

+
|τ |
3φ2

,

where
0 < µ ≤ 1.

Restricting our assumptions for a choosen univalent function ∼℘(z) in D,
we can examine mapping problems for other regions of the complex z−plane.
Thus, one can define different subclasses of the function class which we have
studied in this work.
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