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Global and local existence of solution for fractional
heat equation in RN by Balakrishnan definition

Jorge Ferreira, Erhan Pı̇şkı̇n, Mohammad Shahrouzi∗,
Sebastião Cordeiro, Daniel V. Rocha

Abstract. Our aim here is to collect and to compare two definitions
of the fractional powers of non-negative operators that can be found
in the literature; we will present the proof of an equivalence and com-
pare properties of that notions in different approaches. Then we will
apply next this equivalence in the study of global and local existence
of solution for the semilinear Cauchy problem in RN with fractional
Laplacian {

ut = −(−∆)αu + f(x, u),
u(0, x) = u0(x), x ∈ RN .

1. Introduction

When dealing with ‘parabolic type’ equations having fractional powers of
sectorial operators in the main part (e.g. the (−∆)α, α ∈ (0, 1)), we face
the situation that we need to work with different definitions of the frac-
tional powers inside such considerations. In particular, proving local in time
solvability, following Dan Henry’s approach [3], we are using the Balakrish-
nan/Komatsu definition of the fractional power on non-negative operator.
Studying next properties of such local solution, we need to use a Maxi-
mum Principle for fractional equation, that is based on another definition
(3) of fractional powers through the singular integrals. Are the two defini-
tions equivalent? And under which conditions. Are the two objects (−∆)α

obtained within the two definitions identical? Can we ‘mixed’ the two ap-
proaches within the studies? Due to increasing number of papers dealing
with equations with fractional powers, like
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90 Global and local existence of solution for fractional heat equation

{
ut = −(−∆)αu+ f(x, u),
u(0, x) = u0(x), x ∈ RN ,(1)

such questions should be answered. Fortunately they have a positive answer
and is given by Theorem 4.

The reader may easily find a increasing number of work making use of
fractional powers of −∆ (like [14], and the other works of the same authors),
however a rigorous and explicit proof of the equivalence described above has
not been showed yet.

The first such type definition seems to be introduced for the square root
of the m-accretive operator in Hilbert space (e.g. [5, Theorem 3.35]). A
particular attention was also devoted to fractional powers of −∆ operator
in RN , where the Fourier transform was used to introduce:

(−∆)−
α
2 f = F−1|x|−αFf =

{
Iαf, Reα > 0,
D−αf, Reα < 0.

Here f is a suitably regular function on RN , I denotes the Riesz potential:

(2) Iαφ =
1

γN (α)

∫
RN

φ(y) d y

|x− y|N−α
, α 6= N,N + 2, N + 4, . . .

and Dα is given by the hypersingular integral:

(3) Dαf =
1

dN,l(α)

∫
|y|>ε

(∆)lyf(x)

|y|N+α
d y,

see [9] for details.
A more general class of operators admitting fractional powers are the

sectorial positive operators, e.g. [3, pg. 18]. Recall that a linear operator
A in a Banach space X is called sectorial if it is closed and densely defined
and its resolvent set contains the sector

(4) Sa,φ = {λ;φ ≤ | arg(λ− a)| ≤ π, λ 6= a}.

Moreover, with certain M ≥ 1, for all λ ∈ Sa,φ an estimate holds:

(5) ‖(λ−A)−1‖ ≤ M

|λ− a|
.

A sectorial operator is called positive provided that Reσ(A) > 0. In
particular, a self-adjoint and positive definite operator in a Hilbert space
satisfies the above requirement. A definition for fractional operator for this
class of operators may be referred in [3].

In this work we will consider a larger class of operator, named non-negative
operators, particularly the operator−∆p, i.e., the distributional Laplacian in
Lp(RN ), for which the definition by Balakrishnan/ Komatsu is satisfactory.
Note that for this operator 0 ∈ σ(−∆p).
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During the decade of the 60s many authors in a large series of papers,
presented concepts of power different to those of Balakrishnan, but equiva-
lent to them, although using their own techniques and methodology. How-
ever, in that papers the powers were not located in a functional calculus
for non-negative operators. Given a non-negative operator A, by a func-
tional calculus associated to A we understand an application, in some sense
homomorphic and continuous, which associates an operator f(A) to every
function belonging to an algebra of holomorphic functions. See [8] for a
complete explanation.

One of the natural origin for equations including fractional-order deriva-
tive is the stochastic analysis; if the driven process is a jumps process (Levy
process), then the corresponding Fokker-Planck equation will contain a frac-
tional Laplacian. In this last years, in the study of fluid mechanics, finances,
molecular biology and many other fields, it was discovered that the indraught
of random factors can bring many new phenomena and features which are
more realistic than the deterministic approach alone. Hence, it is natural
to include stochastic terms, in particular fractional-order operators, when
we establish the mathematical models. Moreover, the problems containing
such fractional-order derivative terms becomes more challenging and many
classical PDEs methods are hardly applicable directly to them, so that new
ideas and theories are required.

To the best of our knowledge,this is the first work that dealing of (1)
subject for a for fractional heat in RN by Blakrishnan definition.

This paper is organized as follows: In Section 2, we present the defini-
tion and properties of fractional power of operator introduced by Balakrish-
nan/Komatsu [6, 7, 8]. In Section 3 is our main result, where we establish an
equivalence between Balakrishnan definition and the other given by Fourier
transform for positive powers of −∆ (Theorem 4). In Section 4, we use such
different representations applying to the parabolic semilinear equation with
fractional Laplacian (1).

2. Fractional powers of −∆

We most often use the definition of the fractional powers of operators by
A.V. Balakrishnan in the form given in [6] (see also [10], p. 260). Consider
X a Banach space and A : D(A) ⊂ X → X.

Definition 1. We say that A is a non-negative operator if its resolvent set
contains ]−∞, 0[ and the resolvent satisfies

∃M > 0 ∀λ > 0 ‖A(λ+A)−1‖ ≤M.
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Let α ∈ C+ and an integer n such that n− 1 ≤ Reα < n. If A is densely
defined, following Balakrishnan we define the power α of the operator A by

(6) Aαφ =
Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

λα−1[A(λ+A)−1]nφ dλ.

Since A is non-negative, the above integral converges absolutely.

Definition 2. We say that a closed linear operator A : D(A) ⊂ X → X
is sectorial if A is non-negative and σ(A) is contained in the closure of the
sector

Sω = {z ∈ C∗ : | arg z| < ω}.

In this work we are interested in the fractional powers of the distributional
Laplacian, −∆p, 1 < p <∞, i.e,

∆pf = ∆f, D(∆p) = {f ∈ Lp(RN ) : ∆pf ∈ Lp(RN ))}.
As stated in [8], we have the following.

Theorem 1. Let 1 < p <∞ and α > 0. Then:
(i) −∆p is the infinitesimal generator of the heat semigroup, which is

an analytic and contractive semigroup. Consequently −∆p is non-
negative;

(ii) (−∆p)
α is sectorial and σ((−∆p)

α) = [0,∞).

For the next result, for 1 ≤ p ≤ ∞ and α ∈ C+, denote

Sα,p(RN ) := (D[(−∆p)
α/2], ‖ · ‖α,p)

with ‖ · ‖α,p being the graph norm of the closed operator (−∆p)
α/2.

Theorem 2. If 1 < p < 1, then S(RN ) is dense in Sα,p(RN ). Furthermore,
if 0 < α < m, then Sα,p(RN ) = [Wm,p(RN ), Lp(RN )]α/m and their topolo-
gies coincide. Here [Wm,p(RN ), Lp(RN )]α/m stands for the space obtained
by means of the complex interpolation method.

Following the notation from [13, pages 219,222], denote

Ls,p(RN ) := [Wm,p(RN ), Lp(RN )](m−s)/m,

with s ≤ m < s+ 1. The next result is stated in [13].

Theorem 3. (i) If s ≥ 0 and 1 ≤ p < ∞, then C∞0 (RN ) is dense in
Ls,p(RN ).

(ii) If t ≤ s and if either 1 < p ≤ q ≤ Np/[N − (s− t)p] < ∞ or p = 1
and 1 ≤ q < N/(N − s+ t), then Ls,t(RN ) ↪→ Lt,q(RN ).

(iii) 1 < p <∞ and ε > 0, then for every s we have

Ls+ε,p(RN ) ↪→W s,p(RN ) ↪→ Ls−ε,p(RN ).

(iv) If s ≥ 0 and 1 ≤ p ≤ ∞, then Ls,p(RN ) ↪→ Lp(RN ).



J. Ferreira, E. Pı̇şkı̇n, M. Shahrouzi, S. Cordeiro, D.V. Rocha 93

Remark 1. We also have this very useful immersions for fractional Sobolev
spaces, known as net smoothness from [11]: if 1 < q ≤ p < ∞ is such that
s− N

p ≥ t−
N
q , then

(7) W s,p(RN ) ⊂W t,q(RN ), s− N

p
≥ t− N

q
.

3. Comparison of the definitions of
fractional powers of the (−∆) operator

As we mentioned before, another definition of fractional powers through
the singular integrals is used when we formulate the Maximum Principle
for fractional equation whereas for studying local solution for fractional par-
abolic equation via Dan Henry approach, we need the definition given by
Balakrishnan/Komatsu. In this section we will compare these two definitions
of the (−∆) operator as introduced in the previous section, that is, we will
show an equivalence between Balakrishnan definition of the positive power
of −∆ and the one given by (3). We will give the rigorous proofs (known
from the literature) of such equivalence. We also call the restrictions under
which such an equivalence is possible.

The main result of this section is the equivalence that we present in the
Theorem 4. It is also a generalization of the formulation found in [4].

Let T the family of complex functions defined on RN such that any partial
derivative belongs to L1 ∩ L∞, endowed with the natural topology defined
by seminorms

|φ|m = max{‖Dβφ‖1, ‖Dβφ‖∞ : |β| ≤ m},
and consider the Laplacian ∆ : T → T .

Lemma 1. If 0 < Reα < N/2, with N ≥ 2, φ ∈ T and n > Reα ≥ n− 1,
then

(8) ((−∆T )α)(x) =
Γ
(
N
2 − (N − α)

)
22(n−α)πN/2Γ(n− α)

(| · |2(n−α)−N ∗ (−∆T )nφ)(x),

for all x ∈ RN .

Proof. It is known that ∆T is infinitesimal generator of the C0−semigroup
(Pt)t≥0, where Ptϕ = Kt ∗ ϕ, ϕ ∈ T and Kt(x) = (4πt)−N/2e−|x|

2/4t (see [8,
Th 2.5.1]). Consequently ∆T is a non-negative operator. The Balakrishnan
operator for −∆T leads us to

Jα−∆T φ =
Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

λα−1[(λ−∆T )−1]n(−∆T )nφ dλ.

By the Laplace transform applied to [(λ−∆T )−1]nψ we get

(9) [(λ−∆T )−1]nψ =
1

(n− 1)!

∫ ∞
0

tn−1e−λt(Kt ∗ ψ) d t (ψ ∈ T ).
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In particular if ψ = (−∆T )nφ, then

(10) (−∆T )αφ =
Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

λα−1 1

(n− 1)!

∫ ∞
0

tn−1e−λt(Kt ∗ ψ) d t dλ.

Noting that T −convergence implies in pointwise convergence, it follows from
(10) that

(11) ((−∆T )αφ)(x) =
1

Γ(α)Γ(n− α)

∫ ∞
0

λα−1

(∫ ∞
0

tn−1e−λt(Kt ∗ ψ)(x) d t

)
dλ,

with x ∈ RN .
Using the identity

(12)
∫ ∞

0
λα−1e−λt dλ = Γ(α)t−α

and the fact that −α+ n− N
2 < 0 and also the estimates

(13) |(Kt ∗ ψ)(x)| ≤

{
‖Kt‖∞‖ψ‖1 = (4πt)−n/2‖ψ‖1,
‖Kt‖1‖ψ‖∞ = ‖ψ‖∞.

we have by Tonelli theorem

((−∆T )αφ)(x) =
1

Γ(α)Γ(n− α)
Γ(α)

∫ ∞
0

t−α+n−1(kt ∗ ψ)(x) d t

=
1

Γ(n− α)

∫ ∞
0

t−α+n−1

∫
RN

Kt(y)ψ(x− y) d y d t.

Again by Tonelli theorem (and with the help of (13)), it follows

(14) ((−∆T )αφ)(x) =
1

Γ(n− α)

∫
RN

(∫ ∞
0

Kt(y)t−α+n−1 d t

)
ψ(x− y) d y.

Now (8) follows from the relation

(15)
∫ ∞

0
Kt(y)t−α+n−1 d t =

Γ
(
N
2 − (n− α)

)
22(n−α)πN/2

|y|2(n−α)−N .

The proof is complete. �

The well known technique to show an equivalence related to Balakrishnan
operator of Laplacian is the Fourier transform. By the previous lemma, it
will be very useful if we find a suitable space where we are allowed to calculate
the Fourier transform of |·|2(n−α)−N . Following the idea of Fourier transform
in temperate distributions, we will establish a definition for a more restricted
test function space by duality.

Let S(RN ) be the set of smooth rapidly decreasing complex-valued func-
tions on RN . We denote by

(16) ϕ̂(x) = F(ϕ)(x) =

∫
RN

ϕ(y)eix·y d y
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the Fourier transform of ϕ ∈ S(RN ) and by

(17) ϕ̃(y) = F(ϕ)(y) =

∫
RN

ϕ(x)eiy·x dx.

See [9] for these notations. Since (−∆)nφ ∈ S(RN ) when φ ∈ S(RN ), n ∈ N,
its Fourier transform is well defined and is given by

(18) F((∆)nφ)(x) = −|x|2nF(φ).

Now we will introduce a space of test functions called Lizorking space (see
[9]), defined in the following manner

(19) Ψ = {ψ ∈ S(RN ) : (Djψ)(0) = 0, |j| = 0, 1, 2, . . . }.
Consider another spaces Φ of test functions as being the Fourier transforms
of the elements from Ψ, i.e,

(20) Φ = F(Ψ) = {φ ∈ S(RN ) : φ ∈ ψ̂, ψ ∈ Ψ}.
If g ∈ Ψ′, we define its Fourier transform by the relation

(21) (ĝ, ϕ) = (g, ϕ̂), ϕ ∈ Φ.

The following lemma is stated in [9, pg. 490].

Lemma 2. The Fourier transform of the function | · |−α, interpreted accord-
ing to (21) is given by the relation

(22) F(| · |−α)(x) =
(2π)N

γN (α)


|x|α−N , α 6= N + 2k, α 6= −2k,

|x|α−N ln 1
|x| , α = N + 2k,

(−∆)−α/2δ, α = 2k,

where δ = δ(x) is the Dirac delta-function, k = 0, 1, 2, . . . , the constant
γN (α) being equal to

(23) γN (α) =


2απN/2Γ(N2 )/Γ(N−α2 ), α 6= N + 2k, α 6= −2k,

1, α = −2k,

(−1)(N−α)/2πN/22α−1
(
α−N

2

)
!Γ
(
N
2

)
, α = N + 2k.

Let us now consider the topological dual space T ′, endowed with the
topology of uniform convergence on bounded sets of T . By [8, Prop. 2.5.3],
if 1 ≤ p ≤ ∞, then Lp ⊂ T ′ and the usual topology on Lp is stronger than
that T ′ induces on LP . Define ∆T ′ : T ′ → T ′ by the duality

(24) ((∆T ′)u, φ) = (u, (∆T )φ) (φ ∈ T , u ∈ T ′).
It follows from [8, Cor. 5.2.4] that

(25) ((∆T ′)
αu, φ) = (u, (∆T )αφ) (φ ∈ T , u ∈ T ′, α ∈ C+).

From (11) we can check that if u ∈ C∞0 (RN ), then

(26) (−∆T ′)
αu = (−∆T )αu,
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where u in the left side of this equality has to be understood as an element
of T ′. The relation between (−∆T ′)

α and (−∆p)
α, 1 ≤ p ≤ ∞ is given by

[8, Th 12.1.6] , i.e,

(27) [(−∆T ′)
α]p = (−∆p)

α,

where [(−∆T ′)
α]p is the part of (−∆T ′)

α in Lp(RN ).

Theorem 4. Let 1 < p < ∞, α > 0, N ≥ 2 and n > α ≥ n − 1 such that
α < N/2, α 6= (n− k)−N/2, k = 0, 1, 2, 3, . . . , then

(28) (−∆p)
αφ = F−1(| · |2αφ̂) (φ ∈ C∞0 (RN ))

and

(29) F−1(| · |2αφ̂)(x) =
1

dN,l(2α)

∫
RN

(∆)lyφ

|y|N+2α
d y (φ ∈ C∞0 (RN )),

where l > 2α (see [9, Sec. 25.4] for notations).

Proof. Given φ ∈ C∞0 , by (26) and Lemma 1

(30) (−∆T ′)
αφ =

Γ(N/2− (n− α))

22(n−α)πN/2Γ(n− α)
(| · |2(n−α)−N ∗ (−∆T )nφ).

Since T ′ ⊂ Ψ′ we can apply Fourier transform in the both sides. By Lemma
2, replacing α by N − 2(n− α), it follows

(31) F(| · |2(n−α)−N ) =
22(n−α)πN/2Γ(n− α)

Γ(N/2− (n− α))
| · |2α−2n.

Thus

(32) F [(−∆T ′)
αφ] = | · |2αφ̂,

i.e,

(33) (−∆T ′)
αφ = F−1(| · |2αφ̂).

By [8, Cor. 12.3.5], the part of (−∆T ′)
α in Lp(RN ) is [Lp(RN ),WN,p]α/N ,

where this last notation stands for the space obtained by means of the com-
plex interpolation method. It follows from (27) that (−∆p)

αφ = (−∆T ′)
αφ

since C∞0 (RN ) ⊂ [Lp(RN ),WN,p]α/N . This proves (28).
Now recalling the relations stated by [9], we have

(34) F(T 2αφ) = dN,l(2α)| · |2αφ̂ (φ ∈ C∞0 (RN )),

where

(35) T 2αφ =

∫
RN

(∆l
y)φ

|y|N+2α
d y,
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i.e,

(36)
1

dN,l(2α)

∫
RN

(∆l
y)φ

|y|N+2α
d y = F−1(| · |2αφ̂) (φ ∈ C∞0 (RN )).

The proof is complete. �

Corollary 1. If n ≤ α < n+1, then the equality (29) holds for N ≥ 2(n+1).
If α = n, its is enough that N ≥ 2n+ 1.

4. Application to exemplary semilinear equation
with fractional power operator

We will show now the application of the results presented in the two
following sections. Namely, consider the ’parabolic’ semilinear Cauchy’s
problem with fractional Laplacian in the main part:

(37)
{
ut = −(−∆)αu+ f(x, u), t > 0, x ∈ RN ,
u(0, x) = u0(x), x ∈ RN .

Dan Henry’s technique will be used first to set that problem locally, that
means, to obtain a local in time solution of it in an appropriate phase space
Xβ? Then, when we want to extend such a local solution globally in time,
an a priori estimate (sufficiently well) is needed for doing that. In case of
the Cauchy problem (37) the role of that a priori estimate is played by a
version of the Maximum Principle valid for a sufficiently regular solutions
to (37). When proving that Maximum principle, we need to use another
(precise, which one) definition of fractional power of (−∆) and the important
pointwise inequality from [2]. Hence, it is important to note that the two
definitions of the fractional Laplacian lead to the same object.

The reader will find the definitions and theorems throughout this section
in [1].

Definition 3. For each α ≥ 0, define Xα := D(Aα1 ) with the norm graph,
i.e, ‖x‖α = ‖Aα1 ‖, x ∈ Xα, where A1 = A + a with a chosen so that
Reσ(A1) > 0.

Different choices of a give equivalent norms on Xα, so we suppress the
dependence on choice of a. Furthermore Xα is a dense subset of Xβ for
α ≥ β ≥ 0 with continuous inclusion.

Local solvability. Let α ∈ [0, 1) and u0 be an element of Xα. If, for some
real τ > 0, a function u ∈ C([0, τ), Xα) satisfies

– u(0) = u0,
– u ∈ C1((0, τ), Xα),
– u(t) ∈ D(A) for each t ∈ (0, τ),
– the equation (37) holds in X for all t ∈ (0, τ),

then u is called a local Xα solution of (37).
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Theorem 5. Let F : Xα → X be Lipschitz continuous on bounded subsets of
Xα for some α ∈ [0, 1). For each u0 ∈ Xα, there exists a unique Xα solution
u = u(t, u0) of (37) defined on its maximal interval of existence [0, τu0) which
means that τu0 =∞, or if τu0 <∞ then limsupt→τ−u0

‖u(t, u0)‖Xα = +∞.

Application for local solvability. Let X = Lp(RN ), p > N , be the base
space for the Cauchy problem

(38)
{
ut = −(−∆p)

αu+ F (u), 1 > α > 1/2,
u(0, x) = u0(x), x ∈ RN ,

where F : u 7→ u|u|ν , ν > 1.
Lets find β ∈ (0, 1) for which the problem (38) has local Xβ solution. It

means that such β has to satisfy

(39) ∀r > 0 ∀ϕ,ψ ∈ BXβ (r) ∃L(r) ‖F (ϕ)− F (ψ)‖ ≤ L(r)‖ϕ− ψ‖Xβ .

Since σ[I + (−∆p)
α] = [1,+∞), we have σ(A1) > 0 if A1 = I + (−∆p)

α.
Thus

Xβ = D(Aβ1 ) = D[(1 + (−∆p)
α)β] = D[(−∆p)

αβ].

If 2αβ < 1, Xβ ⊂ W s,p(RN ), where s = 2αβ. Let’s check (39). Let
ϕ,ψ ∈ Xβ . Using Holder and

|ϕ|ϕ|ν − ψ|ψ|ν | ≤ (ν + 1)(|ϕ|ν + |ψ|ν)|ϕ− ψ|
inequalities, we obtain

‖F (ϕ)− F (ψ)‖Lp(RN ) ≤ c(‖ϕ‖νLpqν(RN ) + ‖ψ‖νLpqν(RN ))‖ϕ− ψ‖Lpq∗ (RN ),

where 1/q + 1/q∗ = 1, provided that

(40) Lpqν(RN ) ⊃W s,p(RN ),

(41) Lpq
∗ν(RN ) ⊃W s,p(RN ).

The condition F (W s,p(RN )) ⊂ Lp(RN ) implies

(42) L(ν+1)p(RN ) ⊃W s,p(RN ).

Choosing q ≥ 2, we get s ≥ N
p

ν
ν+1 . Thus if

1
2α > β ≥ N

p
ν
ν+1

1
2α the problem

(38) has local Xβ solution.

Global solvability. Now we shall find conditions to extend the local solu-
tion in the previous application.

A function u = u(t) is called a global Xα solution of (37) if it fulfills the
requirements of local solvability with τ =∞.

Theorem 6. Global solvability of (37) follows if it is possible to choose
– a Banach space Y , with D(A) ⊂ Y ,
– a locally bounded function c : [0,+∞)→ [0,+∞),
– a nondecreasing function g : [0,+∞)→ [0,+∞),
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– a certain number θ ∈ [0, 1) such that for each u0 ∈ Xα, both condi-
tions

(43) ‖u(t, u0)‖Y ≤ c(‖u0‖Xα), t ∈ (0, τu0)

and

(44) ‖F (u(t, u0))‖X ≤ g(‖u(t, u0)‖Y )(1 + ‖u(t, u0)‖θXα), t ∈ (0, τu0)

hold.

Application for Global solvability. Here we will deal with both defini-
tions of (−∆)α. The one given by Fourier transform shows up in the lemma
below, used to prove the a priori estimate for the Maximum Principle.

Lemma 3. Suppose that α ∈ (0, 1), q ≥ 2 and ϕ, (−∆)αϕ ∈ Lq(RN ). Then,
the following inequality holds∫

RN
|ϕ|q−2ϕ(−∆)αϕdx ≥ 2

q

∫
RN

((−∆)α|ϕ|
q
2 )2 dx,

where the operator (−∆)α is referred to the Fourier transform definition.

Proof. See [12]. �

The Maximum Principle a priori estimate is stated by the following lemma.

Lemma 4. If θ(·, θ0) is a local solution of (38), the following estimates:

(45) ‖θ(t, θ0)‖Lq(RN ) ≤ ‖θ0‖Lq(RN ), q ∈ [p,∞]

holds.

Proof. Multiplying (38) by |θ|q−1 sgn(θ) we obtain∫
RN

θt|θ|q−1 sgn(θ) dx = −
∫
RN

(−∆p)
αθ|θ|q−1 sgn(θ) dx

+

∫
RN

F (θ)|θ|q−1 sgn(θ) dx.

Since the first term of right side is negative due to Maximum Principle a
priori estimate (Lemma 3), we get

1

q

d

d t

∫
RN
|θ|q dx ≤ −

∫
RN
|θ|q dx.

Solving the above differential inequality we get (45) for q ∈ [p,∞). Take the
limit q →∞, (45) also holds for q =∞. �

For our application, consider the Cauchy problem (38), but supposing now
that F : R→ R is locally Lipschitz with the restrictions F (s)sgn(s) ≤ −|s|
and |F (s)| ≤ 2|s| + |s|p, s ∈ R. Choosing the phase space Xβ for which
1 > β > N

p we have the inclusionXβ ⊂ L∞(RN ) and therefore F is Lipschitz
continuous on bounded sets as map from Xβ to X, what implies in the
existence of local Xβ solutions. To show global in time extendibility of the
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Xβ solution, we need first to get a priori estimate of it in an auxiliary Banach
space. We choose Y = L∞(RN ) ∩ Lp(RN ). Such a priori estimate is played
by Lemma 4.5. As ‖ · ‖Y := max{‖ · ‖Lp(RN ), ‖ · ‖L∞(RN )}, it follows from the
previous lemma that (43) is satisfied. By the restriction |F (s)| ≤ 2|s|+ |s|p,
there exists a positive constant C0 such that

‖F (u))‖Lp(RN ) ≤ ‖u‖
p−1
L∞(RN )

‖u‖Lp(RN ) + 2‖u‖Lp(RN )

≤ C0(‖u‖pY + ‖u‖Y ).

Therefore, (44) also holds.

5. Conclusion

In this work, we obtained the local and global solutions for a fractional
heat equation in Rn by Balakrishnan definition in an unbounded domain.
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