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Fixed point theorems for cyclic contractions in
S-metric spaces involving C-class function

Gurucharan Singh Saluja

Abstract. In this paper, we study the class of cyclic contractions in
the setting of S-metric spaces involving C-class function and establish
some fixed point theorems in the setting of complete S-metric spaces.
We support our results with some examples. Our results extend and
generalize several results from the existing literature (see, e.g., [3, 8, 9,
14, 15, 20] and many others) to the case of more general ambient space
and contraction condition.

1. Introduction

The Banach contraction mappings principle is a very popular tool in solv-
ing existence problems in many branches of Mathematical Analysis and its
applications. In fixed point theory, contraction is one of the main tools to
prove the existence and uniqueness of a fixed point. Banach’s contraction
principle, which gives an answer to the existence and uniqueness of a solu-
tion of an operator equation Tx = x, is the most widely used fixed point
theorem in all of analysis. For the sake of completeness here we mention
this celebrated theorem below.

Let (X, d) be a metric space. A mapping S : X → X is called contraction
if for each x, y ∈ X, there exists a constant k ∈ [0, 1) such that

d(S(x), S(y)) ≤ k d(x, y).(1)

If the metric space (X, d) is complete, then the mapping satisfying (1) has a
unique fixed point (Banach contraction mapping principle). Inequality (1)
also implies the continuity of S.

It is no surprise that there is a great number of generalizations of this fun-
damental result. They go in several directions-modifying the basic contrac-
tive condition or changing the ambient space. Concerning the first direction
we mention Hardy-Rogers and Ćirić quasi-contraction type conditions (see
[18]), so called weakly contractive conditions of Alber and Guerre-Delabrieer
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[1] and Rhoades [19] and altering distance functions used by Khan et al. [12]
and Boyd and Wong [5].

In 2003, Kirk et al. [13] introduced cyclic representation and cyclic con-
traction in metric spaces and investigated the existence of proximity points
and fixed points for cyclic contraction mappings and has been further used
by several authors to obtain various fixed point results for not necessary con-
tinuous mappings in different spaces (see, e.g., [3, 7–11,14–17] and others).

On the other hand, Sedghi et al. [20] in 2012 introduced the notion of
S-metric spaces which generalized G-metric spaces and D∗-metric spaces.
In [20] the authors proved some properties of S-metric spaces. Also, they
obtained some fixed point theorems in the setting of S-metric spaces for a
self-map.

Recently, Gupta [8] introduced the concept of cyclic contraction in S-
metric spaces and proved some fixed theorems in the said spaces which are
proper generalizations of the results of Sedghi et al. [20].

The concept of C-class functions was introduced by Ansari [2] which ac-
tually covers a large class of contractive conditions.

In this article, we generalize the results of Gupta [8] (IJAA, 3 (2) (2013),
119–130) by using the concept of C-class functions.

2. Preliminaries

One of the amazing generalizations of the Banach’s contraction principle
was initiated by Kirk et al. [13] via cyclic contraction.

Definition 1 ([13]). Let X be a nonempty set, m ∈ N and let f : X → X
be a self-mapping. Then X = ∪mi=1Ai is a cyclic representation of X with
respect to f , if

a) Ai, i = 1, 2, . . . ,m are nonempty subsets of X;
b) f(A1) ⊂ A2, f(A2) ⊂ A3, . . . , f(Am−1) ⊂ Am, f(Am) ⊂ A1.

They proved the following fixed point result.

Theorem 1 ([13]). Let (X, d) be a complete metric space, f : X → X and
let X =

⋃m
i=1Ai be a cyclic representation of X with respect to f . Suppose

that f satisfies the following condition:

d(fx, fy) ≤ ψ(d(x, y)),(2)

for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . ,m}, where Am+1 = A1 and
ψ : [0,∞)→ [0,∞) is a function, upper semi-continuous from the right and
0 ≤ ψ(t) < t for t > 0. Then f has a fixed point z ∈

⋂m
i=1Ai.

Notice that although a contraction is continuous, cyclic contraction need
not be. This is one of the important observation of this theorem.

In 2010, Pǎcurar and Rus [15] introduced the following notion of cyclic
weaker ϕ-contraction.
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Definition 2 ([15]). Let (X, d) be a metric space, m ∈ N, A1, A2, . . . , Am

be closed nonempty subsets of X and X =
⋃m

i=1Ai. An operator f : X → X
is called a cyclic weaker ϕ-contraction if

(1′) X =
⋃m

i=1Ai is a cyclic representation of X with respect to f ;
(2′) there exists a continuous, nondecreasing function ϕ : [0, 1) → [0, 1)

with ϕ(t) > 0, for t ∈ (0, 1) and ϕ(0) = 0 such that

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)),(3)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1.

They proved the following result.

Theorem 2 ([15]). Suppose f is a cyclic weaker ϕ-contraction on a complete
metric space (X, d). Then f has a fixed point z ∈

⋂m
i=1Ai.

We need the following definitions and lemmas in the sequel.

Definition 3 ([20]). Let X be a nonempty set and S : X3 → [0,∞) be a
function satisfying the following conditions for all x, y, z, t ∈ X:

(S1) S(x, y, z) = 0 if and only if x = y = z;
(S2) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).
Then the function S is called an S-metric on X and the pair (X,S) is

called an S-metric space or simply SMS.

Example 1 ([20]). Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) =
‖y + z − 2x‖+ ‖y − z‖ is an S-metric on X.

Example 2 ([20]). Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) =
‖x− z‖+ ‖y − z‖ is an S-metric on X.

Example 3 ([21]). Let X = R be the real line. Then S(x, y, z) = |x− z|+
|y− z|, for all x, y, z ∈ R, is an S-metric on X. This S-metric on X is called
the usual S-metric on X.

Lemma 1 ([20, Lemma 2.5]). In an S-metric space, we have S(x, x, y) =
S(y, y, x), for all x, y ∈ X.

Lemma 2 ([20, Lemma 2.12]). Let (X,S) be an S-metric space. If xn → x
and yn → y as n→∞, then S(xn, xn, yn)→ S(x, x, y) as n→∞.

Definition 4 ([20]). Let (X,S) be an S-metric space.
(1′′) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as

n→∞, that is, for each ε > 0, there exists n0 ∈ N such that for all
n ≥ n0 we have S(xn, xn, x) < ε. We denote this by limn→∞ xn = x
or xn → x as n→∞.

(2′′) A sequence {xn} inX is called a Cauchy sequence if S(xn, xn, xm)→
0 as n,m→∞, that is, for each ε > 0, there exists n0 ∈ N such that
for all n,m ≥ n0 we have S(xn, xn, xm) < ε.
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(3′′) The S-metric space (X,S) is called complete if every Cauchy se-
quence in X is convergent in X.

Every S-metric on X defines a metric dS on X by

dS = S(x, x, y) + S(y, y, x) ∀x, y ∈ X.(4)

Let τ be the set of all subsets A of X with x ∈ A if and only if there
exists r > 0 such that BS(x, r) ⊂ A. Then τ is a topology on X. Also, a
nonempty subset A in the S-metric space (X,S) is S-closed if Ā = A.

Lemma 3 ([8, Lemma 8]). Let (X,S) be an S-metric space and A is a
nonempty subset of X. Then A is said to be S-closed if and only if for any
sequence {xn} in A such that xn → x as n→∞, then x ∈ A.

Definition 5 ([20]). Let (X,S) be an S-metric space. A mapping T : X →
X is said to be a contraction if there exists a constant 0 ≤ L < 1 such that

S(Tx, Ty, Tz) ≤ LS(x, y, z),(5)

for all x, y, z ∈ X. If the S-metric space (X,S) is complete then the mapping
defined as above has a unique fixed point.

Definition 6 ([2]). A mapping F : [0,∞) × [0,∞) → R is called a C-class
function if it is continuous and satisfies following axioms:

(i) F (s, t) ≤ s,
(ii) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

An extra condition on F is that F (0, 0) = 0 could be imposed in some
cases if required. The letter C denotes the set of all C-class functions. The
following example shows that C is nonempty.

Example 4 ([2]). Define a function F : [0,∞)× [0,∞)→ R by
(i) F (s, t) = s− t, F (s, t) = s⇒ t = 0,
(ii) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0,
(iii) F (s, t) = s

(1+t)r , r ∈ (0,∞), F (s, t) = s⇒ s = 0 or t = 0,

(iv) F (s, t) = log(t+as)
1+t , a > 1, F (s, t) = s⇒ s = 0 or t = 0,

(v) F (s, t) = ln(1+as)
2 , a > e, F (s, 1) = s⇒ s = 0,

(vi) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞), F (s, t) = s⇒ t = 0,
(vii) F (s, t) = s logt+a a, a > 1, F (s, t) = s⇒ s = 0 or t = 0,
(viii) F (s, t) = s−

(
1+s
2+s

)(
t

1+t

)
, F (s, t) = s⇒ t = 0,

(ix) F (s, t) = sβ(s), where β : [0,∞)→ [0, 1) and is continuous, F (s, t) =
s⇒ s = 0,

(x) F (s, t) = s−
(

t
k+t

)
, F (s, t) = s⇒ t = 0,

(xi) F (s, t) = s − ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is
a continuous function such that ϕ(t) = 0 if and only if t = 0,

(xii) F (s, t) = sh(s, t), F (s, t) = s ⇒ s = 0, here h : [0,∞) × [0,∞) →
[0,∞) is a continuous function such that h(s, t) < 1 for all t, s > 0,
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(xiii) F (s, t) = s−
(

2+t
1+t t

)
, F (s, t) = s⇒ t = 0,

(xiv) F (s, t) = n
√

ln(1 + sn), F (s, t) = s⇒ s = 0,
(xv) F (s, t) = φ(s), F (s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a

upper semi-continuous function such that φ(0) = 0 and φ(t) < t for
all t > 0,

(xvi) F (s, t) = s
(1+s)r , r ∈ (0,∞), F (s, t) = s⇒ s = 0,

(xvii) F (s, t) = s
Γ(1/2)

∫∞
0

e−x
√
x+t

dx, where Γ is the Euler Gamma function.

Then F are elements of C.

Definition 7 ([2]). A function ψ : [0,∞) → [0,∞) is called an altering
distance function if the following properties are satisfied:

(ψ1) ψ is non-decreasing and continuous function,
(ψ2) ψ(t) = 0 if and only if t = 0.

Remark 1 ([2]). We denote Ψ the class of all altering distance functions.

Definition 8 ([2]). A function ϕ : [0,∞) → [0,∞) is said to be an ul-
tra altering distance function, if it is continuous, non-decreasing such that
ϕ(t) > 0, for t > 0 and ϕ(0) ≥ 0.

Remark 2 ([2]). We denote Φu the class of all ultra altering distance func-
tions.

3. Main Results

In this section, we shall establish some fixed point theorems for cyclic
contraction in the setting of complete S-metric spaces. First, we shall prove
the following lemma.

Lemma 4. Let (X,S) be a complete S-metric space and let {xn} be a se-
quence in X such that

lim
n→∞

S(xn+1, xn+1, xn) = 0 = lim
n→∞

S(xn, xn, xn+1).(6)

If {xn} is not a Cauchy sequence, then there exists ε > 0 and two subse-
quences {xm(k)} and {xn(k)} of {xn}n∈N with n(k) > m(k) > k of positive
integers such that the following four sequences tend to ε for k →∞:

S(xm(k), xm(k), xn(k)), S(xm(k), xm(k), xn(k)−1), S(xm(k)−1, xm(k)−1, xn(k)−1),

S(xm(k)+1, xm(k)+1, xn(k)).

Proof. If suppose that {xn} is a sequence in X satisfying condition (6) which
is not Cauchy, then there exists ε > 0 and increasing sequences of integers
{m(k)} and {n(k)} such that for all integers k,

n(k) > m(k) > k,(7)

S(xm(k), xm(k), xn(k)) ≥ ε.(8)
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Further corresponding to m(k), we can choose n(k) in such a way that it is
the smallest integer with n(k) > m(k) and satisfying (7). Then

S(xm(k), xm(k), xn(k)−1) < ε.(9)

Now, using (8), (S2) and Lemma 1, we have

ε ≤ S(xm(k), xm(k), xn(k))

= S(xn(k), xn(k), xm(k))

≤ 2S(xn(k), xn(k), xn(k)−1) + S(xm(k), xm(k), xn(k)−1)

= 2S(xn(k)−1, xn(k)−1, xn(k)) + S(xm(k), xm(k), xn(k)−1)

≤ ε+ 2S(xn(k)−1, xn(k)−1, xn(k)) (by (9)).(10)

Letting k → +∞ in equation (10) and using (6), we get

lim
k→∞

S(xm(k), xm(k), xn(k)) = ε.(11)

Again, with the help of (S2) and Lemma 1, we have

S(xm(k), xm(k), xn(k)) ≤ 2S(xm(k), xm(k), xm(k)−1)

+S(xn(k), xn(k), xm(k)−1)

≤ 2S(xm(k), xm(k), xm(k)−1)(12)
+2S(xn(k), xn(k), xn(k)−1)

+S(xm(k)−1, xm(k)−1, xn(k)−1).

Also, with the help of (S2) and Lemma 1, we have

S(xm(k)−1, xm(k)−1, xn(k)−1) ≤ 2S(xm(k)−1, xm(k)−1, xm(k))

+S(xn(k)−1, xn(k)−1, xm(k))

= 2S(xm(k)−1, xm(k)−1, xm(k))(13)
+S(xm(k), xm(k), xn(k)−1).

Letting k → +∞ in equation (13) and using (6), (11) and (12), we get

lim
k→∞

S(xm(k)−1, xm(k)−1, xn(k)−1) = ε.(14)

Again, with the help of (8), (S2) and Lemma 1, we have

ε ≤ S(xm(k), xm(k), xn(k))

= S(xn(k), xn(k), xm(k))

≤ 2S(xn(k), xn(k), xn(k)−1)(15)
+S(xm(k), xm(k), xn(k)−1).

Letting k → +∞ in equation (15) and using (6) and (9), we get

lim
k→∞

S(xm(k), xm(k), xn(k)−1) = ε.(16)
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Also, note that with the help of (S2) and Lemma 1, we have

S(xm(k), xm(k), xn(k)) ≤ 2S(xm(k), xm(k), xm(k)+1)

+S(xn(k), xn(k), xm(k)+1)

= 2S(xm(k)+1, xm(k)+1, xm(k))(17)
+S(xm(k)+1, xm(k)+1, xn(k)).

Again, note that with the help of (S2) and Lemma 1, we have

S(xm(k)+1, xm(k)+1, xn(k)) ≤ 2S(xm(k)+1, xm(k)+1, xm(k))

+S(xn(k), xn(k), xm(k))

= 2S(xm(k)+1, xm(k)+1, xm(k))(18)
+S(xm(k), xm(k), xn(k)).

Letting k → +∞ in equation (18) and using (6), (11) and (17), we get

lim
k→∞

S(xm(k)+1, xm(k)+1, xn(k)) = ε.(19)

This completes the proof. �

Theorem 3. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y =
⋃m

i=1Ai and f : Y → Y . Suppose that:
a1) Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f ;

a2) there exists a continuous, nondecreasing function ϕ : [0,+∞)→ [0,+∞)
with ϕ(t) > 0, for t > 0 and such that for any (x, y, z) ∈ Ai × Ai ×
Ai+1, i = 1, 2, . . . ,m, with Am+1 = A1,

S(fx, fy, fz) ≤ F
(
S(x, y, z), ϕ(S(x, y, z))

)
,(20)

where F ∈ C.
Then f has a unique fixed point u ∈

⋂m
i=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence
{xn} in X by xn+1 = fxn, n = 0, 1, 2, . . . . We shall prove that

lim
n→∞

S(xn+1, xn+1, xn+2) = 0.(21)

If for some k, we have limk→∞ S(xk+1, xk+1, xk+2) = 0, then equation (21)
follows immediately. So, we can assume that S(xn+1, xn+1, xn+2) > 0, for
all n. From the condition a1), we observe that for all n, there exists i = in ∈
{1, 2, . . . ,m} such that (xn+1, xn+1, xn+2) ∈ Ai×Ai×Ai+1. Then applying
condition (20) for x = y = xn and z = xn+1 to obtain

S(xn+1, xn+1, xn+2) = S(fxn, fxn, fxn+1)

≤ F
(
S(xn, xn, xn+1), ϕ

(
S(xn, xn, xn+1)

))
(22)

≤ S(xn, xn, xn+1),

for n ∈ N.
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Thus the sequence {S(xn+1, xn+1, xn+2)} is decreasing and bounded from
the below, thus there exists a real number r ≥ 0 such that

lim
n→∞

S(xn+1, xn+1, xn+2) = r.(23)

Then from (21), taking the limit as n→ +∞, we get

r ≤ F
(
r, ϕ(r)

)
,(24)

so r = 0 or ϕ(r) = 0, therefore limn→∞ S(xn+1, xn+1, xn+2) = 0.
Next, we claim that {xn} is a Cauchy sequence in the space (X,S). Sup-

pose that this is not the case. Then, using Lemma 4, we get that there exists
ε > 0 and two sequences {xm(k)} and {xn(k)} of positive integers such that
n(k) > m(k) > k and sequences in Lemma 4 tend to ε when k → +∞.

Elements {xm(k)} and {xn(k)−1} might not lie in adjacently labelled sets
Ai and Ai+1. However, for all k, there exists j(k) ∈ {1, 2, . . . , p} such
that n(k) − 1 −m(k) + j(k) ≡ l(p). Then xm(k)−j(k) (for k large enough,
m(k) > j(k)) and xn(k)−1 lie in adjacently labelled sets Ai and Ai+1 for
certain i ∈ {1, 2, . . . , p}. To simplify the method, we will suppose that
already (xm(k), xm(k), xn(k)−1) ∈ Ai × Ai × Ai+1. Applying condition (20)
for x = y = xm(k) and z = xn(k)−1, we obtain

S(xm(k)+1, xm(k)+1, xn(k)) = S(fxm(k), fxm(k), fxn(k)−1)

≤ F
(
S(xm(k), xm(k), xn(k)−1),(25)

ϕ
(
S(xm(k), xm(k), xn(k)−1)

))
.

On taking the limit as k → +∞ in (25), we get

ε ≤ F
(
ε, ϕ(ε)

)
,(26)

so ε = 0 or ϕ(ε) = 0, that is, ε = 0 which is a contraction.
Thus {xn} is a Cauchy sequence. Since (X,S) is complete and Y is

closed, it follows that the sequence {xn} converges to some u ∈ Y and since
Y =

⋃m
i=1Ai, so u ∈

⋃m
i=1Ai. We will prove that u is a fixed point of f .

Using inequality (20) for x = y = u and z = xn+1 (which is possible since
u belongs to each Ai), we obtain that

S(u, u, fu) ≤ 2S(u, u, xn+2) + S(fu, fu, xn+2)

= 2S(u, u, xn+2) + S(fu, fu, fxn+1)

≤ 2S(u, u, xn+2) + F
(
S(u, u, xn+1), ϕ

(
S(u, u, xn+1)

))
.

On letting n→ +∞ in (27) and using property of F and ϕ, we get

S(u, u, fu) ≤ 0, that is, S(u, u, fu) = 0.(27)

Thus, u = fu. Hence u is a fixed point of f . Now, we show that the fixed
point of f is unique.
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Suppose that there exists u1 ∈ Y such that fu1 = u1. Then from condi-
tion (20), we have

S(u, u, u1) = S(fu, fu, fu1)

≤ F
(
S(u, u, u1), ϕ

(
S(u, u, u1)

))
≤ S(u, u, u1),

which implies that S(u, u, u1) = 0. Hence u = u1. Thus the fixed point of f
is unique. This completes the proof. �

If we take F (s, t) = s− t in the Theorem 3, then we obtain the following
result as corollary.

Corollary 1. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y = ∪mi=1Ai and f : Y → Y . Suppose that:
a1) Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f ;

a2) there exists a continuous, nondecreasing function ϕ : [0,+∞)→ [0,+∞)
with ϕ(t) > 0, for t > 0 and such that for any (x, y, z) ∈ Ai × Ai ×
Ai+1, i = 1, 2, . . . ,m, with Am+1 = A1,

S(fx, fy, fz) ≤ S(x, y, z)− ϕ(S(x, y, z)).

Then f has a unique fixed point u ∈ ∩mi=1Ai.

Remark 3. Corollary 1 extends the corresponding result of Pǎcurar and
Rus [15] from complete metric space to the setting of complete S-metric
space.

If we take F (s, t) = k s, where 0 < k < 1 in the Theorem 3, then we
obtain the following result as corollary.

Corollary 2. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y =
⋃m

i=1Ai, f : Y → Y an operator and
Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f . Suppose

that f satisfies the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1,
i = 1, 2, . . . ,m, with Am+1 = A1,

S(fx, fy, fz) ≤ k S(x, y, z),

where 0 < k < 1 is a constant. Then f has a unique fixed point u ∈
⋂m

i=1Ai.

Remark 4. Corollary 2 extends the corresponding result of Sedghi et al.
[20] for cyclic contraction.

If we take F (s, t) = Ls, where 0 < L < 1 and A1 = A2 = · · · = Am = X
in the Theorem 3, then we obtain the following result as corollary.

Corollary 3 ([20]). Let (X,S) be a complete S-metric space and f : X → X
be a mapping such that for any x, y, z ∈ X,

S(fx, fy, fz) ≤ LS(x, y, z),

where 0 < L < 1 is a constant. Then f has a unique fixed point in X.
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Remark 5. Corollary 3 also extends the well-known Banach fixed point
theorem [4] form complete metric space to the setting of complete S-metric
space.

If we take F (s, t) = β(s) s, where β : [0,+∞) → [0, 1) is a continuous
function, in the Theorem 3, then we obtain the following result as corollary.

Corollary 4. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y =
⋃m

i=1Ai, f : Y → Y an operator and
Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f . Suppose

that f satisfies the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1,
i = 1, 2, . . . ,m, with Am+1 = A1,

S(fx, fy, fz) ≤ β
(
S(x, y, z)

)
S(x, y, z).

Then f has a unique fixed point u ∈
⋂m

i=1Ai.

Theorem 4. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y =
⋃m

i=1Ai, f : Y → Y an operator and
Y = ∪mi=1Ai is a cyclic representation of Y with respect to f . Suppose
that f satisfies the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1,
i = 1, 2, . . . ,m, with Am+1 = A1,

ψ
(
S(fx, fy, fz)

)
≤ F

(
ψ
(
M1

f (x, y, z)
)
, ϕ
(
(M1

f (x, y, z)
))
,(28)

where
M1

f = max
{
S(x, y, z), S(fx, fx, x), S(fy, fy, y)

}
,

F ∈ C, ψ ∈ Ψ and ϕ ∈ Φu. Then f has a unique fixed point v ∈
⋂m

i=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence
{xn} in X by xn+1 = fxn, n = 0, 1, 2, . . . . We shall prove that

lim
n→∞

S(xn+1, xn+1, xn+2) = 0.(29)

If for some k, we have limk→∞ S(xk+1, xk+1, xk+2) = 0, then equation (29)
follows immediately. So, we can assume that S(xn+1, xn+1, xn+2) > 0 for all
n. From the condition a1), we observe that for all n, there exists i = in ∈
{1, 2, . . . ,m} such that (xn+1, xn+1, xn+2) ∈ Ai×Ai×Ai+1. Then applying
condition (28) for x = y = xn and z = xn+1 and using Lemma 1 to obtain

ψ
(
S(xn+1, xn+1, xn+2)

)
= S(fxn, fxn, fxn+1)

≤ F
(
ψ
(
M1

f (xn, xn, xn+1)
)
, ϕ
(
M1

f (xn, xn, xn+1)
))
,(30)

where

M1
f (xn, xn, xn+1)

= max
{
S(xn, xn, xn+1), S(fxn, fxn, xn), S(fxn, fxn, xn)

}
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= max
{
S(xn, xn, xn+1), S(xn+1, xn+1, xn), S(xn+1, xn+1, xn)

}
= max

{
S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn, xn, xn+1)

}
= S(xn, xn, xn+1).(31)

From equation (30) and (31), we obtain

ψ
(
S(xn+1, xn+1, xn+2)

)
≤ F

(
ψ
(
S(xn, xn, xn+1)

)
, ϕ
(
S(xn, xn, xn+1)

))
≤ ψ

(
S(xn, xn, xn+1)

)
.(32)

Hence, we have

S(xn+1, xn+1, xn+2) ≤ S(xn, xn, xn+1).

Thus the sequence {S(xn+1, xn+1, xn+2)} is decreasing and bounded from
the below, thus there exists a real number r ≥ 0 such that

lim
n→∞

S(xn+1, xn+1, xn+2) = r.(33)

Then from (32), taking the limit as n→ +∞, we get

ψ(r) ≤ F
(
ψ(r), ϕ(r)

)
,(34)

so either ψ(r) = 0 or ϕ(r) = 0, by the property of ψ, we have r = 0.
Therefore limn→∞ S(xn+1, xn+1, xn+2) = 0.

Next, we claim that {xn} is a Cauchy sequence in the space (X,S). From
Lemma 4 and Theorem 3, we can easily show that {xn} is a Cauchy sequence.
Since (X,S) is complete and Y is closed, it follows that the sequence {xn}
converges to some v ∈ Y and since Y = ∪mi=1Ai, so v ∈ ∪mi=1Ai. We will
prove that v is a fixed point of f .

Using inequality (28) for x = y = v and z = xn+1 (which is possible since
v belongs to each Ai) and using Lemma 1, we obtain that

ψ
(
S(v, v, fv)

)
≤ 2S(v, v, xn+2) + S(fv, fv, xn+2)

= 2S(v, v, xn+2) + S(fv, fv, fxn+1)

≤ 2S(v, v, xn+2) + F
(
ψ
(
M1

f (v, v, xn+1)
)
, ϕ
(
M1

f (v, v, xn+1)
))
,(35)

where

M1
f (v, v, xn+1) = max

{
S(v, v, xn+1), S(fv, fv, v), S(fv, fv, v)

}
= max

{
S(v, v, xn+1), S(v, v, fv), S(v, v, fv)

}
.(36)

On letting n→ +∞ in equation (36), we get

M1
f (v, v, xn+1)→ S(v, v, fv).(37)
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On letting n → +∞ in equation (35) and using continuity of F and (37),
we get

ψ
(
S(v, v, fv)

)
≤ F

(
ψ
(
S(v, v, fv)

)
,
(
S(v, v, fv)

))
≤ ψ

(
S(v, v, fv)

)
,(38)

which implies that S(v, v, fv) = 0. Thus, v = fv. Hence v is a fixed point
of f . The uniqueness of the fixed point of f can be proved in the same way
as in Theorem 3. This completes the proof. �

If we take F (s, t) = s− t in the Theorem 4, then we obtain the following
result as corollary.

Corollary 5. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y =
⋃m

i=1Ai, f : Y → Y an operator and
Y =

⋃m
i=1Ai is a cyclic representation of Y with respect to f . Suppose

that f satisfies the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1,
i = 1, 2, . . . ,m, with Am+1 = A1,

ψ
(
S(fx, fy, fz)

)
≤ ψ

(
M1

f (x, y, z)
)
− ϕ

(
(M1

f (x, y, z)
)
,

where M1
f is as in Theorem 4, ψ ∈ Ψ and ϕ ∈ Φu. Then f has a unique

fixed point z ∈
⋂m

i=1Ai.

Remark 6. If we take F (s, t) = s−t, max {S(x, y, z), S(fx, fx, x), S(fy, fy, y)}
= S(x, y, z) and ψ(t) = t, for all t ≥ 0 in the Theorem 4, then we obtain the
generalization of corresponding result due to Pǎcurar and Rus [15].

Theorem 5. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am

be nonempty closed subsets of X, Y = ∪mi=1Ai, f : Y → Y an operator and
Y = ∪mi=1Ai is a cyclic representation of Y with respect to f . Suppose
that f satisfies the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1,
i = 1, 2, . . . ,m, with Am+1 = A1,

(39) ψ
(
S(fx, fy, fz)

)
≤ F

(
ψ
(
M j

f (x, y, z)
)
, ϕ
(
(M j

f (x, y, z)
))
, j = 2, 3,

where

M2
f = max

{
S(x, y, z), S(fx, fx, x), S(fy, fy, y), S(fz, fz, z), S(fy, fy, z)

}
and

M3
f = max

{
S(x, y, z), S(fx, fx, x), S(fy, fy, z), 1

2 [S(fx, fx, z)+S(fy, fy, x)]
}
,

F ∈ C, ψ ∈ Ψ and ϕ ∈ Φu. Then f has a unique fixed point u ∈
⋂m

i=1Ai.

Proof. The proof follows from Theorem 4. �
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Now, as common applications of fixed point theorems we provide some
corollaries for integral type contraction (taking A1 = A2 = · · · = Am = X).

Denote Φ the set of functions φ : [0,+∞) → [0,+∞) satisfying the fol-
lowing hypothesis:

(H1) φ is a Lebesgue-integrable mapping on each compact subset of [0,+∞);
(H2) for any ε > 0 we have

∫ ε
0 φ(s) ds > 0.

Corollary 6. Let (X,S) be a complete S-metric space. Let f : X → X be
a mapping satisfying the following inequality:∫ S(fx,fy,fz)

0
ψ(s) d s ≤ β(S(x, y, z))

∫ S(x,y,z)

0
ψ(s) d s,

for all x, y, z ∈ X, where β is as in Example 4 and ψ ∈ Φ. Then f has a
unique fixed point in X.

Proof. Follows from Corollary 4 by taking

t =

∫ t

0
ψ(s) d s.

�

Remark 7. If we take β(S(x, y, z)) = k, where 0 < k < 1 is a constant, in
the Corollary 6, then it extends Theorem 2.1 of Branciari [6] from complete
metric space to the setting of complete S-metric space.

Now, we give some examples in support of our results.

Example 5. Let X = [0, 1] and f : X → X be given by f(x) = x
8 . Let

A1 = A2 = · · · = Am = [0, 1]. Define the function S : X3 → [0,∞) by
S(x, y, z) = max{x, y, z} for all for all x, y, z ∈ X, then S is an S-metric on
X. Now, define the function F (s, t) = s

1+t : [0,∞) → [0, 1) and ϕ(t) = 1.
Consider all the cases and the general case if x ≥ y ≥ z for all x, y, z ∈ X.
It is clear that X = ∪mi=1Ai is a cyclic representation of X with respect to
f .

(1) Now, we have

S(fx, fy, fz) = S
(x

8
,
y

8
,
z

8

)
= max

{x
8
,
y

8
,
z

8

}
=

x

8
≤ x

1 + 1
=

max{x, y, z}
1 + ϕ

(
max{x, y, z}

)
=

S(x, y, z)

1 + ϕ
(
S(x, y, z)

) .
Clearly, all the conditions of Theorem 3 are satisfied and x = 0 is the unique
fixed point of f .
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(2) Again, consider the inequality of Corollary 2, we have

S(fx, fy, fz) = S
(x

8
,
y

8
,
z

8

)
= max

{x
8
,
y

8
,
z

8

}
=
x

8
,

or
x

8
≤ k S(x, y, z) = k max{x, y, z} = k x,

or

k ≥ 1

8
.

If we take 0 < k < 1, then all the conditions of Corollary 2 are satisfied and
x = 0 ∈

⋃m
i=1Ai is a unique fixed point of f .

Example 6. Let X = [0, 1]. We define S : X3 → R+ by

S(x, y, z) =

{
0, if x = y = z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Suppose
A1 = [0, 1], A2 = [0, 1

2 ], A3 = [0, 1
4 ], A4 = [0, 1

8 ] and Y =
⋃4

i=1Ai. Define
f : Y → Y such that f(x) = x

3 , for all x ∈ Y . Define the function F (s, t) =

s− t : [0,∞)→ [0, 1) and ϕ(t) = t
2 , for all t > 0. Without loss of generality,

we assume that x ≥ y ≥ z, for all x, y, z ∈ Y . Then

S(fx, fy, fz) = max{fx, fy, fz} = max
{x

3
,
y

3
,
z

3

}
=
x

3
,

S(x, y, z) = max{x, y, z} = x,

and
ϕ(S(x, y, z)) =

x

2
.

Now, consider the inequality of Corollary 1, we have

S(fx, fy, fz) =
x

3
≤ x− x

2
=
x

2
or

1

3
≤ 1

2
,

which is true. Thus, all the conditions of Corollary 1 are satisfied and
u = 0 ∈

⋃4
i=1Ai is a unique fixed point of f .

Example 7. Let X = [0, 1] and S : X3 → R+ be given by

S(x, y, z) =

 |x− z|+ |y − z|, if x, y, z ∈ [0, 1),

1, if x = 1 or y = 1 or z = 1,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space.
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If a mapping f : X → X is given by

f(x) =


1
2 , if x, y, z ∈ [0, 1),

1
6 , if x = y = z = 1,

and A1 = [0, 1
2 ], A2 = [1

2 , 1], then A1∪A2 = X is a cyclic representation of X
with respect to f . Now, define the function F (s, t) = s− t : [0,∞) → [0, 1)
and ϕ(t) = t

5 , for all t > 0. Without loss of generality, we assume that
x ≥ y ≥ z, for all x, y, z ∈ X. Indeed, consider the following cases.

Case I: If x, y ∈ [0, 1
2 ], z ∈ [1

2 , 1) or z ∈ [0, 1
2 ], x, y ∈ [1

2 , 1). Then

S(fx, fy, fz) = S
(1

2
,
1

2
,
1

2

)
= 0

≤ S(x, y, z)− ϕ (S(x, y, z)) .

Thus, the inequality of Corollary 1 is trivially satisfied.

Case II: If x, y ∈ [0, 1
2 ] and z = 1. Then

S(fx, fy, fz) = S
(1

2
,
1

2
,
1

6

)
=

2

3
,

S(x, y, z) = 1

and
ϕ (S(x, y, z)) =

1

5
.

Consequently,

S(fx, fy, fz) =
2

3
≤ S(x, y, z)− ϕ (S(x, y, z))

= 1− 1

5
=

4

5
,

which is true. Thus, all the conditions of Corollary 1 are satisfied.

Case III: If x, z ∈ [0, 1
2 ] and y = 1. Then

S(fx, fy, fz) = S

(
1

2
,
1

6
,
1

2

)
=

1

3
,

S(x, y, z) = 1

and
ϕ (S(x, y, z)) =

1

5
.

Consequently,

S(fx, fy, fz) =
1

3
≤ S(x, y, z)− ϕ (S(x, y, z))

= 1− 1

5
=

4

5
,
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which is true. Thus, all the conditions of Corollary 1 are satisfied.

Case IV: If y, z ∈ [0, 1
2 ] and x = 1. Then

S(fx, fy, fz) = S
(1

6
,
1

2
,
1

2

)
=

1

3
,

S(x, y, z) = 1

and
ϕ (S(x, y, z)) =

1

5
.

Consequently,

S(fx, fy, fz) =
1

3
≤ S(x, y, z)− ϕ (S(x, y, z))

= 1− 1

5
=

4

5
,

which is true. Thus, all the conditions of Corollary 1 are satisfied.

Considering all the above cases, we conclude that the inequality used in
Corollary 1 remains valid for ϕ and f constructed in the above example and
consequently by applying Corollary 1, f has a unique fixed point (which is
v = 1

2 ∈ A1 ∩A2).

Example 8. Let X = [0, 1]. We define S : X3 → R+ by

S(x, y, z) =

{
0, if x = y = z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X. Suppose A1 = [0, 1], A2 = [0, 1
4 ], A3 = [0, 1

28 ], A4 =

[0, 1
868 ] and Y =

⋃4
i=1Ai. Consider the mapping f : Y → Y such that f(x) =

x2

1+3x for all x ∈ Y . It is clear that Y = ∪4
i=1Ai is a cyclic representation of Y

with respect to f . Further, consider the functions ψ,ϕ : [0,+∞)→ [0,+∞)
given by ψ(t) = t and ϕ(t) = t

1+2t for all t ≥ 0 and define F (s, t) =

s− t : [0,∞)→ [0, 1). Without loss of generality, we assume that x ≥ y ≥ z
for all x, y, z ∈ Y . Then, we have

S(fx, fy, fz) = max
{ x2

1 + 3x
,

y2

1 + 3y
,

z2

1 + 3z

}
=

x2

1 + 3x
,

S(x, y, z) = max{x, y, z} = x,

S(fx, fx, x) = max
{ x2

1 + 3x
,

x2

1 + 3x
, x
}

= x,

S(fy, fy, y) = max
{ y2

1 + 3y
,

y2

1 + 3y
, y
}

= y,

S(fz, fz, z) = max
{ z2

1 + 3z
,

z2

1 + 3z
, z
}

= z,
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S(fy, fy, z) = max
{ y2

1 + 3y
,

y2

1 + 3y
, z
}

= z,

S(fx, fx, z) = max
{ x2

1 + 3x
,

x2

1 + 3x
, z
}

= z,

[S(fy, fy, x) = max
{ y2

1 + 3y
,

y2

1 + 3y
, x
}

= x.

On the other hand,

M1
f (x, y, z) = max

{
S(x, y, z), S(fx, fx, x), S(fy, fy, y)

}
= max

{
x, x, y

}
= x,

M2
f (x, y, z) = max

{
S(x, y, z), S(fx, fx, x), S(fy, fy, y),

S(fz, fz, z), S(fy, fy, z)
}

= max
{
x, x, y, z, z

}
= x

and

M3
f (x, y, z) = max

{
S(x, y, z), S(fx, fx, x), S(fy, fy, z),

1

2
[S(fx, fx, z) + S(fy, fy, x)]

}
= max

{
x, x, z,

1

2
(z + x)

}
= x.

Result Analysis:

(1) Consider the inequality (28), we have

ψ
(
S(fx, fy, fz)

)
= S(fx, fy, fz) =

x2

1 + 3x

≤ ψ
(
M1

f (x, y, z)
)
− ϕ

(
M1

f (x, y, z)
)

= x− x

1 + 2x
=

2x2

1 + 2x
,

that is,

x2

1 + 3x
≤ 2x2

1 + 2x
,

which is true. Hence

ψ
(
S(fx, fy, fz)

)
≤ ψ

(
M1

f (x, y, z)
)
− ϕ

(
M1

f (x, y, z)
)
,
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holds true. Thus, the inequality (28) is satisfied, as well as the other
assumptions of Theorem 4. We deduce that f has a unique fixed point
u ∈ A1 ∩A2 ∩A3 ∩A4 = {0}.

(2) Consider the inequality (38) for j = 2, we have

ψ
(
M2

f (x, y, z)
)
− ϕ

(
M2

f (x, y, z)
)

= ψ(x)− ϕ(x)

= x− x

1 + 2x
=

2x2

1 + 2x
≥ x2

1 + 3x

= ψ
(
S(fx, fy, fz)

)
.

Hence

ψ
(
S(fx, fy, fz)

)
≤ ψ

(
M2

f (x, y, z)
)
− ϕ

(
M2

f (x, y, z)
)
,

holds true. Thus, the inequality (38) for j = 2 is satisfied, as well as the
other assumptions of Theorem 5. We deduce that f has a unique fixed point
u ∈ A1 ∩A2 ∩A3 ∩A4 = {0}.

(3) Consider the inequality (38) for j = 3, we have

ψ
(
M3

f (x, y, z)
)
− ϕ

(
M3

f (x, y, z)
)

= ψ(x)− ϕ(x)

= x− x

1 + 2x
=

2x2

1 + 2x
≥ x2

1 + 3x

= ψ
(
S(fx, fy, fz)

)
.

Hence

ψ
(
S(fx, fy, fz)

)
≤ ψ

(
M3

f (x, y, z)
)
− ϕ

(
M3

f (x, y, z)
)
,

holds true. Thus, the inequality (38) for j = 3 is satisfied, as well as the
other assumptions of Theorem 5. We deduce that f has a unique fixed point
u ∈ A1 ∩A2 ∩A3 ∩A4 = {0}.

4. Conclusion

In this paper, we study cyclic contraction in the setting of S-metric space
using C-class function and establish some unique fixed point theorems for
various cyclic contraction in the framework of complete S-metric spaces.
Also we give some examples in support of our results. Our results extend,
generalize and modify several results from the existing literature (see, e.g.,
[3,9,14,15,20] and many others) to the setting of complete S-metric spaces.
The results also generalize the corresponding results of Gupta [8].
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