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Oscillation of even order nonlinear
dynamic equations on time-scales

Said R. Grace, Syed Abbas, John R. Graef

Abstract. In this paper, the authors discuss the oscillatory behavior
of solutions to a class of even order nonlinear dynamic equations on
time scales. The results are established by a comparison with n-th
order delay dynamic inequalities or first-order delay dynamic equations
whose oscillatory characters are known. Several corollaries are obtained
for special cases.

1. Introduction

In this paper we discuss the oscillatory behavior of solutions of the even-
order nonlinear dynamic equation

(1)
(
b(ξ)

(
φ∆n−1

(ξ)
)α)∆

+ q(ξ)φγ(τ(ξ)) = 0, ξ ∈ T,

where T is an arbitrary time scale (i.e., a nonempty closed subset of the real
numbers) with supT = +∞, and n ≥ 4 is an even positive integer. We
denote time scale intervals by [ξ0,∞)T := [ξ0,∞) ∩ T. For basic concepts,
terminology, and notation for the time scale calculus, we refer the reader to
the fundamental works of Bohner and Peterson [8,9]. In general, we will use
these notions without further explanation.

Throughout we will assume that the conditions below are satisfied:
(H1) α and γ are the ratios of odd positive integers with α > 1;
(H2) q, b ∈ Crd([ξ0,∞)T, (0,∞));
(H3) τ ∈ Crd([ξ0,∞)T, (0,∞)T) satisfies τ(ξ) ≤ ξ and τ(ξ) → ∞ as ξ →

∞;
(H4) b∆(ξ) ≥ 0 and

B(ξ, ξ0) =

∫ ξ

ξ0

b−
1
α (s)∆s→∞ as ξ →∞.
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48 Even order equations on time-scales

By a solution of (1), we mean by a nontrivial real-valued function φ that
satisfies equation (1) for ξ ≥ ξ0. We consider only nontrivial continuable
solutions, i.e., those that do not vanish in some neighborhood of infinity. An
oscillatory solution of equation (1) is a function that is neither eventually
positive nor eventually negative. The solutions which do not satisfy this
condition are termed nonoscillatory. Equation (1) is called oscillatory if all
solutions are oscillatory. Our aim here is to prove new oscillation criteria for
equation (1).

Many books and numerous articles have been written on oscillatory be-
havior of solutions of differential equations of different types and orders, and
we mention [4–7,25,26,28,29,31] as some typical examples. In recent years,
there has been significant amount of research on the oscillatory behavior of
solutions of various class of dynamic equations on time scales; for example,
[1,3,14–24] and the references therein for some recent research on this topic.

Other authors have studied equations in the form of (1) with the goal
of obtaining sufficient conditions for the oscillation of all solutions. For
example, Chen and Nie [11] considered an equation similar to (1) with a
sum of terms, rather than a single one, on the left hand side. In [13, 19]
the authors considered equation (1) with b(t) ≡ 1 and α = 1. Grace et
al. studied equation (1) and obtained integral conditions, not comparison
results, that guaranteed the oscillation of all solutions. The advantage of
comparison type theorems is that various existing results that guarantee the
desired behavior of the comparison equation can be applied.

To the best of our knowledge, there are no reported results concerning the
oscillation of the dynamic equation (1) via a comparison with inequalities of
the form (

b
1
α (ξ)φ∆n−1

(ξ)
)∆

+Q(ξ)φγ+1−α(τ(ξ)) ≤ 0,(2)

or first order equations of type

ψ∆(ξ) + P (ξ)ψγ+1−α(τ(ξ)) = 0,(3)

where the functions P , Q ∈ Crd((ξ0,∞)T, (0,∞)) are appropriately chosen.
Motivated by this observation, our aims is to establish some new oscilla-

tion criteria for equation (1) via a comparison with the dynamic inequalities
or dynamic equations of the types (2) and (3) whose oscillatory characters
are known.

2. Preliminaries

In this section we present some topics that are needed to prove our main
results.

The Taylor monomials {hn(ξ, s)}∞n=0 are defined recursively as:

h0(ξ, s) = 1 and hn+1(ξ, s) =

∫ ξ

s
hn(τ, s)∆τ, for ξ, s ∈ T, n ≥ 1.
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It is easy to see that h1(ξ, s) = ξ−s for any time scale, but in general it is not
easy to find hn for n ≥ 2. For some particular time scales this is possible.
For example, hn(ξ, s) = (ξ−s)n

n! for ξ, s ∈ R, and hn(ξ, s) = (ξ−s)n
n! for ξ,

s ∈ Z, where ξn = ξ(ξ + 1) · · · (ξ + n − 1) is the so-called falling function.
We also know that

0 ≤ hn(ξ, s) ≤ (ξ − s)n, for ξ ≥ s and n = 0, 1, . . . .

For additional details, see [8, Section 1.6].
The following lemmas play important roles in establishing our results.

Lemma 1 (Kiguradze’s Theorem [1, Theorem 5]). Let supT = ∞, n ∈ N,
and φ ∈ Cnrd(T,R+). Assume that φ∆n

(t) 6= 0 is either nonpositive or
nonnegative on T. Then there is m ∈ (0, n) ∩ Z with (−1)n−mφ∆n

(ξ) ≥ 0
for each sufficiently large ξ. In addition, the following conditions hold for ξ
sufficiently large:

(i) For 0 ≤ k < m, we have φ∆k
(ξ) > 0.

(ii) For m ≤ k < n, we have (−1)m−kφ∆k
(ξ) > 0.

The following lemma can be found in [13, Lemma 2.8], [15, Lemma 2.2],
and [16, Lemma 2.3].

Lemma 2. Let supT = ∞ and φ ∈ Cnrd(T, (0,∞)), n ≥ 2. Assume Kigu-
radze’s Theorem holds for some m ∈ (0, n)∩Z and φ∆n

(ξ) ≤ 0 on T. Then,
there is a sufficiently large ξ1 ∈ T such that

φ∆(ξ) ≥ hm−1(ξ, ξ1)φ∆m
(ξ), for all ξ ∈ (ξ1,∞)T.

The next lemma is extracted from [12, Lemma 2.2].

Lemma 3. Let conditions (H1)–(H4) hold and let φ(t) be a positive solution
of equation (1). If

(H5)
∫ ∞
ξ0

[∫ ∞
v

(
b−1(s)

∫ ∞
s

q(u)∆u

) 1
α

∆s

]
∆v =∞,

then there exists ξ1 ∈ [ξ0,∞)T such that for t ∈ [ξ1,∞)T and i = 0, 1, . . . , n−
1, we have

φ∆i
(ξ) > 0.

3. Main Results

We are now ready to establish our first oscillation result in this paper
for the equation (1) via a comparison with an n-th order delay differential
inequality.
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Theorem 1. Let conditions (H1)–(H5) hold. If the n-th order delay differ-
ential inequality

(4)
(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α
b
1−α
α (τ(ξ))(hn−1(τ(ξ), ξ1))α−1q(ξ)φγ+1−α(τ(ξ)) ≤ 0, ξ ≥ ξ1,

has no eventually positive solutions for any large ξ1 ≥ ξ0, then the equation
(1) is oscillatory.

Proof. Let φ(ξ) be a nonoscillatory solution of equation (1) with φ(t) > 0
and φ(τ(ξ)) > 0 for ξ ≥ ξ1 for some ξ1 ≥ ξ0. In this proof and the others in
this paper, we will only give the details for the case where φ(ξ) is eventually
positive since the proof in the eventually negative case is similar. From (1),
it follows that

(5)
(
b(ξ)

(
φ∆n−1

(ξ)
)α)∆

= −q(ξ)φγ(τ(ξ)) < 0,

so from the fact that b∆(ξ) ≥ 0, it is not difficult to see that there exists
ξ2 ≥ ξ1 such that

φ∆(ξ) > 0, φ∆n−1
(ξ) > 0,

(
b(ξ)

(
φ∆n−1

(ξ)
)α)∆

< 0

and
φ∆n

(ξ) < 0,

for ξ ≥ ξ2.
Notice that if (H5) holds, Lemma 3 implies m = n − 1 in Kiguradze’s

lemma, so that from Lemma 2, we have

φ∆(ξ) ≥ hn−2(ξ, ξ1)φ∆n−1
(ξ), for all ξ ∈ (ξ1,∞)T.

Integrating, this implies

(6) φ(ξ) ≥ hn−1(ξ, ξ1)φ∆n−1
(ξ), for all ξ ∈ (ξ1,∞)T.

Now inequality (5) can be written as((
b

1
α (ξ)φ∆n−1

(ξ)
)α)∆

+ q(ξ)φγ(τ(ξ)) ≤ 0.

Taking the ∆-derivative and applying [10, Lemma 2.4], we see that(
(b(ξ)

(
φ∆n−1

(ξ)
)α)∆

=
((
b

1
α (ξ)φ∆n−1

(ξ)
)α)∆

≥ α
(
b

1
α (ξ)φ∆n−1

(ξ)
)α−1(

b
1
α (ξ)φ∆n−1

(ξ)
)∆
.

Hence,

(7)
(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

(
b

1
α (ξ)φ∆n−1

(ξ)
)1−α

q(ξ)φγ(τ(ξ)) ≤ 0,
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for ξ ≥ ξ2. Since φ(t) > 0 and φ∆(ξ) > 0, from (6), there is ξ3 ≥ ξ2 with

φ(ξ) ≥ hn−1(ξ, ξ1)φ∆n−1
(ξ),

for ξ ≥ ξ3. From this we see that

(8) φ(τ(ξ)) ≥ hn−1(τ(ξ), ξ1)φ∆n−1
(τ(ξ)),

for ξ ≥ ξ4, where τ(ξ) ≥ ξ3 for ξ ≥ ξ4 for some ξ4 ≥ ξ3.
Using the fact that b

1
α (ξ)φ∆n−1

(ξ) is nonincreasing, we obtain

(9) b
1
α (ξ)φ∆n−1

(ξ) ≤ b
1
α (τ(ξ))φ∆n−1

(τ(ξ))

and using (8) in (9), we obtain

b
1
α (ξ)φ∆n−1

(ξ) ≤ b
1
α (τ(ξ))φ∆n−1

(τ(ξ)) ≤ b
1
α (τ(ξ))(hn−1(τ(ξ), ξ1))−1φ(τ(ξ)).

Substituting this inequality into (7) and using the fact that α > 1, we see
that(

b
1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

(
b

1
α (τ(ξ))(hn−1(τ(ξ), ξ1))−1φ(τ(ξ))

)1−α
q(ξ)φγ(τ(ξ)) ≤ 0,

or(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

(
b

1
α (τ(ξ))(hn−1(τ(ξ), ξ1))−1

)1−α
q(ξ)φγ+1−α(τ(ξ)) ≤ 0.

We then have that φ(ξ) is a positive solution of (4), which is a contradiction.
This completes the proof of the theorem. �

The following result is an immediate consequence of the theorem.

Corollary 1. Let α = γ and conditions (H1)–(H5) hold. If the n-th order
linear delay dynamic inequality(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α
b
1−α
α (τ(ξ))(hn−1(τ(ξ), ξ1))α−1q(ξ)φ(τ(ξ)) ≤ 0, ξ ≥ ξ1,

has no eventually positive solutions for all ξ1 ≥ ξ0, then the equation (1) is
oscillatory.

By specializing the choice of time scales, we obtain the following two
corollaries. The first one is for the time scale being the real numbers.

Corollary 2. Let T = R, α = γ, and conditions (H1)–(H5) hold. If the
n-th order linear delay differential inequality

(10)
(
b

1
α (t)φ(n−1)(ξ)

)′
+

1

α
b
1−α
α (τ(ξ))

((τ(ξ)− ξ1)n−1

(n− 1)!

)α−1
q(ξ)φ(τ(ξ)) ≤ 0, ξ ≥ ξ1,
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has no eventually positive solutions for any large ξ1 ≥ ξ0, then the differential
equation (

b(ξ)
(
φ(n−1)(ξ)

)α)′
+ q(ξ)φγ(τ(ξ)) = 0, ξ ∈ R,

is oscillatory.

On the other hand, if we have T = Z so that we are considering difference
equations, we then have the following corollary.

Corollary 3. Let T = Z, α = γ, and conditions (H1)–(H5) hold. If the n-th
order linear delay difference inequality

(11) ∆
(
b

1
α (ξ)φn−1(ξ)

)
+

1

α
b
1−α
α (τ(ξ))

((τ(ξ)− ξ1)n−1

(n− 1)!

)α−1
q(ξ)φ(τ(ξ)) ≤ 0, ξ ≥ ξ1,

has no eventually positive solutions for any large ξ1 ≥ ξ0, then the difference
equation

∆
(
b(ξ)

(
∆n−1φ(ξ)

)α)
+ q(ξ)φγ(τ(ξ)) = 0, ξ ∈ N,

is oscillatory.

Results that guarantee that inequalities (10) or (11) have no positive
solutions can be found in a number of places, for example, the monographs
of Agarwal et al. [2, 4] Györi and Ladas [27], or the papers [28, 30].

Our second oscillation theorem for equation (1) makes a comparison to a
first order delay dynamic equation.

Theorem 2. Let conditions (H1)–(H5) hold. If the first order delay dynamic
inequality

(12) w∆(ξ) +
1

α

q(ξ)(hn−1(τ(ξ), ξ1))γ

b
γ
α (τ(ξ))

wγ+1−α(τ(ξ)) ≤ 0, ξ ≥ ξ1,

has no eventually positive solutions for all large ξ1 ≥ ξ0, then equation (1)
is oscillatory.

Proof. Let φ(ξ) be a nonoscillatory solution of (1), say φ(ξ) > 0 and φ(τ(ξ))
> 0 for ξ ≥ ξ1 for some ξ1 ≥ ξ0. Following the proof of Theorem 1, we again
obtain inequalities (7)–(9). Using (8) in (7), we obtain(

b
1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

(
b

1
α (ξ)φ∆n−1

(ξ)
)1−α

q(ξ)[hn−1(τ(ξ), ξ1)φ∆n−1
(τ(ξ))]γ ≤ 0

or
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(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

(
b

1
α (τ(ξ))φ∆n−1

(ξ)
)1−α q(ξ)(hn−1(τ(ξ), ξ1))γ

b
γ
α (τ(ξ))

×
(
b

1
α (τ(ξ))φ∆n−1

(τ(ξ))
)γ
≤ 0,

and so,(
b

1
α (ξ)φ∆n−1

(ξ)
)∆

+
1

α

q(ξ)(hn−1(τ(ξ), ξ1))γ

b
γ
α (τ(ξ))

(
b

1
α (τ(ξ))φ∆n−1

(τ(ξ))
)γ+1−α

≤ 0.

Letting w(ξ) = b
1
α (ξ)φ∆n−1

(ξ), this becomes

w∆(ξ) +
1

α

q(ξ)(hn−1(τ(ξ), ξ1))γ

b
γ
α (τ(ξ))

wγ+1−α(τ(ξ)) ≤ 0.

Then w is a positive solution of (12), which is a contradiction and completes
the proof of the theorem. �

The following result is immediate.

Corollary 4. Let conditions (H1)–(H5) hold. If

lim sup
ξ→∞

∫ ξ

τ(ξ)

q(s)(hn−1(τ(s), ξ1))γ

b
γ
α (τ(s))

∆s =∞,

then the equation (1) is oscillatory.
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